The present invention relates generally to the application and quick curing of ultraviolet (UV) curable coatings. More specifically, the invention relates to a machine and method to concurrently apply and cure thin layers of UV curable coatings onto floors.
The application of coatings to large surface areas such as floors has various problems and difficulties. Various UV cure coatings have been developed, such as paints and varnishes, some being protective and some being decorative, or both. The molecules in these UV cure coatings become cross linked when exposed to UV radiation forming a hard curable surface. Water borne UV cure coatings have been developed which have water-like viscosity and are easy to apply. Their drawback, however, requires the water to evaporate before final curing. This may take several hours and is problematic in cold climates. The application of water borne UV coatings and the time required for curing produces several problems. Application and curing are done in two separate and time consuming steps, usually taking many hours. The final finish may be marred. Dust may settle and become trapped in the coating. Bubbles may be introduced during application and become trapped in the coating. Curing may be uneven due to irregular exposure to UV radiation, such as parts of a floor which may or may not be exposed to sunlight from a window. Also, thickness of the coating is difficult to control both. Thick coatings which provide protection are difficult to cure properly.
Recent advancements have produced UV curable polymers without solvents or other volatile compounds which evaporate from the liquid. They have yielded numerous high quality coatings which are first applied and then cured with portable UV lamps. Although these solventless UV curable coatings offer instant cure, they are used on small substrates such as small samples of wood, tile, stone, etc. Widespread use of these coatings has been limited on large surfaces such as floors due to problematic application processes which produce blemishes and a flawed appearance. Problems, which are deleterious to the coating's appearance, include dust, bubbles, particulates, and cure lines due to shrinkage and high viscosity. In addition, pigments and shrinkage also limit the thickness of the coatings. This is especially important where thicker coatings are needed to provide adequate protection, especially to surfaces such as floors.
Both chemical and physical solutions to application problems with solventless UV coatings are being attempted. Feathering the edge of reflectors, dithering the light source, modifying the coatings characteristics, and using novel rollers or brushes, are being tried with some success. Yet even with these solutions, coatings which are thick enough to provide adequate protection when applied in the field to surfaces such as floors, suffer from systematic problems associated with their surface tension, viscosity, and surface characteristics. Pigmented coatings are particularly troublesome and require special lamps for deep cure, and also require precise thickness control as do clear or satin like coatings. In addition, as with water borne UV coatings, this is a separate, time consuming, two-step process of application and then cure.
High quality very thin instant UV curable coatings are now successfully applied in the field with squeegee and cloth applicators on smooth wood, marble, stone, etc. However, the painstaking and time consuming manual application processes and lack of longevity and durability for such very thin coatings on floors are impractical.
A better way is needed to reduce the application and curing time, eliminate the introduction of blemishes into the cured coating, and easily and rapidly build a coating to a desired thickness.
The present invention achieves this better way with the combination of the application and curing functions into a single machine, which rapidly and concurrently applies and cures a thin layer of curable coating. By rapidly applying and curing a succession of thin coatings, a coating of standard thickness may be achieved faster than a single application of a standard thickness coating. For example, a standard thickness concrete coating may be four mils thick and usually takes 24 hours to cure. For a room size floor, multiple coatings thinner than one mil each may be applied and cured successively in a period of few minutes. The machine may be operated by one person to rapidly apply many thin layers to achieve a thick coating since additional layers may be applied immediately without waiting. This allows for rapid buildup to a thick layer of clear, satin, or pigmented coatings while eliminating the various problems of dust, bubbles, cure lines, shrinkage, extended time between application and cure, etc.
This is achieved by combining UV curing lamps and curable coating applicators in a single machine which cures the coating rapidly and immediately after its application, i.e., within a few minutes. Some embodiments are motorized and some are not. Some embodiments use rotating applicators and UV curing lamps, some embodiments use stationary applicators and UV curing lamps, and some use a combination of stationary and rotating applicators and UV curing lamps. The UV curing lamps emit UV radiation to create a curing zone around the applicators. The applicators and their immediately surrounding area are protected from the UV radiation using a combination of UV lamp design and UV radiation masks.
In one embodiment, the applicator applies a thin linear swath or path of curable coating, say less than one mil thick. Movement of the machine exposes the applied curable coating to an annular curing zone that overlaps the exposed path yielding a cured coating path on top of which additional coating may be immediately applied thereby building up a thick layer of coating, say several mils thick. Applicators may be in various shapes and configurations such as rotating or orbital pads, rollers, squeegees, spray nozzles, etc. In other embodiments, UV lamps may be stationary and circularly placed around the applicator, to one side of the applicator, in front and in back of the applicator, etc.
Various mechanisms are employed to regulate the flow of curable coating to the applicator, adjust the power of the UV lamps, the rotation of the applicator and UV lamps. All of these embodiments allow for rapid application and curing of thin layers which reduce time spent for application and cure, eliminate blemishes, and allow for a rapid buildup of a thick coating.
With reference to
In
Motor support 265 is attached to rotating slip ring 260. Rotating slip ring 260 is part of rotating motor extension 255 which is fixedly attached to the outer casing of motor 250. Slip ring 260 is an electro mechanical bearing that conducts electricity to motor 250 allowing motor 250 to rotate independently of housing 120. An electric cable, not shown, is used to provide electric power which is transferred through slip ring 260 to motor 250.
Motor 250 has an outer casing that rotates lamp arms 212 and 247 at a slow rate, say 60 rpm. Lamp arms 212 and 247 are attached to lamp housings 215 and 245. Lamp housings 215 and 245 each contain at least one high-intensity linear UV lam, not shown. The UV lamps are tubes that are of sufficient power and design to cure a UV curable coating almost instantly. Preferred UV lamps are mercury vapor tubes, such as commercial street lamp tubes, which contain high-temperature ionized gas vapor. Such power, perhaps one hundred watts per centimeter, is needed to quickly cure UV curable coatings. An alternative UV lamp consists of an array of closely spaced LED (light emitting diode) sources emitting UV over a narrow wavelength range. In this embodiment both the UV lamp housings 215 and 245 and their contained UV lamps extend radially from motor 250. In other embodiments the contained UV lamps may be in other than radial configurations from the motor. There is a power adjustment device, not shown, to control the power of the UV lamps allowing for varying levels of cure, for example, partial or complete cures. UV lamp housings 215 and 245 contain parabolic cross-section reflectors to direct emitted UV radiation to a suitable cure zone only a few centimeters away wherein the curable coating is cured. In alternate embodiments there may be more than two lamp arms and lamps. In an alternate embodiment, motor 250 does not rotate lamp arms. In this embodiment a sufficient number of lamp housings are employed around the circumference of the dispensing system 217 to produce a toroidal curing zone. UV lamps and other housings used for curing UV curable coatings are the subject of prior application Ser. No. 12/478,970. The toroidal curing zone overlaps and cures newly applied swath of dispensed coating.
Shaft 240 rotates faster than the outer casing of the motor and is attached to dispensing system 217 which includes an off center orbital mechanism 235, dispensing chamber 230 with its dispensing orifice 225, and dispensing pad 220. In alternate embodiments off center orbital mechanism 235 may have other configurations such as centered rotary motion, centered orbital motion, etc. Dispensing pad 220 rests on floor F. Curable coating is provided to dispensing system 217 from container 205 through tube 210. Container 205 may be mounted on housing 120, stored inside housing 120 with an access port, or any other suitable manner to deliver curable coating to dispensing system 217.
Container 205 has a flow control mechanism, not shown, which regulates and may also stop delivery of curable coating to dispensing system 217. In one embodiment, curable coating may be poured into container 250 and the flow control mechanism is used to regulate delivery of curable coating. In other embodiments curable coating may be stored in a plastic container or bag. To prevent curing of the coating while still in the container or bag, the container or bag is composed of a UV blocking material or coated with a UV blocking coating. The plastic container or bag may be placed into the container 205 and pierced by a piercing mechanism, not shown, thus filling the container with curable coating. Delivery to the dispensing system for this embodiment is regulated by the flow control mechanism of the container 205, not shown. In another embodiment, the plastic container or bag may be similar to an intravenous (IV) delivery system used by medical personnel. In this embodiment the curable coating is stored in a bag similar to an IV bag which has its own flow control mechanism and self resealable orifice. The bag may be detachably incorporated into container 205 or be detachably connected to tube 210 via the self resealable orifice. Delivery of curable coating is controlled by the flow control mechanism of the bag. In addition, the bag may be detached and resealed thereby storing unused curable coating. Of course all components of the bag are UV blocked as described above. Printed material may be applied to the container or bag. This printed material may be information regarding the curable coating such as, manufacturer, name and type of curable coating, instructions for use of the curable coating, etc.
Briefly, in operation, curable coating in container 205 flows through tube 210 to dispensing system 217 and is applied to a surface, such as a floor, while the motor 250 rotates lamp arms 212 and 247 and shaft 240. Flow of curable coating from container 205 is regulated by flow control mechanisms, not shown, to control the thickness of curable coating applied to a surface. Rotation of lamp arms 212 and 257 and dispensing system 217 done by motor 250 and is controlled by the gearing control mechanisms of motor 250. The outer casing of motor 250 directly rotates lamp arms 212, 247 at a slower speed while shaft 240 rotates off center orbital mechanism 235 which in turn rotates dispensing system 217 in an off center orbital manner at a higher speed. Gears or a clutch can control the different speeds of rotation.
The controlled flow of curable coating from the container 205 via tube 210 enters the rotating dispensing chamber 230 and passes through dispensing orifice 225 to the center of dispensing pad 220. Dispensing pad 220 is in direct contact with the floor F of
While curable coating is applied to the floor F from the dispensing pad 220, UV lamps contained in rotating UV lamp housings 215 and 245 emit high-intensity UV radiation creating an annular shaped cure zone encircling dispensing system 217. Radiation output power is several hundred watts per centimeter at the floor. The reflecting and shielding surfaces of UV lamp housings 215 and 245 are configured to form a high-intensity beam and to prevent UV radiation from contacting a circular area slightly larger in diameter than dispensing system 217 and concentric with dispensing system 217. In addition, dispensing system 217 may be configured with an optical mask surface situated between motor 250 and off center orbital mechanism 235. The optical mask surface is composed of UV blocking material or has a UV blocking coating to block UV radiation. This prevents the irradiation of dispensing system 217 and concomitant curing of the curable coating while still in the dispensing system 217 and very near it, i.e., before application to surface F.
Thickness of the curable coating applied to the floor F is controlled by flow control mechanisms of the container 205 and also by the speed with which the machine 110 is moved over the floor F. Thin coats, i.e., less than one mil, are achieved with a relatively quick flow of curable cure from the container 205 and relatively rapid movement of the machine 110 over the floor F. Thicker coats, although not preferred, are achieved with relatively slow flow of curable cure and relatively slow movement of the machine 110.
The dispensing pad 220 applies curable cure to the floor F. When the machine 110 is moved the applied curable coating is exposed to the annular shaped cure zone which also moves with the machine. Since the cure zone encircles the dispensing system 217 applied curable coating is, exposed and instantly cured irrespective of the direction with which the machine 110 is moved on floor F. The annular cure zone intersects the linear path of dispensed coating. The degree of cure, partial or complete, is controlled by the power adjustment device connected to the UV lamps. When a complete cure is done, the curable coating may need to contain adhesion promoters or other chemical means to ensure proper adhesion of an additional layer of curable coating. Since the coating is cured concurrently with its application on the floor F, additional coats may be applied and cured immediately thus creating a thick coat by rapidly applying multiple thin coats. Rapid curing of thin coats while protected from the surrounding environment by housing 120 avoids the problems mentioned above of such as dust, bubbles, shrinkage, uneven curing due to uneven UV radiation from windows etc., time lost waiting for a coat to dry, etc.
With reference to
Operation is similar to that described for
With reference to
Operation is done with a linear motion as depicted by linear motion arrow 402. The lamp housing 425 and its components are similar to those of
Additional arrangements of applicators and UV lamps are disclosed in
With reference to
With reference to
With reference to
With reference to
In other embodiments, motion of the machine 110 of
Diodes 95 and 96 are oppositely biased at opposite plates of a first capacitor 97 while a second capacitor 98 forms a quasi-bridge circuit for voltage multiplication forming high voltage multiplier circuit 93. Circuit 93 is mounted inside the box 100. The circuit draws little current but high voltage from the circuit allows ignition of lamp material such as molten mercury within a well of the UV lamp 61 thereby forming an ionic plasma in UV lamp 61. The variable ballast resistor 91 is used to counteract the negative resistance created by the mercury vapor in UV lamp 61. The ballast resistor 91 prevents the UV lamp 61 from drawing excessive current and provides electric stability as the lamp warms. As the UV lamp 61 continues to heat up during operation, internal gas pressure within the UV lamp 61 tube causes a higher voltage to be required to maintain the arc discharge. The higher voltage is not available through the circuit. Since the voltage necessary to maintain the arc exceeds the voltage provided by the electric ballast, the arc fails. The UV lamp 61 momentarily goes out and begins to cool down. As gas pressure in the UV lamp 61 goes down, liquid mercury will form and the high voltage multiplier circuit 93 can be used to ignite the arc and send current into ballast resistor 91. The hot arc heats the UV lamp 61 causing the UV lamp 61 to glow and produce UV light once again. This on-off cycle is inherent in the performance of the UV lamp 61 and allows relatively high intermittent power to be obtained from a simple circuit.
With reference to
Lower members 630 of a rigid inverted U-shaped handle are shown attached to the top of housing 620. The lower members 630 are rigid and although shown as elongated members with a round cross section similar to a pipe, the cross section may be, although not limited to, shapes such as square, oval, and octagonal. The U-shaped handle may be used to guide and move the housing 620 on a surface, such as floor F of
Electric ballast system 601 is shown as a rectangular parallelepiped or box. Alternate embodiments may employ other shapes for electric ballast system, including but not limited to squares and cylinders. Electric ballast system 601 has ballast handle 610, ballast exhaust fans 602, electric power cord 603, electric power distribution cable 604, at least one variable resistance electric ballast, and a controller. Electric ballast system 601 is at least partially open enabling intake of air to ballast exhaust fans 602. Electric plug 607 is attached to electric power cord 603 opposite the attachment point of electric power cord 603 to electric ballast system 601. Electric plug 607 and electric power cord 603 enable supply of electric power to electric ballast system 601 when electric plug 607 is connected to a source of electric power. Electric power cord 603 is of sufficient length to facilitate operation of this embodiment which is discussed later.
The at least one variable resistance electric ballast resistor is mounted inside the ballast box 601 and is made of nichrome wire of the type commonly found in hair dryers and toasters. There is one variable resistance electric ballast for each UV lamp in housing 620 (UV lamps are not shown and discussed below). The ballast resistor offsets negative resistance of the lamp. Ballast exhaust fans 602 are shown positioned on a side of electric ballast system 601. The quantity of ballast exhaust fans 602 may be more or fewer than the four shown in
Electric power distribution cable 604 is of sufficient length to facilitate operation of this embodiment which is discussed later. The controller, mounted inside the electric ballast system, enables control of functions such as, but not limited to, the start and shut off sequence of the UV lamps and monitoring of electric power consumption.
With reference to
The handles 654 are positioned on the side of housing 620 in a manner similar to housing handle 605 of
Lamp housings 652 are parabolic in cross-section and constructed of sheet metal or plastic having reflective surfaces thereby enabling reflection of UV light emanating from UV lamps 653 as a downwardly directed beam. Lamp housings 652 are elongated structures with an internal parabolic cross-sectional shape whose axial focus is aligned with the axis of the elongated parabolic structure thereby enabling UV light generated by the UV lamps 653 to emerge as a linear beam directed onto a coating to be cured. In an alternate embodiment, the rotational speed of motor 250 may of a speed appropriate for rotating lamp arms 651. In this alternate embodiment, lamp arms 651 may be directly attached to the rotor of motor 250. Electric power is received via the electric power distribution cable 604 to operate components requiring electric power such as UV lamps 653, housing exhaust fans 609, motor 250, etc.
Hub 666 is connected to housing 620 by hub supports 658, 660, 662, 664. Hub 666 which may be constructed of materials such as sheet metal, plastic, etc. provides additional support for motor 250. Hub supports 658, 660, 662, 664 provide support for hub 666 and may be of solid or hollow construction. Solid construction may be bars of metal, plastic, or any material of sufficient strength to provide support for hub 666. Hollow construction may be in the form of tubes of metal, plastic, or any material of sufficient strength to provide support for hub 666. The cross section of solid or hollow struts may be rectangular, square, round, oval, etc. The bottom of housing 620 with hub 666 and hub supports 658, 660, 662, 664 is at least partially open enabling transmission of UV light to floor F of
Referring to
The central section 706 is attached to hub 666 of
In operation, the UV lamps 653 rotate forming a toroidal curing zone as described above with reference to
This application is a continuation-in-part of application Ser. No. 12/478,970, filed Jun. 5, 2009, in turn a continuation-in-part of application Ser. No. 12/209,080, filed Sep. 11, 2008 and application Ser. No. 12/112,753, filed Apr. 30, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 12478970 | Jun 2009 | US |
Child | 12751606 | US | |
Parent | 12209080 | Sep 2008 | US |
Child | 12478970 | US | |
Parent | 12112753 | Apr 2008 | US |
Child | 12209080 | US |