The present invention generally relates to switches, and more particularly relates to a switch assembly that uses an M-blade as an actuation mechanism.
Electrical switches typically operate to open and close an electrical circuit by moving one or more contacts between contact positions. A switch that is used to control one circuit is known as a single pole switch. In many instances, two or more switches are to simultaneously energize or de-energize two or more devices. For such instances, a multi-pole switch arrangement may be used. Depending on the application, the difference in the timing between the on/off times of the switch poles (i.e., the “simultaneity”) can be important and may be regulated as maximum specified values through various industry, agency or military standards. Many times, the specified simultaneity can be relatively difficult to achieve. This can be especially true when precision switches are needed with very precise and repeatable on/off positions and/or small differential travels (which is the difference in the on and off position). Low simultaneity in switch applications can be further complicated by slow switch actuation speeds.
Presently, multi-pole switch simultaneity is accomplished via three different techniques. One technique involves single, multi-pole switch designs having a single operating plunger and utilizing complex mechanisms to achieve simultaneity. However, these switches tend to be relatively large, which limits their potential usefulness. Furthermore, the mechanism complexity limits the level of precision that can be achieved in terms of on/off position repeatability and low differential travel.
A second technique that is used is ganging together two or more separate precision snap-action switches, each with their own operating plunger. A separate mechanism is provided to operate all the switches. The difficulty with this technique is that the individual switches must first be sorted to attain substantially identical on/off positions. This sorting operation can be relatively time-consuming and costly. Moreover, even with doing so, the level of simultaneity that can be achieved for both the on position and the off position remains limited because each individual switch has slightly different differential travels.
A third technique is similar to the second, in that two separate switches with a separate actuating mechanism are used. However, with this third technique single actuating mechanism is fitted with adjustment features, such as bendable tabs or adjustment screws. This can be relatively costly and, like the second technique, the level of simultaneity that can be achieved for both the on position and the off position remains limited.
Other potential concerns with presently known electrical switches include reliable control of low electrical loads and resistance to shock and vibration. Reliable control of low electrical loads implies that low electrical resistance is maintained when the switch is in the on position. The electrical resistance is largely a function of the contact force, which is the amount of force that is holding the switch contacts together. The higher and more stable the contact force, the lower and more stable the electrical resistance. Exposure to shock and vibration can cause the switch contacts to separate, resulting in unintended interruption of the electrical current flow. Good resistance to vibration and shock requires that the switch contacts remain in electrical contact. The higher and more stable the contact force, the better the shock and vibration resistance.
Hence there is a need for a single, relatively small-size, multi-pole switch with a single operating plunger and low differential travel that also has a relatively small simultaneity characteristic. There is also a need for a switch with higher and/or maintained contact forces during switch operation when the switch is in the on position and when the switch is exposed to shock or vibration. The present invention addresses at least these needs.
In one embodiment, a switch assembly includes an M-blade snap spring, an actuation arm, and a switch. The M-blade snap spring includes a closed end, a double-loop end, a first outer leg, a second outer leg, a first inner leg, a second inner leg, and a cross member. The double-loop end is disposed opposite the closed end and includes a first loop and a second loop. The first outer leg is coupled to the first inner leg to form the first loop of the double-loop end. The second outer leg is coupled to the second inner leg to form the second loop of the double-loop end. The cross member is coupled to the first outer leg and to the second outer leg to define the closed end. The first inner leg is spaced apart from the second inner leg. The actuation arm is coupled to, and includes a portion that extends between, the first and second inner legs. The portion is dimensioned to distort the M-blade snap spring such that the first and second inner legs are out of coplanar alignment with the first and second outer legs and the cross member, whereby the M-blade snap spring exhibits snap-action movement between a first actuator position and a second actuator position. The switch is coupled to the cross member, and is responsive to the snap-action movement of the M-blade to move between a first switch position and a second switch position. The actuation arm is configured to selectively move the first and second inner legs between a first inner leg position and a second inner leg position, to thereby cause the M-blade snap spring to move, via snap-action, between the first actuator position and the second actuator position, respectively, which in turn causes the switch to move between the first switch position and the second switch position, respectively.
In another embodiment, a switch assembly includes an M-blade snap spring, an actuation arm, an actuator, an actuation member, and a leaf spring. The M-blade snap spring includes a closed end, a double-loop end, a first outer leg, a second outer leg, a first inner leg, a second inner leg, and a cross member. The double-loop end is disposed opposite the closed end and includes a first loop and a second loop. The first outer leg is coupled to the first inner leg to form the first loop of the double-loop end. The second outer leg is coupled to the second inner leg to form the second loop of the double-loop end. The cross member is coupled to the first outer leg and to the second outer leg to define the closed end. The first inner leg is spaced apart from the second inner leg. The actuation arm is coupled to, and includes a portion that extends between, the first and second inner legs. The portion is dimensioned to distort the M-blade snap spring such that the first and second inner legs are out of coplanar alignment with the first and second outer legs and the cross member, whereby the M-blade snap spring exhibits snap-action movement between a first actuator position and a second actuator position. The actuator is disposed adjacent the actuation arm and is configured to selectively supply an actuation force to, and remove an actuation force from, the actuation arm. The actuation member is coupled to the cross member and is moveable therewith. The leaf spring extends through the actuation member and is configured, in response to movement of the actuation member, to move between a first switch position and a second switch position. The actuation arm is configured to selectively move the first and second inner legs between a first inner leg position and a second inner leg position, to thereby cause the M-blade snap spring to move, via snap-action, between the first actuator position and the second actuator position, respectively, whereby the actuation member moves and causes the leaf spring to move between the first switch position and the second switch position, respectively.
In yet another embodiment, a switch assembly includes an actuator housing, a switch housing, an M-blade snap spring, an actuation arm, a plurality of normally-closed contacts, a plurality of normally-open contacts, an actuation member, and a plurality of leaf springs. The switch housing is coupled to the actuator housing. The M-blade snap spring is coupled to and is disposed within the actuator housing and includes a closed end, a double-loop end, a first outer leg, a second outer leg, a first inner leg, a second inner leg, and a cross member. The double-loop end is disposed opposite the closed end and includes a first loop and a second loop. The first outer leg is coupled to the first inner leg to form the first loop of the double-loop end. The second outer leg is coupled to the second inner leg to form the second loop of the double-loop end. The cross member is coupled to the first outer leg and to the second outer leg to define the closed end. The first inner leg is spaced apart from the second inner leg. The actuation arm is coupled to and is disposed within the actuator housing. The actuation arm is coupled to, and includes a portion that extends between, the first and second inner legs. The portion is dimensioned to distort the M-blade snap spring such that the first and second inner legs are out of coplanar alignment with the first and second outer legs and the cross member, whereby the M-blade snap spring exhibits snap-action movement between a first actuator position and a second actuator position. The plurality of normally-closed contacts are coupled to and disposed within the switch housing, and the plurality of normally-open contacts are coupled to and disposed within the switch housing and are spaced apart from the normally-closed contacts. The actuation member is disposed partially within the actuator housing and the switch housing and is coupled to the cross member. The plurality of leaf springs is disposed within the switch housing and extends through a portion of the actuation member. Each leaf spring is configured to move between a first switch position and a second switch position, and each has a first end and a second end. The first end of each leaf spring is fixedly coupled to the switch housing. The second end of each leaf spring is electrically coupled to a different one of the normally-closed contacts when the M-blade snap spring is in the first actuator position, and the second end of each leaf spring is electrically coupled to a different one of the normally-open contacts when the M-blade snap spring is in the second actuator position. The actuation arm is configured to selectively move the first and second inner legs between a first inner leg position and a second inner leg position, to thereby cause the M-blade snap spring to move, via snap-action, between the first actuator position and the second actuator position, respectively, whereby the actuation member moves and causes each of the leaf springs to move between the first switch position and the second switch position, respectively.
Furthermore, other desirable features and characteristics of the switch assembly will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the preceding background.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Thus, any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. All of the embodiments described herein are exemplary embodiments provided to enable persons skilled in the art to make or use the invention and not to limit the scope of the invention which is defined by the claims.
In this document, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Moreover, depending on the context, words such as “connect” or “coupled to” used in describing a relationship between different elements do not imply that a direct physical connection must be made between these elements. For example, two elements may be connected to each other physically, electronically, logically, or in any other manner, through one or more additional elements. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description.
Referring now to
Returning to the description, the housing assembly 102 may be variously configured and implemented, but the depicted housing 102 includes an actuator housing 116, a switch housing 118, and a cover 122. The actuator housing 116 is coupled to the switch housing 118, and each is used to mount various ones of the switch components. The depicted cover 122 is coupled to the switch housing 118, and envelopes many of the switch components that will now be described.
The M-blade snap spring 104 is coupled to and is disposed within the actuator housing 116. The M-blade snap spring 104 is configured to exhibit snap-action movement between a first actuator position, which is the position depicted in
The depicted M-blade snap spring 104 includes a closed end 502, a double-loop end 504, a first outer leg 506, a second outer leg 508, a first inner leg 512, a second inner leg 514, and a cross member 516. The double-loop end 504 is disposed opposite the closed end 502 and includes a first loop 518 and a second loop 522. It is noted that although the depicted first and second loops 518, 522 are rounded, these loops could also be square. The first outer leg 506 is coupled to the first inner leg 512 to form the first loop 518 of the double-loop end 504. The second outer leg 508 is coupled to the second inner leg 514 to form the second loop 522 of the double-loop end 504. The cross member 516 is coupled to the first outer leg 506 and to the second outer leg 508 to define the closed end 502.
As
In the depicted embodiment, the first and second legs 512, 514 are spread via mount hardware 124 (see
Returning to
The switch 108 is coupled to the cross member 502 of the M-blade snap spring 104. The switch 108 is responsive to the snap-action movement of the M-blade snap spring 104 to move between a first switch position, which is the position depicted in
The switch 108 may be variously configured to implement the above-described functionality, but in the depicted embodiment the switch 108 includes an actuation member 128 and a plurality of leaf springs 132 (132-1, 132-2). The actuation member 128 is partially disposed within both the actuator housing 116 and the switch housing 118, and is coupled to the cross member 502. The leaf springs 132 are disposed within the switch housing 118, and each extends through a different one of a pair of slots 134 formed in the actuation member 128. Each leaf spring has a first end 136 and a second end 138. The first end 136 of each leaf spring 132 is fixedly coupled to the switch housing 118 via a common terminal 119, and the second end 138 of each leaf spring 132 is electrically coupled to a different one of the contacts 112, 114. In particular, the second ends 138 are electrically coupled to different ones of the normally-closed contacts 112 when the M-blade snap spring 104 is in the first actuator position, and are electrically coupled to different ones of the normally-open contacts 114 when the M-blade snap spring 104 is in the second actuator position.
As noted above, the switch assembly 100 additionally includes a plurality of normally-closed contacts 112 and a plurality of normally-open contacts 114. The normally-closed contacts 112 are each coupled to, and extend through, the switch housing 118 to a pair of first terminals 142, which allows the normally-closed contacts 112 to be electrically connected to external devices, circuits, or systems. The normally-open contacts 114 are spaced apart from the normally-closed contacts 112. The normally-open contacts 114 are also coupled to, and extend through, the switch housing 118 to a pair of second terminals 144-1, 144-2, which allows the normally-open contacts 114 to be electrically connected to external devices, circuits, or systems.
As
Having described the structure of the switch assembly 100, and generally described certain functions of the various components that comprise the switch assembly 100, its overall operation will now be described. The “normal” state of the switch assembly 100 is depicted
When a force of sufficient magnitude is supplied to the actuator 146 in a first direction 202 via, for example, the lever arm 148, the actuator 146 pushes against the actuator arm 106, and thus causes the first and second inner legs 512, 514 of the M-blade snap spring 104 to also move in the first direction 202. When the first and second inner legs 512, 514 reach a first point, which may be referred to as the “operate point” or “snap-over point,” the first and second outer legs 506, 508 snap in a second direction 302 (see
Thereafter, upon removal of the force from the actuator 146 (and lever arm 148), the first and second inner legs 512, 514 of the M-blade snap spring 104 will move in the second direction 302. When the first and second inner legs 512, 514 reach a second point, which may be referred to as the “return point,” the first and second outer legs 506, 508 snap back in the first direction 202, and place the M-blade snap spring 104 back into the first actuator position, and the switch 108 back into the first switch position.
The switch assembly 100 depicted and described herein uses the M-blade snap spring 104 as a snap-action actuator, rather than as a moveable contact as is done in presently known switch assemblies. There is no electrical contact associated with the M-blade snap spring 104. Hence, because the switch assembly 100 uses a common snap-action actuator to move the movable contacts (e.g., the leaf springs 132), the contacts will move from the normally-closed position to the normally-open position at a substantially identical point, thereby providing substantial simultaneity. In addition, the force deflection characteristics of the M-blade snap spring 104 provide a maintained force at the cross member 502 of the M-blade snap spring 104. This directly translates to a maintained contact force, which increases the load reliability and shock and vibration resistance. To more clearly illustrate the improved contact force,
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.