The present disclosure relates to coarse crushers for comminuting extracted material. In particular, the present disclosure relates to coarse crushers for crushing lumps of rock in an underground mine.
In underground mines, conveyors are used to transport extracted rock. What are known as crushers may be used to crush lumps of rock. For example, said crushers may be integrated into a conveyor, with the result that lumps of rock may be comminuted in the running conveying flow.
Coarse crushers are used to comminute large lumps of rock while still at the face before the transfer to a gate conveyor. To this end, a coarse crusher may be integrated, for example, directly into a face conveyor which extends along a longwall face in front of a working face.
The present disclosure is directed, at least in part, to improving or overcoming one or more aspects of prior systems.
According to a first aspect of the present disclosure, a coarse crusher for use at both face ends of a face conveyor in an underground mine is disclosed. The coarse crusher may comprise a pan module with a strand segment for guiding an endless conveying means. The strand segment may be delimited laterally by a first pan outer longitudinal side and a second pan outer longitudinal side which lies opposite the first pan outer longitudinal side. Both the first pan outer longitudinal side and the second pan outer longitudinal side may include a plurality of first pan fastening apparatuses. The coarse crusher may further comprise a base-frame module which, depending on the face end of the face conveyor, into which face end the coarse crusher is to be integrated, is fastened releasably via the corresponding first pan fastening apparatuses to that first or second pan outer longitudinal side which faces away from a working face, and a support-arm module fastened releasably to the base-frame module. Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
Other features and aspects of the present disclosure result from the following description and the associated drawings.
The accompanying drawings, which are incorporated herein and constitute a part of the specification, illustrate exemplary embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure. In the drawings:
The following is a detailed description of exemplary embodiments of the present disclosure. The exemplary embodiments described therein and illustrated in the drawings are intended to teach the principles of the present disclosure, enabling those of ordinary skill in the art to implement and use the present disclosure in many different environments and for many different applications. Therefore, the exemplary embodiments are not intended to be, and should not be considered as, a limiting description of the scope of patent protection. Rather, the scope of patent protection shall be defined by the appended claims.
The present disclosure is based partially on the finding that a modular coarse crusher, as disclosed herein, may be configured to be integrated both at a first face end of a face conveyor and at a second face end of the face conveyor. This may reduce the outlay for realizing mirror-image arrangements of the mining system.
Furthermore, the present disclosure is based partially on the finding that a modular design of a coarse crusher with releasable fastening means of the individual modules may simplify the replacement, the maintenance and the access to the individual modules.
Still further, the present disclosure is based partially on the finding that a guide segment for guiding an extraction machine may be fastened releasably to a pan module at the face end of the face conveyor, with the result that the extraction machine may cut free the transition between face and gate.
In the following, first of all the installation environment of a coarse crusher will be described in greater detail. An exemplary mining system 1 is shown in
The extraction machine 2 is guided in a guide on the face conveyor 4 on the side of the coal face. During operation, the extraction machine 2 moves along the working face 8 and extracts coal in the process. The extraction machine 2 may be, for example, a mining plow or a shearer-loader.
The coal which is extracted by the extraction machine 2 falls onto the face conveyor 4 or is pushed onto the latter by the extraction machine 2. The face conveyor 4 extends between a first face end 5 and a second face end 6 which lies opposite the first face end 5. Lumps of coal and rock which are extracted by the extraction machine 2 are transported out of the face by the face conveyor 4.
For example, the face conveyor 4 may be a chain scraper conveyor (armored face conveyor). A chain scraper conveyor of this type has two pan sections which lie above one another. The upper pan section is called the upper strand and forms the conveying strand. The lower pan section is called the lower strand and forms the return strand. An endless conveying means comprising a conveyor chain with flights which are also called chain scrapers runs around the upper strand and the lower strand continuously during operation.
During operation, the face conveyor 4 transports the lumps of coal and rock to a transfer point 10. At said transfer point 10, the extracted material is transferred to a gate conveyor 12. In the embodiment shown of the mining system 1, the transfer point 10 is arranged at the first face end 5 of the face conveyor 4. In other embodiments, the transfer point 10 onto the gate conveyor 12 may also be arranged at the second face end 6 of the face conveyor 4, the gate conveyor 12 then also being arranged at the second face end 6.
A main drive 14 and an auxiliary drive 16 are provided for driving the face conveyor 4.
The shield supports 7 are positioned next to one another in order to hold open the face area in front of the working face 8. The shield supports 7 advance alternately or in groups during every pass of the extraction machine 2. The continuously excavated working face 8 in the mining direction (arrow A in
A coarse crusher 18 is provided for the comminution of the lumps of rock and coal which are transported on the face conveyor 4. The comminution of the material before transfer to the gate conveyor 12 may assist, for example, in keeping the transfer point 10 free from excessively large lumps of material. As a result, the risk of the transfer point 10 becoming clogged by an increasing accumulation of material may be reduced. The coarse crusher 18 is integrated into the face conveyor 4, as will be described in detail later.
In the embodiment which is shown, the coarse crusher 18 is arranged at the first face end 5 of the face conveyor 4. In other embodiments, the coarse crusher 18 may also be arranged at the second face end 6 of the face conveyor 4 if the transfer point 10 is also arranged at the second face end 5. Herein, reference is made to these cases with the designation “mirror-image arrangement”.
In the following, an exemplary coarse crusher 18 will be described in greater detail.
The pan module 20 has a strand segment 26, 28 with an upper strand segment 26 and a lower strand segment 28. As has already been described in conjunction with
The strand segment 26, 28 extend along a pan longitudinal axis D and is delimited laterally with regard to the pan longitudinal axis D by a first pan outer longitudinal side 46 (shown in the foreground in
In the embodiment which is shown, the pan module 20 is substantially wedge-shaped. This wedge shape makes it possible, if the coarse crusher 18 is connected directly upstream of the transfer point 10, that the respectively set height of the transfer point 10 which depends, for example, on the geometric dimensions of the chain sprockets for deflecting the conveyor chain may be achieved by the pan module 20. As an alternative, the pan module 20 may have a different shape, such as a planar shape. The respective shape may be selected, for example, depending on the respective installation environment of the coarse crusher 18.
A guide segment 30 is fastened releasably to the pan module 20 on the first pan outer longitudinal side 46 and the base-frame module 22 is fastened releasably to the pan module 20 on the second pan outer longitudinal side 48. The releasable fastening may be realized, for example, via a plurality of screw/nut connections, plug-in wedge connections and/or hook connections.
The guide segment 30 is configured for guiding the extraction machine 2 (see
The base-frame module 22, the front frame outer longitudinal side of which is shown in a transparent form in
A support-arm module 24 is fastened in the base-frame module 22. By way of example, the support-arm module 24 may be fastened pivotably via a first pivot pin 32 in the base-frame module 22. Here, the pivot pin 32 is mounted rotatably in a receiving hole in the base-frame module 22 and/or in a receiving hole through a support-arm body 25 of the support-arm module 24. As an alternative or in addition, the support-arm module 24 may be fastened in a guide in the base-frame module 22, for example in a height-adjustable manner. The support-arm module 24 may be fastened pivotably, for example, on one side via the first pivot pin 32 on an inner side of the base-frame module 22 or on both sides via the first pivot pin 32 between two inner sides of the base-frame module 22 which are spaced apart.
A hydraulic cylinder 34 is provided in order to make the pivoting of the support-arm module 24 possible. A piston rod 37 is guided in the hydraulic cylinder 34. At one end which is not guided in the hydraulic cylinder 34, the piston rod 37 is fastened pivotably via a second pivot pin 36 to the support-arm module 24. One end of the hydraulic cylinder 34 is fastened pivotably via a third pivot pin 35 to the base-frame module 22. If therefore the piston rod 37 extends, for example, the support-arm module 24 will pivot downwards, the hydraulic cylinder 34 will likewise pivot downwards.
A cutting drum apparatus 38 is fastened releasably to the support-arm module 24. The cutting drum apparatus 38 is formed from a cutting drum 40, a protective plate 42 and a support 44. A plurality of picks 43 for comminuting lumps of rock and coal are fastened on a circumferential face 41 of the cutting drum 40. An electric motor and a gear mechanism, for example, may be accommodated in the support 44, which electric motor and gear mechanism are configured to drive (to rotate) the cutting drum 40. In addition, a swinging plate (not shown) may be fastened to the protective plate 42. In the embodiment shown of the coarse crusher 18, the cutting drum 40 rotates counter to the clockwise direction.
In addition, as shown, an end-side plate 45 may be fastened releasably to the pan module 20 on the second pan outer longitudinal side 48.
The described embodiment of the coarse crusher 18 is constructed in such a way that the first pan outer longitudinal side 46 with the guide segment 30 faces the working face 8 (in relation to
Moreover, the coarse crusher 18 may have a water spray system (not shown) which is fastened, for example, to the base-frame module 22 and is directed at the pan module 20, with the result that excessive dust development during the comminution of material by the coarse crusher 18 may be counteracted.
With reference to
As can be gathered by viewing
The two pan outer longitudinal sides 46, 48 may likewise have a plurality of second pan fastening apparatuses 52 which are configured as openings for screws in the exemplary embodiment which is shown. The guide segment 30 may be fastened releasably (in relation to
In one embodiment, the first pan fastening apparatuses 50 of the first pan outer longitudinal side 46 of the pan module 20 and the first pan fastening apparatuses 50 of the second pan outer longitudinal side 46 of the pan module 20 may be arranged substantially mirror-symmetrically. The mirror symmetry relates to a vertical plane of symmetry, in which the pan longitudinal axis D extends.
As an alternative or in addition, the second pan fastening apparatuses 52 of the first pan outer longitudinal side 46 of the pan module 20 and the second pan fastening apparatuses 52 of the second pan outer longitudinal side 48 of the pan module 20 may be arranged substantially mirror-symmetrically.
In one embodiment, the first pan outer longitudinal side 46 of the pan module 20 and the second pan outer longitudinal side 48 of the pan module 20 may be of substantially mirror-symmetrical configuration.
In the embodiment which is shown, the pan module 20 is formed from a first pan (pan front part) 54 and a second pan (pan rear part) 56. The pan front part 54 is connected to the pan rear part 56 via a plurality of first coupling hooks 58. In other embodiments, the pan module 20 may be, for example, of single-piece configuration, or may be formed from three or more parts.
The pan module 20 may be integrated into a face conveyor 4 (see
In the following, the base-frame module 22 will be described in greater detail with reference to
The base-frame body of the base-frame module 22 is delimited laterally by a first base-frame outer longitudinal side 62 and a second base-frame outer longitudinal side 64. A plurality of frame fastening apparatuses 70, for example openings for screws, are provided on both base-frame outer longitudinal sides 62, 68 of the base-frame module 22. The base-frame module 22 may be fastened releasably to the pan module 20 (see
In other embodiments, a plurality of frame fastening apparatuses 70 for fastening the base-frame module 22 releasably to the pan module 20 may be provided only on one base-frame outer longitudinal side 62 or 68 of the base-frame module 22.
In one embodiment, the frame fastening apparatuses 70 of the first base-frame outer longitudinal side 62 and the frame fastening apparatuses 70 of the second base-frame outer longitudinal side 68 may be arranged substantially mirror-symmetrically.
In one embodiment, in addition, the first base-frame outer longitudinal side 62 and the second base-frame outer longitudinal side 68 may be of substantially mirror-symmetrical configuration.
The additional-frame module 61 has a first additional-frame outer longitudinal side 64 and a second additional-frame outer longitudinal side 66. A plurality of additional-frame fastening apparatuses 72 are provided both on the first additional-frame outer longitudinal side 64 and on the second additional-frame outer longitudinal side 66, via which additional-frame fastening apparatuses 72 the additional-frame module 61 may be fastened to the second pan fastening apparatuses 52 on the pan module 20 (see
In one embodiment, the additional-frame fastening apparatuses 72 of the first additional-frame outer longitudinal side 64 and the additional-frame fastening apparatuses 72 of the second additional-frame outer longitudinal side 66 may be arranged substantially mirror-symmetrically.
In one embodiment, in addition, the first additional-frame outer longitudinal side 64 and the second additional-frame outer longitudinal side 66 may be of substantially mirror-symmetrical configuration.
In other embodiments, a plurality of additional-frame fastening apparatuses 72 for fastening the additional-frame module 61 releasably to the pan module 20 may be provided only on one additional-frame outer longitudinal side 64 or 66 of the additional-frame module 61.
In the following, the support-arm module 24 will be described in greater detail with reference to
The support-arm body 25 (see
A second through hole 76 extends through the support-arm body 25 from the first support-arm outer longitudinal side 80 to the second support-arm outer longitudinal side 82. The second through hole 76 is configured for receiving the second pivot pin 36. The second through-hole is arranged by way of example in a section of the support-arm module 24 which is remote from a section of the support-arm module 24, through which section the first through hole 74 extends. The spacing may lie, for example, in a range between one quarter of the overall length of the support-arm module 24 and up to three quarters of the entire length of the support-arm module 24.
A third through hole 77 extends through the support-arm body 25 from the first support-arm outer longitudinal side 80 to the second support-arm outer longitudinal side 82. The third through hole 77 is configured for receiving a forth pivot pin 39 for pivotably fastening the support-arm module 24 to a piston rod. The third through hole is arranged by way of example in a section of the support-arm module 24 which is remote from a section of the support-arm module 24, through which section the first through hole 74 extends. The spacing may lie, for example, in a range between one quarter of the overall length of the support-arm module 24 and up to three quarters of the overall length of the support-arm module 24.
The second and third through holes 76, 77 are situated on regions of the support-arm module 24 which lie opposite one another. As a result, the support-arm module 24 may be used on either side. A pivotable coupling to a piston rod 37 of a hydraulic cylinder 34 may thus be realized either via the second pivot pin 36 in the second through hole 76 or via the third pivot pin 37 in the third through hole 77. The upper side and the lower side of the support-arm module 24 are therefore defined in accordance with the installation position of the support-arm module 24 in the base-frame module 22.
A protective shield 84 may be attached releasably to the support-arm module 24 on either side, with the result that it extends downwards from the side which represents the lower side of the support-arm module 24. The protective shield 84 may reduce penetration of dirt and comminuted material into the base frame (see
A cutting drum apparatus 38 (see
In one embodiment, the first support-arm outer longitudinal side 80 and the second support-arm outer longitudinal side 82 may be of substantially mirror-symmetrical configuration.
In the following, the method of operation of the coarse crusher 18 which is disclosed by way of example in an underground mine will be explained in greater detail with reference to
The coarse crusher 20 may be constructed, for example, as shown in
According to a further aspect, the releasable fastenings of the individual modules make dismantling of the course crusher 18 possible, with the result that the said coarse crusher 18 may be moved to the next location of use in a simple way in an at least partially dismantled state. In addition, the coarse crusher 20 may be easier to maintain. Moreover, individual modules may be exchanged in a simple way. This may be necessary, for example, if a certain module is damaged, is to be serviced or an improved module is available.
In the embodiments, in which at least one part, for example the pan module 20, has fastening apparatuses on both sides or may be fastened, the modular design is not restricted to all the parts of the coarse crusher 18 having to be capable of being fastened on both sides. For example, in one embodiment, merely the pan module 20 may have first and/or second pan fastening apparatuses 50 on both pan outer longitudinal sides 46, 48. In an alternative or additional embodiment, in addition, the support-arm module 24, as described with reference to
In the embodiments, in which a component, for example the base-frame module 22, may be fastened releasably only on one side, it is necessary for a mirror-image construction of the coarse crusher 18 to provide the said component in a second embodiment for mirror-image mounting.
The required number of parts for mirror-image attachments of the coarse crusher 18 may be reduced by an increase in the number of modules which may be fastened releasably on both sides and, in addition, are designed in such a way that they may perform their function in both installation positions.
It is made possible that an extraction machine 2 may move as far as a section of the working face 8 opposite the face ends 5, 6 of the face conveyor 4 by virtue of the fact that the coarse crusher 18 has a plurality of second pan fastening apparatuses 52 for fastening the guide segment 30 releasably for guiding the extraction machine 2. The transition between face and gate may be cut free by the extraction machine 2 which may move as far as the guide segment 30 on the coarse crusher 18 which is arranged at one of the face ends 5, 6.
Although the preferred embodiments of this invention have been described herein, improvements and modifications may be incorporated without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20 2013 002 583.2 | Mar 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/002743 | 9/12/2013 | WO | 00 |