1. Field of the Invention
Macerating toilet systems, which may be operated at a location below gravity drain piping, and which may also be installed without requiring connection to a drain pipe that is located below the surface upon which such a system is disposed.
2. Description of Related Art
Maceration, in sewage treatment, is the use of a machine that reduces solids to small pieces in order to deal with tissue paper, excrement, rags and other solid waste. Macerating toilets use a grinding or blending mechanism to reduce human waste to a slurry, which can then be moved by pumping. Such a toilet is useful in situations where the desired location of the toilet is below the location of gravity drain piping in a building, thus requiring the effluent from the toilet to be pumped upwardly to reach the discharge location of sewage piping from the building. Such a toilet is also useful because it may be configured so as to discharge laterally from its base, rather than from a discharge opening on the bottom of a base. This enables the toilet to be simply bolted in place to a supporting surface, and the water supply and effluent connections to be made to it, rather than breaking into the structure beneath the supporting surface to enable discharge from the toilet out its bottom. In circumstances where the installation of the toilet is “after the fact,” and installation is desired that was otherwise unplanned, such as on a concrete basement floor (which may be reinforced with rebar), a toilet with a lateral discharge that can be connected directly to discharge piping is especially advantageous. It obviates the need to disrupt the floor or place the toilet upon a raised pedestal, which would otherwise be needed for a bottom discharge toilet. Breaking into a concrete floor is obviously difficult, and placing a toilet on a pedestal may be undesirable, such as if there is limited overhead clearance.
In circumstances requiring a horizontal or upward effluent discharge, a macerating toilet is required. This is because in both cases (or the combination of them), the effluent from the toilet must be pumped at least horizontally, and also possibly upwardly. However, such effluent contains tissue paper and excrement, and may also contain other solid waste such as rags, cigarette butts, sanitary napkins, and even unintended articles such as socks or other objects flushed down by inquisitive children.
In order for the effluent from the toilet to be pumped horizontally and/or upwardly, these articles must be ground completely into a liquid slurry that a pump can handle without jamming, breaking, or clogging. Thus a macerating apparatus is needed, either as a separate device upstream from the pump, or integrally provided as a part of the pump at the inlet thereof.
Toilets with a lateral discharge into a nearby enclosure are known. U.S. Pat. No. 7,203,976 to Weller, the disclosure of which is incorporated herein by reference, discloses a floor level pumping system that is non-disruptive to the existing flooring and including a conventional rear outlet toilet. The system comprises a floor level tank for receiving waste and fluid from the outlet of the toilet including a tank chamber containing a designated area with a sensing system which activates a discharge pump when the level or quantity of the waste and fluid within the tank chamber reaches a predetermined level. The chamber further includes one or more baffles extending upwardly from a floor of the tank chamber, at least partially segregating the designated area from the remaining area of the tank chamber, and a discharge pump for pumping waste from the floor level tank out through a discharge pipe.
The placement of an enclosure with a macerator and a pump at the discharge of a toilet results in certain problems that are not otherwise present with a typical conventional bottom-discharge toilet. Some of these problems have not been solved by existing macerating toilet systems.
One problem is that because a macerating toilet with a pump and macerator device is more complex than a conventional bottom-discharge toilet, it requires more maintenance. Cutters on the macerator become worn and dull, and must be periodically replaced. The macerator system may have level and/or flow sensors which may become fouled and require cleaning or replacement. In a circumstance where a non-grindable solid object is flushed into the macerator, such as a small toy, it will jam the macerator. There is no alternative other than to access the macerator and remove the object. In all cases, because of the sewage present, accessing such components is an unsanitary and unpleasant task. In a typical prior art macerating apparatus, an entire top cover must be removed from the macerator tank to access the internal components. Piping connections must be dismantled from the pump contained in the tank, and level switches and/or other electrical sensing and control equipment must be disconnected and/or removed. All of this must be done in the presence of unsavory contents within the tank.
A second problem is that when certain level and/or flow sensors become fouled, they may provide a false signal such as a high level alarm. Even though the macerating unit and pump are in working order, the false alarm causes the entire toilet system to become inoperable such that it cannot be used. There are no provisions to communicate sensor condition to a user, while temporarily overriding the sensor output and maintaining operability of the toilet.
There is therefore a need for a macerating toilet that operates in a manner that avoids the need for maintenance to the greatest extent possible; but when maintenance is needed, which also enables such maintenance in as simple and sanitary a manner as possible.
In accordance with the invention, a macerating apparatus for a toilet is provided in which the problem of unsanitary and/or difficult maintenance of the macerator on a macerating toilet is solved by providing a modular macerating unit that is easily moved to a convenient maintenance position, and if necessary, easily removed from the tank. In certain embodiments, the macerating apparatus may be comprised of a tank having an open top, a macerating unit disposed in the tank, and a main cover joined to the open top of the tank and comprising an opening. The macerating unit is movable from an operating position to a maintenance position beneath the opening. From the maintenance position, the macerating unit may be removed from the tank through the opening in the main cover. The apparatus may be further comprised of an access cover fittable to the opening in the main cover and extending within the tank so as to hold the macerating unit in the operating position when the access cover is fitted to the main cover. The macerating unit may be laterally displaced from the operating position to the maintenance position when the access cover is removed from the main cover. The macerating unit may be disposed in a track on a bottom surface of the tank such that the track guides the motion of the macerating unit between the operating position and the maintenance position.
In further accordance with the invention, a macerating apparatus for a toilet is provided in which the problem of fouled sensors disrupting the operation of the macerating apparatus and the toilet is solved by providing an adaptive control system for operation of the apparatus. In certain embodiments, the macerating apparatus may be comprised of a macerating cutter disposed in a tank, and the adaptive control system in communication with the cutter. The system may comprise first and second sensors in communication with the controller, wherein when the first sensor detects a flushing of the toilet, the controller causes the cutter to operate for a first run time; and when the second sensor detects a level of liquid in the tank, the controller causes the cutter to operate for a second run time; and when the controller detects that the first sensor is inoperable and the second sensor detects the level of liquid in the tank, the controller causes the cutter to operate for the first run time. Because the flushing of a toilet detected by the first sensor typically contains solids which must be macerated, the first run time is preferably greater than the second run time, which typically only requires the pumping of gray water. In one embodiment of the apparatus, the cutter may be operatively connected to a motor, wherein the controller monitors the load of the cutter on the motor and varies the first run time depending upon the load on the cutter. The run time is increased for as long as necessary to fully macerate the solids, at which time the load on the motor decreases.
Another aspect of the Applicants' macerating apparatus is based on the observation of another problem with conventional macerating apparatus. The Applicants have observed that when certain solid objects, such as the aforementioned tissue paper, rags, cigarette butts, sanitary napkins, socks, etc., are present within the toilet or within the macerating tank upstream from the macerator and in an unmacerated state, when a flush is initiated, such objects are often drawn into the macerator before it can accelerate to operating speed, and cause the macerator to jam. In some instances, the cutters of the macerator do not even make a single rotation before jamming occurs against a solid object. Such jamming renders the macerator inoperable. The Applicants have observed that in a conventional macerator apparatus, the operating sensors are located in the macerating tank and programmed such that they do not trigger the macerating unit to start up until it is too late—until solid objects are at or near the macerating cutter.
The Applicants have hypothesized that if a macerator were allowed to reach operating speed before a solid object contacts it, the object would be macerated, taken in by the pump, and discharged in the desired routine manner. Subsequent experimental testing confirmed this hypothesis. In accordance with the invention, therefore, a macerating apparatus for a toilet is provided in which the problem of jamming the macerator at startup is solved by rapidly detecting the flushing of the toilet and accelerating the macerator before potentially motion jamming solid objects in the effluent from the toilet can reach it. The macerating apparatus may be comprised of a macerating cutter operatively connected to a motor, and a sensor in communication with the motor. The sensor may detect the flow of effluent from the toilet toward the macerator, the flow of makeup water from the supply tank into the toilet, or the mechanical action of the actuator to flush the toilet. The sensor detects the toilet flushing at the beginning or early in the toilet flushing cycle, and causes the motor to start and operate the macerating cutter before the effluent containing solid objects contacts the macerating cutter. In certain embodiments, when effluent is discharged from the toilet toward the macerating unit, the sensor detects the discharge and causes the motor to start and operate the macerating cutter before the effluent contacts the macerating cutter. There is thus also provided a method of macerating an effluent stream from a toilet. The method comprises detecting flushing of the toilet that causes the effluent stream, and starting a macerating unit comprising a macerating cutter operatively connected to a motor and accelerating the macerating cutter to an operating speed prior to the effluent stream reaching the macerating cutter.
Another aspect of the Applicants' macerating apparatus is based on the observation of yet another problem with conventional macerating apparatus. The Applicants have observed that at the junction between an inlet tube and a macerating basket of a macerator, if a tight running clearance between a cutter blade tip and the basket or inlet tube is maintained, a relatively high frequency of jamming of solid objects between the macerator blade and the basket of inlet tube occurs. Such jamming renders the macerator inoperable.
The Applicants have hypothesized that if a larger blade tip running clearance were provided, with a gradual reduction in the running clearance, solid objects drawn into the gap between the macerator blade and the basket or inlet tube would be macerated, taken in by the pump, and discharged in the desired routine manner. Subsequent experimental testing confirmed this hypothesis. In accordance with the invention, therefore, a macerating apparatus for a toilet is provided in which the problem of jamming the macerator by solid objects is solved by providing a larger blade tip running clearance and a gradual reduction in the running clearance at the junction of the macerator basket and the inlet tube. In certain embodiments, the macerating apparatus may be comprised of a macerating cutter operatively connected to a motor and disposed within a macerating basket, and an asymmetric inlet tube joined to the macerating basket, which is configured to providing the larger blade tip running clearance and gradual reduction in the running clearance at the junction of the macerator basket and the inlet tube.
The intake basket may be comprised of a cylinder comprising a wall surrounding the cutter, with the inlet tube intersecting the wall of the cylinder. The cutter may be a rotary cutter with the cutting blade defining a plane of rotation, and wherein the asymmetry of the inlet tube is in a lower inward region of the inlet tube and in the plane of rotation of a cutting blade of the cutter. The asymmetry of the inlet tube may be biased toward the lower inward region of the inlet tube in the direction of rotation of the cutter. The increased operating clearance between the cutting blade of the macerating cutter and the intake basket may occur between about 50 and about 100 degrees of cutter rotation. This sector of rotation is biased relative to the inlet tube in the direction of rotation of the cutter, and aligns generally with the lower inward region of the inlet tube.
The present disclosure will be provided with reference to the following drawings, in which like numerals refer to like elements, and in which:
The present invention will be described in connection with certain preferred embodiments. However, it is to be understood that there is no intent to limit the invention to the embodiment described. On the contrary, the intent is to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
For a general understanding of the present invention, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate identical elements. In the following disclosure, the present invention is described in the context of its use as a macerating apparatus for a toilet. However, it is not to be construed as being limited only to use in macerating the solids that may be present in an effluent stream from a toilet. The invention is adaptable to any use in which macerating of solids in a liquid stream is desirable to be provided from a macerating apparatus. Additionally, the description identifies certain components with the adjectives “front,” “rear,” “top,” “upper,” “bottom,” “lower,” “left,” “right,” etc. These adjectives are provided in the context of use of the macerating apparatus as connected to a toilet and in the context of the orientation of the drawings. The description is not to be construed as limiting the macerating apparatus to use solely in the spatial orientation shown herein. The instant macerating apparatus may be used in orientations other than those shown and described herein.
The macerating apparatus may be provided with decorative removable covers 110 and 112, which provide a pleasing aesthetic appearance, while also providing isolation of the various components therebeneath. Cover 110 may include a window 114 for visibility of status indicating lights 412 (to be described subsequently herein) and a label 116 with indicia that correspond to the status lights 412. Covers 110 and 112 are easily removed by hand so as to provide simple access to the apparatus components beneath them.
Referring also to
The access cover 230 is fitted to an opening 218 in the main cover, and is provided with a flange 232 which corresponds with and seals to a flange 220 in the main cover 210, in the same manner as described for main cover flange 212 and tank flange 120. The access cover 230 is made easily removable from the main cover 210 by threaded fasteners 234. Other quick-release fastening means such as e.g., clamps, quarter-turn fasteners, and the like are contemplated.
The access cover 230 is formed with a downwardly extending cavity 236 having a bottom wall 238 and side walls. The side wall 240 that is proximate to the macerating unit 300 serves the purpose of holding the macerating unit 300 in its operating position when the access cover 230 is joined to the main cover 210, as will be explained in further detail herein. Alternatively, the access cover 230 could be provided as a simple flat cover with a downwardly extending portion that contacts the macerating unit 300 and retains it in its operating position.
Referring now to
In operation, the motor 360, intake basket 310, and cutter cartridge 330 coact to macerate solid materials in the incoming liquid effluent stream from the toilet 10. Simultaneously, the motor 360, impeller 370, and volute 380 coact to pump liquid slurry that has been macerated by the cutter cartridge 330. Such slurry flows downwardly through holes 312 in the basket 310 to the bottom of the tank 101, into the inlet 382 of the volute as indicated by arrows 399, out through the outlet 384 of the volute 380 as indicated by arrow 398, through a conduit (not shown) within the tank 101, and out through an outlet fitting 254 (
Referring also to
In certain embodiments, the macerating unit may be comprised of features that provide enhanced macerating capability. This is best understood with reference to
To solve this problem, an asymmetric inlet tube 314 in communication with the intake basket 310 was discovered to be effective. Rather than being cylindrical, the inlet tube 314 is asymmetric in that it has a biased opening in the lower region 318 thereof, in
In certain embodiments of the Applicants' macerating apparatus, the problem of unsanitary and/or difficult maintenance of the macerator is solved by providing a modular macerating unit that is easily moved to a convenient maintenance position, and if necessary, easily removed from the toilet tank. Referring in particular to
Referring also to
Additionally, referring also to
In addition to providing a macerating unit 300 with an inlet basket configured to avoid jamming of the cutter cartridge 330 with solid objects, in certain embodiments, the macerating apparatus 100 is provided wherein the aforementioned problem of jamming the macerator at startup is solved by rapidly detecting the flushing of the toilet and accelerating the macerator before potentially motion jamming solid objects in the effluent from the toilet can reach it.
The macerating apparatus 100 may be comprised of a macerating cutter operatively connected to a motor, and a sensor in communication with the motor. The sensor may detect the flow of effluent from the toilet toward the macerator, the flow of makeup water from the supply tank into the toilet, or the mechanical action of the mechanism used to flush the toilet. The sensor detects the toilet flushing at the beginning or early in the toilet flushing cycle and causes the motor to start and operate the macerating cutter before the effluent containing solid objects contacts the macerating cutter.
In one embodiment depicted in
The sensor 420 may be a capacitance sensor, which detects a change in capacitance when flooded with effluent, and then again when the effluent recedes. Alternatively, the sensor 420 may sense conductivity, flow, pressure, or any other physical property that varies when the inlet tube 314 is flooded with effluent and then recedes. Referring to
Other means for rapidly detecting the flushing of the toilet 10 may be provided instead of the sensor 420. In one embodiment (not shown), a sensor may be provided which detects the flow of makeup water from the supply tank 14 (
The use of the Applicants' macerating apparatus comprising means for detecting flushing of the toilet before effluent discharged from the toilet contacts the macerating cutter enables a method of macerating an effluent stream from a toilet. The method comprises detecting flushing of the toilet 10 that causes the effluent stream, and starting a macerating unit 300 comprising a macerating cutter 330 operatively connected to a motor 360, and accelerating the macerating cutter 330 using suitable means such as motor 360, to an operating speed prior to the effluent stream reaching the macerating cutter 330. As used herein, “rapidly detecting the flushing of the toilet” means detecting the flushing sufficiently early so as to accelerate the macerating cutter 330 to a sufficient operating speed that prevents jamming of the cutter with solid objects in the effluent stream. The amount of time needed to accelerate the cutter to a sufficient operating speed before solid objects arrive (i.e. how much in advance the flush must be detected before solid objects arrive at the cutter blades) varies depending upon the horsepower of the motor and its acceleration capability, the configuration of the cutter, the sharpness of the cutter blades, and the configuration of the toilet and flush tank. However, based upon experimental data for one embodiment of the apparatus 100, detecting the flushing and triggering the motor to start at least about 0.5 second in advance of solid objects arriving at the cutter blades has been found to be effective in a macerating unit 300 having a 0.5 horsepower motor and a cutter cartridge 330 as shown in
The macerating apparatus 100 may be provided with multiple sensors for control of the macerating unit 300. Referring to
Given the content of the effluent stream from the toilet, and the content of the macerated slurry within the tank 101, sometimes one of the sensors in a macerating apparatus may become fouled, and disrupt the operation of the apparatus. A malfunctioning sensor can cause the apparatus to become inoperable, and thus the toilet connected to it to become inoperable. To solve the problem of fouled sensors disrupting macerator operation, the Applicants' macerating apparatus 100 may be provided with an adaptive control system. Referring again to
Referring now to
At this point, the apparatus may be operated manually by pressing 512 the manual run button 408, such as for a startup check or for diagnostic purposes. In this mode, the motor 360 will run 514 for as long as the run button 408 is depressed, or until a thermal overload (not shown) or other safety circuit in the motor 360 shuts it down. During ongoing operation of the apparatus 100, the alarm level sensor 430 is checked 516 for an alarm condition, such as the sensor 430 having detected a high liquid level condition for more than a predetermined length of time, which would indicate a malfunction of the apparatus 100. In one exemplary embodiment, the length of time is about 7 seconds. If an alarm condition is present, the audible alarm 407 is sounded and/or the warning (red) light 403 is illuminated 518. For the convenience of a user, the audible alarm 402 may be silenced 522 by depressing the alarm silence button 406.
Also during ongoing operation of the apparatus 100, the early flush detection sensor 420 is checked to confirm that it is operable. If the sensor 420 is operable, in the aforementioned first mode 526 of operation, if the high water sensor 430 is actuated 528, such as by an inflow of gray water as described previously, the pump motor 360 is actuated 530 for a short time, such as about 5 seconds, thereby discharging the contents of the tank 101. A relatively short run time is sufficient, since the gray water contains no solids, and no work is being done by the macerating cartridge to cut solids. At the end of the run time, the pump motor 360 is deenergized 550.
With the sensor 420 being confirmed as operable, in the aforementioned second mode 532 of operation, if the sensor 420 detects 534 a flush of the toilet 10, the pump/macerator motor 360 is actuated 536 for a longer time, such as about 10 seconds. The longer time as compared to the first mode of operation is necessary to ensure that all solids that enter the macerating intake basket 310 are fully macerated by the macerating cutter 330 into a slurry that can be handled by the pump impeller 370 and volute 380. At the end of the run time, the pump motor 360 is deenergized 550. In one embodiment of the apparatus 100, the control module 400 monitors the load of the cutter on the motor and varies the run time depending upon the load on the cutter. The run time is increased for as long as necessary to fully macerate the solids, at which time the load on the motor decreases. The load on the motor may be monitored by a measurement of the current draw of the motor, or by a torque sensor (not shown) on the motor.
However, in the event that the sensor 420 is detected as being fouled and inoperable 540, the control module 400 adapts the operation of the apparatus 100 to keep it running. With a non-functional sensor condition 540, if the high water sensor is activated 542, this condition may be caused either by an inflow of gray water as described previously, or by an inflow of liquid resulting from a flush of the toilet, wherein some water is filtered through the holes 312 in the intake basket 310. The control module 400 is thus programmed to adapt, and to operate 544 the motor 360 in the macerating mode for the longer time duration.
In the event that a jam of a cutter blade against a solid object in the intake basket occurs, and rotation of the motor 360 is halted, the control module 400 detects this condition and shuts the motor down, while illuminating the jam alarm (red) light 403. Alternatively, circuitry (not shown) may be provided to reverse the direction of rotation of the macerating cutter 330 in order to clear the jam, and to then restore the proper rotation of the cutter 330, and continue the maceration of the solids. In the event that the jam does not clear after a predetermined number of attempts to clear it, the motor 360 may be shut down, and the jam alarm light 403 illuminated.
The Applicants' macerating apparatus may also be provided with improved fittings for connections to an effluent discharge pipe and to a venting pipe. Referring to
The fitting 250 may be joined to the surface 222 in communication with the effluent outlet port 224, and the fitting 260 may be joined to the surface 222 in communication with the vent port 226 by suitable fasteners (not shown). Referring to
The effluent outlet fitting 250 may be provided with a check valve, so that in the event that the apparatus 100 requires service, the outlet fitting 250 may be removed from the main cover without any backflow and leakage of the contents in the piping connected to the outlet fitting 250. Referring to
It is, therefore, apparent that there has been provided, in accordance with the present invention, a macerating apparatus and method for macerating solid objects in a liquid stream. The macerating apparatus and method are useful for macerating the effluent stream of a toilet. Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3094707 | Fleming | Jun 1963 | A |
3755827 | Riedel et al. | Sep 1973 | A |
4159550 | Tobin, Jr. | Jul 1979 | A |
4791688 | Krishnakumar et al. | Dec 1988 | A |
6000067 | Cascia | Dec 1999 | A |
6305410 | Cook et al. | Oct 2001 | B1 |
6430757 | Pohler | Aug 2002 | B1 |
6662382 | Rump et al. | Dec 2003 | B2 |
7203976 | Weller et al. | Apr 2007 | B1 |
7563082 | Pohler | Jul 2009 | B2 |
20060096017 | Yamasaki et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
2309400 | Sep 1974 | DE |
Entry |
---|
Liberty Pumps Installation Manual for Ascent TM Toilet Pumping System, published 2008, electronically filed pdf file 20110922—13-027878—IDS—NPL—Cite1. |
Liberty Pumps sales pamphlet for Ascent TM MaceratingToilet System, published 2009, electronically filed pdf file 20110922—13-027878—IDS—NPL—Cite2. |
Saniflo Saniplus(R) Internet web pages of product information (pp. 1-5) Installation and Maintenance Instructions (pp. 9-16) and Internet press release announcing product offering Mar. 1, 2010; electronically filed pdf file 20110922—13-027878—IDS—NPL—Cite3. |
International Search Report of Jul. 11, 2012 in copending application PCT/US2012/024595, EFS file name 20130204—13-027878—IDS—NPL—Cite1. |
Number | Date | Country | |
---|---|---|---|
20120204337 A1 | Aug 2012 | US |