This is the U.S. national phase of International Application No. PCT/IB2015/052065, filed Mar. 20, 2015, which claims the benefit of Italian Patent Application No. BO2014A000148, filed Mar. 21, 2014.
The present invention relates to a machine and a method for producing substantially cylindrical articles of the tobacco processing industry.
American patents U.S. Pat. Nos. 6,837,281 and 3,570,557 describe systems for manufacturing composite cigarette filters, wherein portions of filtering material (usually cellulose acetate tow), alternated with cavities, are fed, along a given path and in a conveying direction, through an insertion station, in the area of which a given amount of particulate material is inserted into the cavities, so as to obtain a strand. The particulate material is fed by a hopper, which is arranged above a transfer drum, which is provided with peripheral seats, each designed to receive an amount of material and transfer it into a respective cavity.
The filter rod obtained by wrapping a strip around the strand produced with this kind of systems has proved to be unstable and tends to open longitudinally relatively frequently. Furthermore, during the operation of this kind of systems, a relatively large amount of particulate material is dispersed in the room, thus potentially damaging parts of the cigarette manufacturing machine, which, as a consequence, requires maintenance and relatively frequent interruptions of the operation.
In addition, the particulate material dispersed in the room is also potentially dangerous for the operators working on the machine or close thereto. In this regard, an increasing number of clinical trials have proved that people who work in facilities with a high concentration of particulate in the air will most likely develop some specific diseases (for example, cancer).
Patent application no. WO2013/022360 discloses a machine to manufacture multi-segment filters, which comprises an insertion assembly to feed loose material into spaces defined in a succession of portions of filtering material. The insertion assembly comprises a plurality of seats, each designed to feed a respective amount of loose material into the aforesaid spaces. In use, the loose material enters the seats thanks to a sucking system and to the action of scrapers that lift the loose material from a conveyor belt.
The machine described in WO2013/022360 has many drawbacks, among which (in addition to the ones already mentioned above) there is also the impossibility to precisely control the amount of loose material inserted into the spaces.
The object of the present invention is to provide a machine and a method, which are designed to at least partially eliminate the drawbacks of the prior art and, at the same time, are cheap and easy to manufacture and carry out.
According to the present invention, there are provided a machine and a method for producing substantially cylindrical articles of the tobacco processing industry, as claimed in the accompanying independent Claims and, preferably, in any one of the Claims that directly or indirectly depend on the aforesaid independent Claims.
The present invention will now be described with reference to the accompanying drawings, which show a non-limiting embodiment thereof, wherein:
In
The machine 1 (
In particular, the loose material 11 is in the form of particles and/or granules (and/or fibres). For example, the loose material 11 can comprise a filtering material and/or tobacco particles.
According to preferred embodiments, the articles 3 are cigarette filters and the material 7 comprises a filtering material, in particular cellulose acetate or the like.
According to other embodiments, the articles 3 are cigarette portions and the material 7 comprises tobacco.
Advantageously, the material 7 has portions of material that are arranged in succession in the conveying direction and alternate with the cavities 12.
Advantageously, the path P1 is substantially horizontal.
With particular reference to
In this way, the loose material 11 can be better inserted into the cavities, thus reducing at the same time the risk that the loose material can spread in the room.
Experiments have shown that use of the machine 1 according to the present invention surprisingly allows manufacturers to improve the stability of the rod 2 obtained therewith. In this regard, we assume that this unexpected technical effect is due (as well) to the reduction of loose material 11 in the room. As a consequence of the result obtained, indeed, the conclusion was reached that the high tendency to open longitudinally was probably due to the fact that particles of the material 11 remained caught between the two longitudinal flaps of the strip 15 when they were caused to overlap.
Advantageously, the coupling portion T is at least 2.5 cm long. More precisely, the coupling portion T is at least 5 cm long. Even more precisely, the coupling portion T is at least 8 cm long. An adequate length allows the material 11 to have enough time to be inserted into the cavities 12 in a correct fashion.
Typically, the coupling portion T is up to 30 cm long.
Advantageously, the path P2 is substantially horizontal. In this way, the handling of the loose material 11 becomes easier and the risk of dispersing loose material 11 in room is further reduced.
Advantageously, the path P2 is a closed path. In this way, the insertion unit 16 can keep moving along the path P2 in a continuous manner, for as many times as requested, without the need to abruptly change the direction of its movement and/or stop the movement of the insertion unit 16 itself.
According to some embodiments, the unloading device 18 comprises an outlet opening 20, which is designed to allow the loose material 11 to move from the loading chamber 17 to the cavity 12, and a stopper 21.
The outlet opening 20 and the stopper 21 are movable with respect to each other between a first position PA, in which the outlet opening 20 is open, and a second position PB, in which the outlet opening 20 is closed by the stopper 21.
In
Advantageously, the outlet opening 20 faces downwards and is located in the area of a lower end of the loading chamber 17.
According to some embodiments (such as the ones shown in the drawings), the stopper 21 is (vertically) movable between the first (in particular, raised) position PA, in which it frees outlet opening 20, and the second (in particular, lowered) position PB, in which it closes the outlet opening 20.
In these cases, the stopper 21 can be kept in the first position PA even in portions (for example, as shown on the right in
According to some embodiments (not shown), it is the opening 20 (more precisely, the outer casing of the loading chamber 17, wherein the opening 20 is obtained) that is (vertically) movable between the first (lowered) position PA and the second (raised) position PB.
In these cases, in the area of the coupling portion T, the opening 20 is lowered so that it can move closer to the cavity 12 (more precisely, it can be substantially inserted therein). By so doing, the loose material 11 is transferred into the cavity 20 in an even more precise manner, thus further reducing the chance for particles of loose material 11 to spread in the room.
According to further embodiments (not shown), both the opening 20 and the stopper 21 are vertically movable. In these cases, operators can obtain advantages linked to both the movement of the opening 20 and the movement of the stopper 21.
Advantageously, the insertion assembly 10 comprises a cam system 22, which is designed to keep the outlet opening 20 and the stopper 21 in the first position PA at least along part of said coupling portion T, and in the second position PB along the path P2 from a loading station 23, in the area of which the given amount of loose material 11 is transferred into the insertion unit 16, to the insertion station 8.
In particular, the insertion unit 16 also has a second (more specifically, top) opening 24, through which, in use, the given amount of loose material is fed into the loading chamber 17.
The loose material 11 fed through the opening 24, in use, moves downwards through the central channel of a hollow rod 25, at whose lower end there is mounted the stopper 21, and enters the loading chamber 17 by passing through openings of the rod 25 arranged in the area of the lower end of the rod 25 itself.
According to the embodiment shown, the cam system 22 comprises a (fixed) guide cam, which extends along the path P2, and a slide 25 (tappet), which is integral to the stopper 21 (in particular, is integral to the rod 25).
Advantageously, the machine 1 comprises a loading assembly 26, which is located in the loading station 23 to transfer the given amount of loose material 11 to the insertion unit 16. The given path P2 extends through the loading station 23.
According to some embodiments, the loading assembly 26 comprises at least one transfer seat 27, which has a given volume and is designed to house the given amount of loose material 11; and a conveyor 28 to convey the transfer seat 27 through the loading station 23 along a given path P3.
The given paths P2 and P3 share at least a transfer portion TT, which is located in the loading station 23 and in the area of which the transfer seat 27 is coupled to (more specifically, overlaps) the insertion unit 16, so as to transfer the given amount of loose material from the transfer seat 27 to the insertion unit 16.
In particular, the conveyors 28 and 19 are operated in such a way that the transfer seat 27 is kept facing the insertion unit 16 (more precisely, its opening 24) along (at least part of) the transfer portion TT (as the insertion unit 16 and the seat 27 are fed along the transfer portion TT itself).
Advantageously, the transfer portion TT is at least 2.5 cm long. More precisely, the transfer portion TT is at least 5 cm long. Even more precisely, the transfer portion TT is at least 8 cm long. An adequate length allows the material 11 to have enough time to be inserted into the cavities 12 in a correct fashion.
Typically, the transfer portion TT is up to 30 cm long.
Advantageously, the path P3 is a closed path. In this way, the transfer seat 27 can keep moving along the path P3 in a continuous manner, for as many times as requested, without the need to abruptly change the direction of its movement and/or stop the movement of the transfer seat 27 itself.
Advantageously, the path P3 is substantially horizontal. In this way, the handling of the loose material 11 becomes easier and the risk of dispersing loose material 11 in room is further reduced.
According to some embodiments, the machine 1 comprises a feeding device 29 for the loose material 11, which is located in the area of a metering station 30, through which the given path P3 extends. In particular, the feeding device 29 is designed to feed the loose material 11 to the transfer seat 27.
According to some embodiments, the feeding device 29 comprises a hopper 31. Advantageously, the hopper 31 has a lower opening, through which the loose material 11 is fed into the transfer seat 29. The conveyor 28 is designed to transport the transfer seat 27 under the aforesaid opening.
Advantageously, a scraper device 32, which is designed to eliminate possible excess loose material 11 available in the seat 27, is located along the path P3 immediately downstream from the hopper 31. In particular, the scraper device 32 comprises a rotary brush.
In particular, the transfer seat 27 has two opposite openings (an upper one and a lower one), which are designed to allow the loose material 11 to pass through.
Advantageously, the loading assembly 26 comprises at least one retaining assembly 33, which is designed to prevent the loose material 11 from going out of the transfer seat 27 and extends along the given path P3, from the metering station 30 to the loading station 23. In particular, the retaining assembly 33 is absent along the transfer portion TT (so as to allow the loose material to be transferred from the seat 27 to the insertion unit 16).
Advantageously, the feeding device 29 (in particular, the hopper 31) is offset relative to the (i.e., not directly above the) path P1 and relative to the (i.e., not directly above the) wrapping station 9.
This makes it even more difficult for particles of the loose material 11 to reach the strip 15.
According to some embodiments, in particular with reference to
The embodiment of
According to some embodiments, in particular with reference to
According to some embodiments (such as the ones shown in the drawings), the machine 1 comprises a plurality of insertion units 16 and of seats 27 (and possibly of holes 36), said insertion units 16 and seats 27 (and possibly holes 36) being like the ones described above and being active at the same time (though not necessarily in the same steps), so as to obtain a continuous operation of the machine 1.
Advantageously, the machine 1 comprises a vibrating system to cause the hopper 31 and the seat 27 (and/or the belt 35) to vibrate relative to each other. By so doing, operators can improve the way in which the loose material 11 moves out of the hopper 31 and is transferred to the seat 27.
According to some embodiments, the vibrating system (of a known type and not shown) is designed to cause the hopper 31 to vibrate.
As an alternative or in addition thereto, the vibrating system is designed to cause the belt 34 or the belt 35 (based on the embodiments) to vibrate.
According to a further aspect of the present invention, there is provided a method for producing a rod for substantially cylindrical articles of the tobacco processing industry.
In particular, the method is implemented by a machine 1 as described above.
In particular, each article 3 (
The method comprises a feeding step, during which a material 7 is fed, in a conveying direction A along a first given path P1, through an insertion station 8 and to a wrapping station 9. The material 7 has cavities 12 arranged in succession in the conveying direction A.
According to preferred embodiments, the articles 3 are cigarette filters and the material 7 comprises a filtering material, in particular cellulose acetate or the like.
Advantageously, the material 7 has portions of material that are arranged in succession in the conveying direction and alternate with the cavities 12.
The method comprises, furthermore, an insertion step, during which a given amount of a loose material 11 is inserted into the cavities 12 in the insertion station 8, so as to form a strand 13; and a wrapping and stabilizing step, during which a strip 15 is wrapped around the strand 13 and stabilized around the strand 13 itself in the wrapping station 9.
In particular, the loose material 11 is in the form of particles and/or granules (and/or fibres). For example, the loose material 11 can comprise a filtering material and/or tobacco particles.
Advantageously, an insertion unit 16, which comprises a loading chamber 17 to hold the given amount of loose material and an unloading device 18 to unload the loose material 11 from the loading chamber 17, is moved up to the material 7, so that the unloading device 18 faces a respective cavity 12.
In particular, during the insertion step and the feeding step, the insertion unit 16 is moved in the conveying direction A along at least one coupling portion T of the given path P1, so that the unloading device 18 is kept facing the respective cavity 12 as the loose material 11 is fed from the insertion unit into the cavity 7 (as the insertion unit 16 and the material 7 are moved along the coupling portion T itself).
According to some embodiments, the method comprises a conveying step, during which the insertion unit 16 is conveyed along a given path P2, which shares, with the given path P1, at least the coupling portion T.
In particular, the coupling portion T is defined as the portion T described above with reference to the machine 1.
According to some embodiments, the method comprises a loading step, during which the given amount of loose material 11 is transferred into the loading chamber 17.
Advantageously, during the conveying step, the insertion unit 16 is conveyed along the given path P2 through a loading station 23, in the area of which the loading step is carried out.
Advantageously, the path P2 is defined as the path P2 described above with reference to the machine 1.
In particular, during the conveying step, the insertion unit 16 is moved continuously along said second given path P2 (at a constant speed).
According to some embodiments, the method comprises a metering step, during which a transfer seat 27 with a given volume is filled with the loose material 11, so as to obtain said given amount.
In particular, during the loading step, the given amount of loose material 11 is transferred from said transfer seat 27 to the loading chamber 17.
According to some embodiments, the method comprises a transportation step, during which the transfer seat is conveyed along a given path P3 through a metering station 30, in the area of which the metering step is carried out, and through the loading station 23, in the area of which the loading step is carried out
Advantageously, the path P3 is defined as the path P3 described above with reference to the machine 1.
In particular, during the metering step, the transfer seat 27 moves past an opening in a hopper 31 containing the loose material 11.
In particular, the given paths P2 and P3 share (at least) a transfer portion TT, which is located in the loading station 23 and along at least part of which the transfer seat 27 is coupled to, more specifically overlaps, the insertion unit 16, so as to transfer the given amount of loose material 11 from the transfer seat 27 to the insertion unit 16 (as the insertion unit 16 and the seat 27 are moved along the transfer portion TT itself).
More precisely, the transfer seat 27 and the insertion unit 16 move along the shared transfer portion TT in a coupled manner (at the same speed).
Advantageously, during the insertion step, the material 7 and the insertion unit 16 are fed continuously in the conveying direction A (at a substantially constant speed).
Advantageously, the transfer seat 27 is conveyed continuously along the given path P2 (at a substantially constant speed).
According to some embodiments, the loading, conveying and insertion steps are repeated many times; in particular, during the conveying step, the insertion unit 16 is moved continuously along said second path. Advantageously, the loading station 23 (in particular, the hopper 31) is offset relative to the (namely, not directly above the) path P1 and relative to the (namely, not directly above the) wrapping station 9. In this way, the quality of the rod 2 is further improved.
Number | Date | Country | Kind |
---|---|---|---|
BO2014A000148 | Mar 2014 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/052065 | 3/20/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/140769 | 9/24/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3570557 | Molins | Mar 1971 | A |
3807286 | Sexstone | Apr 1974 | A |
5542901 | Atwell | Aug 1996 | A |
6837281 | Spiers | Jan 2005 | B2 |
7381175 | Dawson | Jun 2008 | B2 |
7740019 | Nelson | Jun 2010 | B2 |
8303474 | Iliev | Nov 2012 | B2 |
8308623 | Nelson | Nov 2012 | B2 |
8992400 | Righetti | Mar 2015 | B2 |
9161571 | Sikora | Oct 2015 | B2 |
9573707 | Owczarek | Feb 2017 | B2 |
20020119874 | Heitmann | Aug 2002 | A1 |
20030034590 | Ercelebi | Feb 2003 | A1 |
20060196513 | Atwell | Sep 2006 | A1 |
20070284012 | Smith | Dec 2007 | A1 |
20090036284 | Spiers | Feb 2009 | A1 |
20120252647 | Pastore | Oct 2012 | A1 |
20130019885 | Belcastro | Jan 2013 | A1 |
20130029821 | Hoffmann | Jan 2013 | A1 |
20130167851 | Ademe | Jul 2013 | A1 |
20140263408 | Amiss | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
WO-2007138487 | Dec 2007 | WO |
WO-2013022360 | Feb 2013 | WO |
Entry |
---|
International Search Report for International Patent Application No. PCT/IB2015/052065, filed Jul. 28, 2015. |
Number | Date | Country | |
---|---|---|---|
20170086495 A1 | Mar 2017 | US |