The present disclosure relates to a machine having an actuator assembly associated with the machine.
A paving machine includes a hopper assembly that receives material, such as asphalt, from a dump truck. The hopper assembly includes a front frame and a pair of hoppers. The hoppers are movable relative to the front frame between a raised position and a lowered position based on operation of actuators associated with the corresponding hoppers. The actuators are connected to the hoppers and the front frame using pins.
Further, current machines include a frame cut-out that is provided behind each of the hoppers for coupling the actuators with the respective hopper. This cut-out is generally large in size and causes material to spill inside the front frame when the hoppers are overfilled. Such material may further enter an engine compartment or a portion of the machine where pumps and valves are mounted. Accordingly, a personnel may have to clean such portions of the machine before servicing of the machine. In some situations, the cut-out may allow material, such as hot asphalt, to spill over the actuators, which is not desirable.
Moreover, the current design of the actuators require a large amount of hydraulic lifting force to effectuate a lift of the respective hoppers. Further, failure of one or more pins that connect the actuators with the respective hoppers and the front frame causes the hopper to drop down to the lowered position from the raised position, which may cause undesirable damage to the actuators and/or the hoppers.
CN Patent Publication Number 102767132 describes a supporting device and a supporting method for a hopper cylinder of a paver. In a construction process, a supporting pin of a hopper cylinder of an existing paver is always broken, so that the hydraulic cylinder and a hydraulic tube are damaged due to the fact that the design of the supporting pin is poor, normal and orderly construction of a road surface is severely affected, and the construction period is always delayed. The supporting device for the hopper cylinder of the paver comprises a paver hopper, the paver hopper is connected with the hopper overturning cylinder through a connector, the other end of the hopper overturning cylinder penetrates through a supporting pin with a through hole, is inserted in a supporting pin seat and is fixed by a bolt, and the supporting pin penetrates through a front baffle plate of the paver and the supporting pin seat. The supporting device is used for supporting the hopper cylinder of the paver.
In an aspect of the present disclosure, a machine is provided. The machine includes a chassis. The machine also includes a hopper assembly. The hopper assembly includes a hopper frame. The hopper assembly also includes at least one hopper movable relative to the hopper frame between a raised position and a lowered position. A material receiving space defined by the at least one hopper is sealed relative to the hopper frame. The hopper assembly further includes an actuator assembly coupled with the hopper frame and the at least one hopper. The actuator assembly is adapted to move the at least one hopper between the raised position and the lowered position. The actuator assembly includes an actuator. The actuator includes a cylinder defining a fixed end adapted to couple with the hopper frame. The actuator also includes a rod member defining a movable end adapted to couple with the at least one hopper. The actuator assembly also includes a first retention assembly adapted to couple the fixed end of the cylinder with the hopper frame and encapsulate the fixed end of the cylinder within a first space defined by the first retention assembly. The actuator assembly further includes a second retention assembly adapted to couple the movable end of the rod member with the at least one hopper and encapsulate the movable end of the rod member within a second space defined by the second retention assembly.
In another aspect of the present disclosure, a hopper assembly is provided. The hopper assembly includes a hopper frame. The hopper assembly also includes at least one hopper movable relative to the hopper frame between a raised position and a lowered position. A material receiving space defined by the at least one hopper is sealed relative to the hopper frame. The hopper assembly further includes an actuator assembly coupled with the hopper frame and the at least one hopper. The actuator assembly is adapted to move the at least one hopper between the raised position and the lowered position. The actuator assembly includes an actuator. The actuator includes a cylinder defining a fixed end adapted to couple with the hopper frame. The actuator also includes a rod member defining a movable end adapted to couple with the at least one hopper. The actuator assembly also includes a first retention assembly adapted to couple the fixed end of the cylinder with the hopper frame and encapsulate the fixed end of the cylinder within a first space defined by the first retention assembly. The actuator assembly further includes a second retention assembly adapted to couple the movable end of the rod member with the at least one hopper and encapsulate the movable end of the rod member within a second space defined by the second retention assembly.
In yet another aspect of the present disclosure, a method of operating at least one hopper associated with a hopper assembly of a machine is provided. The machine includes an actuator assembly adapted to move the at least one hopper. The method includes coupling a fixed end of an actuator of the actuator assembly with a hopper frame of the hopper assembly by a first retention assembly of the actuator assembly. The first retention assembly includes a first mechanical fastener. The method also includes coupling a movable end of the actuator with the at least one hopper by a second retention assembly of the actuator assembly. The second retention assembly includes a second mechanical fastener. The method further includes moving the at least one hopper between a raised position and a lowered position based on an operation of the actuator assembly. The method includes capturing the fixed end of the actuator within a first space defined by the first retention assembly in an event of failure of the first mechanical fastener. The method also includes capturing the movable end of the actuator within a second space defined by the second retention assembly in an event of failure of the second mechanical fastener.
Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Referring to
The machine 100 defines a longitudinal axis “X-X1”. The machine 100 defines a front end 102 and a rear end 104. The machine 100 includes a chassis 106. The chassis 106 supports various components of the machine 100 thereon. The machine 100 includes an enclosure 108 mounted on the chassis 106. The enclosure 108 encloses a power source (not shown) therein. The power source may be any power source, such as an internal combustion engine, batteries, motor, and so on. The power source provides power to the machine 100 for operational and mobility requirements.
The machine 100 also includes a set of ground engaging members 110, one of which is illustrated in the accompanying figure. The ground engaging members 110 are operably coupled to the chassis 106. In the illustrated embodiment, the ground engaging members 110 include tracks. In other embodiments, the ground engaging members 110 may include wheels, or a combination of tracks and wheels. The ground engaging members 110 support and provide mobility to the machine 100 on ground surfaces. The machine 100 also includes a machine operator station 112 mounted on the chassis 106. The machine operator station 112 is adapted to control various functions associated with the machine 100 and, in some embodiments, functions associated with a screed assembly 114 disposed proximate to the rear end 104 of the machine 100.
Further, the machine 100 includes a hopper assembly 116 mounted on the chassis 106. The hopper assembly 116 is disposed proximate to the front end 102 of the machine 100. The hopper assembly 116 receives and holds a volume of material (not shown) received from an external source (not shown), such as a truck or transfer vehicle. Further, the hopper assembly 116 transfers the material to a conveyor system 118 disposed proximate to the hopper assembly 116. The conveyor system 118 extends transversely between the first and second hoppers 122, 124. The conveyor system 118 transfers the material towards the rear end 104 of the machine 100. More particularly, the conveyor system 118 directs the material towards an auger (not shown) that is disposed proximate to the rear end 104. The auger evenly distributes the material in front of the screed assembly 114 of the machine 100. The screed assembly 114 in turn spreads and compacts the material deposited on ground surfaces.
As shown in
It should be noted that the first hopper 122 is symmetrically disposed relative to the second hopper 124. Further, the first hopper 122 includes components and design that is similar to components and design of the second hopper 124. Thus, the description will now be explained in relation to the first hopper 122. However, it should be noted that the description provided below is equally applicable to the second hopper 124, without any limitations. The first hopper 122 includes a first sidewall 126 extending along the longitudinal axis “X-X1” defined by the machine 100.
Further, the first hopper 122 includes a second sidewall 128. The second sidewall 128 is coupled with the first sidewall 126. The second sidewall 128 extends perpendicular to the longitudinal axis “X-X1”. The second sidewall 128 is perpendicular to the first sidewall 126. The second sidewall 128 is spaced apart from the hopper frame 120 to define a first gap 130 therebetween. The second sidewall 128 defines an inner surface 132 and an outer surface 134 facing the hopper frame 120 such that the first gap 130 is defined between the outer surface 134 and the hopper frame 120. Moreover, the second sidewall 128 includes a first plate member 140 (shown in
Moreover, the first hopper 122 includes a third sidewall 136 connected with the first and second sidewalls 126, 128. The first, second, and third sidewalls 126, 128, 136 define a material receiving space 138. Further, the material receiving space 138 defined by the first hopper 122 is sealed relative to the hopper frame 120. More particularly, the first, second, and third sidewalls 126, 128, 136 seal the material receiving space 138 relative to the hopper frame 120. It should be noted that the material received by the first hopper 122 is retained within the material receiving space 138. Further, as per application requirements, the first hopper 122 transfers the material to the conveyor system 118. More particularly, as shown in
The actuator assembly 400 moves the first hopper 122 between the raised position (see
The actuator 402 is embodied as a hydraulically actuated actuator herein. The actuator 402 is connecting with a hydraulic system (not shown) of the machine 100 by a number of fluid lines for operation thereof. Alternatively, the actuator 402 may be embodied as a pneumatically operated actuator, as per application requirements. The actuator 402 includes a cylinder 406. The cylinder 406 defines a fixed end 408 coupled with the hopper frame 120. The fixed end 408 is fixedly coupled to the hopper frame 120. The cylinder 406 defines a hollow space (not shown). Further, a first eye end 410 is disposed proximate to the fixed end 408 of the cylinder 406. The first eye end 410 is fixedly coupled to the cylinder 406. The first eye end 410 defines a first through-hole 412 (shown in
Further, the actuator 402 includes a rod member 414 (shown in
The actuator 402 is shown in a retracted position in the accompanying figure. It should be noted that the actuator 402 is said to be in an extended position based on an extension of the rod member 414 relative to the cylinder 406, whereas, the actuator 402 is said to be in the retracted position based on a retraction of the rod member 414 relative to the cylinder 406. The extension of the actuator 402 causes the first hopper 122 to move to the raised position, whereas, the retraction of the actuator 402 causes the first hopper 122 to move to the lowered position.
Referring now to
Further, the first retention assembly 422 includes a first retention plate 434 coupled with the first plate 426. The first retention plate 434 includes a rectangular plate having a curved portion. The first retention plate 434 is coupled to the first surface 430 of the first plate 426 by a mechanical fastener (not shown), such as a pin, screw, bolt, and the like. Further, the first retention plate 434 includes a third through-hole 438 that aligns with the through-hole of the first plate 426.
The first retention assembly 422 also includes a first mount 440 coupled with the hopper frame 120. The first mount 440 is coupled with the hopper frame 120 by one or more mechanical fasteners (not shown), such as bolt, screw, pin, and the like. The first mount 440 is spaced apart from the first plate 426 to define the first space 424 therebetween. The first mount 440 is embodied as a cylindrical member defining a through-hole (not shown). Alternatively, a shape of the first mount 440 may vary as per application requirements. For example, the first mount 440 may embody a cube or a cuboid.
Further, the first retention assembly 422 includes a first mechanical fastener 442 adapted to couple the fixed end 408 of the cylinder 406 with the hopper frame 120. The third through-hole 438, the through-hole of the first plate 426, the first through-hole 412, and the through-hole of the first mount 440 are aligned to receive the first mechanical fastener 442 therethrough. The first mechanical fastener 442 is embodied as a pin herein. Alternatively, the first mechanical fastener 442 may include a bolt.
Referring now to
The second retention assembly 444 includes a second retention plate 448 (shown in
The second retention assembly 444 further includes a second mount 452 coupled with the second sidewall 128. More particularly, the second mount 452 is coupled with the outer surface 134 of the second sidewall 128. The second mount 452 is coupled with the outer surface 134 of the second sidewall 128 by one or more mechanical fasteners (not shown), such as bolt, screw, pin, and the like. The second mount 452 defines a fourth through-hole 454. Further, the second retention assembly 444 includes a third mount 456 coupled with the second sidewall 128. More particularly, the third mount 456 is coupled with the second plate member 142 of the second sidewall 128. The third mount 456 is coupled with the second plate member 142 by one or more mechanical fasteners (not shown), such as bolt, screw, pin, and the like. Further, the third mount 456 is spaced apart from the second mount 452 to define the second space 446 therebetween. The third mount 456 defines a through-hole (not shown). The second and third mounts 452, 456 are cuboid in shape. Alternatively, the second and third mounts 452, 456 may be cylindrical or cube shaped.
The second retention assembly 444 includes a second mechanical fastener 458 for coupling the movable end 416 of the rod member 414 with the second sidewall 128. The through-hole of the second retention plate 448, the through-hole of the second sidewall 128, the fourth through-hole 454, the second through-hole 420, the through-hole of the third mount 456, and a through-hole 144 of the second plate member 142 are aligned to receive the second mechanical fastener 458 therethrough. The second mechanical fastener 458 is embodied as a pin herein. Alternatively, the second mechanical fastener 458 may include a bolt.
Referring now to
Further, the limit stop 460 includes a second limiting member 468 coupled with the first hopper 122. The second limiting member 468 is embodied as a rectangular plate that is coupled with the second plate member 142 of the second sidewall 128. The second limiting member 468 is adapted to abut with the first limiting member 462. More particularly, when the first hopper 122 switches from the raised position to the lowered position, the second limiting member 468 abuts with the third mechanical fastener 466 of the first limiting member 462. This abutment of the first and second limiting members 462, 468 restrict any further retraction of the actuator 402, and thus the first hopper 122.
It is to be understood that individual features shown or described for one embodiment may be combined with individual features shown or described for another embodiment. The above described implementation does not in any way limit the scope of the present disclosure. Therefore, it is to be understood although some features are shown or described to illustrate the use of the present disclosure in the context of functional segments, such features may be omitted from the scope of the present disclosure without departing from the spirit of the present disclosure as defined in the appended claims.
This section will now be described in relation to the first hopper 122 and the actuator assembly 400 associated therewith. However, the description provided in this section is equally applicable to the second hopper 124 and the actuator assembly associated therewith. Referring to
At step 704, the movable end 416 of the actuator 402 is coupled with the first hopper 122 by the second retention assembly 444 of the actuator assembly 400. The second retention assembly 444 includes the second mechanical fastener 458. The actuator 402 is positioned between the hopper frame 120 and the first hopper 122 externally relative to the material receiving space 138 defined by the first hopper 122. Further, the actuator assembly 400 is coupled with the hopper frame 120 and the first hopper 122 such that the actuator 402 is spaced apart from the sidewall of the first hopper 122 along the longitudinal axis “X-X1” defined by the machine 100.
At step 706, the first hopper 122 is moved between the raised position and the lowered position based on the operation of the actuator assembly 400. Moreover, the retraction of the actuator 402 beyond the predefined limit is restricted based on abutment of the first limiting member 462 coupled with the hopper frame 120 with the second limiting member 468 coupled with the first hopper 122. Further, at step 708, the fixed end 408 of the actuator 402 is captured within the first space 424 defined by the first retention assembly 422 in an event of failure of the first mechanical fastener 442. At step 710, the movable end 416 of the actuator 402 within the second space 446 defined by the second retention assembly 444 in an event of failure of the second mechanical fastener 458.
The actuator assembly 400 provides a simple, effective, and cost-efficient solution for coupling the actuator 402 with the first hopper 122 and the hopper frame 120. Further, the first hopper 122 does not include any cut-outs in the second sidewall 128 for mounting the actuator 402 to the first hopper 122. Thus, the second sidewall 128 of the first hopper 122 is sealed relative to the hopper frame 120, thereby isolating the material receiving space 138 from the engine and other components, such as pumps and valves, of the machine 100. Thus, a probability of material spillage from the first hopper 122 towards the engine or other components of the machine 100. Further, isolation of the material receiving space 138 is eliminated which in turn reduces material build-up in the machine 100 and an amount of clean-up work. Further, a probability of hot paving material to contact and damage the actuator 402 is also eliminated.
Moreover, the first and second retention assemblies 422, 444 allows encapsulation of the fixed and movable ends 408, 416, respectively, of the actuator 402 in an event of failure of the first and second mechanical fasteners 442, 458, respectively. More particularly, the fixed and movable ends 408, 416 are captured within the first and second spaces 424, 446, respectively. Thus, if the hopper 122 is in the raised position, the hoppers 122 is retained at its current position, thereby eliminating any damage to the first hopper 122 due to a sudden drop of the first hopper 122 to the lowered position. Further, the current design of the actuator assembly 400 requires less amount of hydraulic force to move the first hopper 122 between the raised and lowered positions as compared to existing actuator assemblies. Further, the limit stop 460 is associated with the machine 100. The limit stop 460 provides a protection feature for the actuator 402. More particularly, the limit stop 460 restricts a complete retraction of the rod member 414 relative to the cylinder 406.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of the disclosure. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3054334 | Barber | Sep 1962 | A |
3636832 | Schrimper | Jan 1972 | A |
3909146 | Hoffman | Sep 1975 | A |
4801218 | Musil | Jan 1989 | A |
5015120 | Brock | May 1991 | A |
5405214 | Campbell | Apr 1995 | A |
7568858 | Viitasalo | Aug 2009 | B2 |
20040179895 | Lee | Sep 2004 | A1 |
20160176650 | Brown | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
102767132 | Jun 2016 | CN |
2008214884 | Sep 2008 | JP |
W02020259812 | Jun 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20210269990 A1 | Sep 2021 | US |