This application claims priority to International Application No. PCT/US/2016/047558, filed on Aug. 18, 2016, entitled “MACHINE COMPARTMENT FOR A VACUUM INSULATED STRUCTURE,” the disclosure of which is hereby incorporated herein by reference in its entirety.
The efficiency of a refrigerator may, at least in part, rely on the refrigerator's ability to keep items within the refrigerator cool and prevent heat from entering the refrigerator. The formation of compartments within the refrigerator may affect the refrigerator's insulative ability. Accordingly, new methods of compartment formation within refrigerators are sought.
According to one aspect of the present disclosure, a refrigerator cabinet is provided that includes an inner liner and an external wrapper. The inner liner is positioned within the external wrapper such that a gap is defined between the external wrapper and inner liner. The external wrapper includes a machine compartment comprising: a top wall, an interior wall, a bottom wall, a first side wall and a second side wall. A foot is defined by the external wrapper and is positioned below the machine compartment. The foot is at least partially defined by the bottom wall and at least partially supports the refrigerator cabinet.
According to another aspect of the present disclosure, a method of forming a refrigerator cabinet is provided and includes the steps of providing an external wrapper defining a rear surface; deep-drawing the rear surface of the external wrapper to form a machine compartment defining a top wall, a bottom wall and an interior wall; positioning an inner liner within the external wrapper such that a gap is defined between the inner liner and the inner wall of the machine compartment; and drawing a vacuum within the gap.
According to yet another aspect of the present disclosure, a method of forming a vacuum insulated structure is provided that includes the steps of providing an external wrapper; deep-drawing the external wrapper to form a machine compartment and a foot, the foot configured to at least partially support the vacuum insulated structure; positioning an inner liner within the external wrapper such that a gap is defined between the inner liner and the external wrapper; and drawing a vacuum within the gap.
These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The foregoing summary, as well as the following detailed description of the disclosure, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the disclosure, there are shown in the drawings, certain embodiment(s). It should be understood, however, that the disclosure is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessarily to scale. Certain features of the disclosure may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.
Additional features and advantages of the invention will be set forth in the detailed description that follows and will be apparent to those skilled in the art from the description, or recognized by practicing the invention as described in the following description together with the claims and appended drawings.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
In this document, relational terms, such as first and second, top and bottom, and the like, are used solely to distinguish one entity or action from another entity or action, without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Referring to
Referring now to
The inner liner 18 is shaped and configured to mate, couple or otherwise be positioned within the external wrapper 22. The external wrapper 22 includes a plurality of wrapper walls 58 to which a wrapper flange 62 is coupled. The wrapper flange 62 and the liner flange 48 are configured to be coupled when the cabinet 14 is in an assembled configuration. The coupling of the liner flange 48 and the wrapper flange 62 may be performed such that an airtight, or hermetic, seal is formed between the inner liner 18 and the external wrapper 22. The hermetic seal of the wrapper flange 62 and the liner flange 48 may be achieved through use of adhesives, welding, and elastomeric gasket fitting under compression and/or crimping.
The external wrapper 22 may be formed of and by any of the materials and processes listed above in connection with the inner liner 18. The wrapper walls 58 of the external wrapper 22 may have a thickness ranging from between about 0.1 mm to about 1.0 mm. In a specific example, the wrapper walls 58 have a thickness of about 0.5 mm. The wrapper walls 58 of the external wrapper 22 may define a vacuum port 70. The vacuum port 70 may be positioned as illustrated or in a variety of positions about the external wrapper 22. It will be understood that the vacuum port 70 may be disposed on either the external wrapper 22 or inner liner 18. Further, more than one vacuum port 70 may be defined on either or both of the inner liner 18 and external wrapper 22. The vacuum port 70 may be used to access (e.g., draw a vacuum and/or perform maintenance within) the gap 26 once the inner liner 18 and the external wrapper 22 are bonded. The vacuum port 70 may have a diameter of between about 10 mm and about 50 mm, or between about 12.5 mm and about 25 mm. In examples utilizing more than one vacuum port 70, the sizes of the vacuum ports 70 may vary.
Once the inner liner 18 and the external wrapper 22 have been joined and the gap 26 defined, the gap 26 may have a thickness of between about 12 mm to about 60 mm. The thickness of the gap 26 may vary throughout the refrigerator 10 or may remain constant. The gap 26 may have an air pressure of less than about 1 atm (101,325 Pa), less than about 0.5 atm (50,662.5 Pa), less than about 0.1 atm (10,132.5 Pa), less than about 0.00986 atm (1000 pa), less than about 0.001 atm (101.325 Pa), or less than about 0.00001 atm (1.01 Pa). According to some examples, the gap 26 may be partially or fully filled with an insulator. The insulator may be a material configured to have low thermal conductivity. For example, the insulator may include precipitated silica, polyurethane foam, fumed silica, beads (e.g., of glass, ceramic, and/or an insulative polymer), hollow organic micro/nanospheres, hollow inorganic micro/nanospheres, silica aerogel, nano aerogel powder, perlite, glass fibers, polyisocyanurate, urea foam, rice hulls, rice husk ash, diatomaceous earth, cenospheres, polyethylene foam, vermiculite, fiberglass and combinations thereof. Optionally, an opacifier (e.g., TiO2, SiC and/or carbon black) may be included in the insulator or materials configured to change and/or reduce the radiation conduction, the flow properties and/or packing factor of the insulator. Further, one or more gas (e.g., oxygen, hydrogen, carbon dioxide) and/or moisture getters may be included in the insulator.
Referring now to
The machine compartment 30 is integrally defined by the external wrapper 22. As such, according to various examples, the machine compartment 30 includes no welds or other joints between the top wall 34, the interior wall 38, the bottom wall 42, the first side wall 46 and the second side wall 50. The machine compartment 30 may be formed using a variety of techniques. According to one example, the machine compartment 30 may be formed via a deep-drawing technique. In such a deep-drawing technique, the external wrapper 22 is radially drawn into a forming die by the mechanical action of a punch. The deep drawing process may result in a machine compartment 30 which has a depth (i.e., inboard direction) greater than its diameter. During the deep-drawing process, the external wrapper 22 may be redrawn through a series of dies to achieve a desired shape for the machine compartment 30. Deep-drawing may result in the machine compartment 30 being inboard of the rear surface 80. It will be understood that other forming techniques capable of forming the machine compartment 30 integrally from the external wrapper 22 may also be used without departing from the teachings provided herein.
The top wall 34, the interior wall 38, the bottom wall 42, the first side wall 46 and the second side wall 50 may each be sized and angled (with respect to the rear surface 80) differently than one another (i.e., not parallel). In other words, the angle and size of the planar extent of each of the walls 34, 38, 42, 46, and 50 may be different. For example, the top wall 34 and bottom walls 42 may be angled toward a Z-axis direction off of an X-Y plane, the first and second side walls 46, 50 may be angled in an X-axis direction off of a Y-Z plane, and the interior wall 38 may be angled in a Y-axis direction off of an X-Z plane. The walls 34, 38, 42, 46, 50 may each be angled in their respective directions by between about 0° and about 10°, or between about 0.5° and about 5°. In a specific example, the interior wall 38 may be angled in an inboard Y-axis direction such that a top portion of the machine compartment 30 is volumetrically larger than a bottom portion (i.e., the top wall 34 has a greater depth in the gap 26 than the bottom wall 42).
Integral formation of the machine compartment 30 from the rear surface 80 of the external wrapper 22 results in a plurality of interfaces between the walls 34, 38, 42, 46, 50 themselves as well as the top, bottom, first and second side walls 34, 42, 46, 50 and the rear surface 80. According to various examples, the interfaces may be curved (i.e., have a radius of curvature) or be substantially 90° angles. The top wall 34 to rear surface 80 interface may have a radius of curvature of between about 0 mm and about 15 mm. The top wall 34 to interior wall 38 interface may have a radius of curvature of between about 0 mm and about 40 mm. The radius of curvature of an interface between the bottom wall 42 and the second side wall 50 may vary. Proximate the compartment opening 86, the radius of curvature may be between about 0 mm to about 10 mm, while proximate the interior wall 38 the radius of curvature may be between about 0 mm and about 40 mm.
The inner liner 18 (
The formation of the machine compartment 30 in the rear surface 80 of the external wrapper 22 also forms the foot 54. The foot 54 is positioned below the machine compartment 30 and may form a bottom of the refrigerator 10. The foot 54 is composed of the bottom wall 42 of the machine compartment 30, the rear surface 80 of the external wrapper 22 and a base wall 100 of the external wrapper 22. As such, the foot 54 is integrally defined by the external wrapper 22. As the foot 54 is partially formed by the bottom wall 42, the foot 54 extends the length of, and as deep as, the machine compartment 30. The gap 26 extends into the foot 54 and as such, the foot 54 may be hollow. In examples where an insulator is present in the gap 26, the insulator may fill the foot 54. According to various examples, the foot 54 may be sufficiently rigid or stiff to at least partially support and/or stabilize the refrigerator 10. In examples where the machine compartment 30 is positioned higher on the external wrapper 22, the inner liner 18 may extend into the foot 54 (i.e., below the machine compartment 30).
It will be understood that although described as integrally formed from the external wrapper 22, the machine compartment 30 may alternatively be a separately formed and integral piece which is coupled to the external wrapper 22. For example, the machine compartment 30 may be deep-drawn into the appropriate shape and welded to the external wrapper 22. Such an example may be advantageous in balancing the practical limitations of deep-drawing while still reducing the overall number of welds used to form the machine compartment 30.
Use of the present disclosure may offer several advantages. First, by integrally forming the machine compartment 30 from the external wrapper 22, the likelihood of air leaks into the gap 26 is reduced. For example, traditional refrigerators may suffer from multiple weld locations (e.g., to form a machine space or other shape) which may provide potential locations for air exchange between the environment and the cabinet, thereby reducing insulating efficiency. Use of the deep-drawing process allows for the elimination of potential leak points by integrally forming the machine compartment 30 and its walls from the external wrapper 22. Second, deep drawing of the machine compartment 30 may reduce the cost (e.g., related to manufacturing time and part cost) of the refrigerator 10. For example, as the machine compartment 30 is formed from a single piece of material, costs associated with multiple components and their manufacturing time may be eliminated. Third, formation of the foot 54 may allow for the reduction, or elimination, of traditional support mechanisms. For example, in traditional refrigerators, exterior wrappers may be slanted inward such that machine spaces may be positioned below or exterior to the exterior wrapper. In such configurations, a separate support component may be positioned across the machine space to provide stability to the refrigerator. Use of the integrally defined machine compartment 30 allows for the formation of the foot 54 which provides stability and support to the refrigerator 10. Further, as the foot 54 is formed at the same time as the machine compartment 30, additional manufacturing time may be eliminated. Fifth, vacuum insulated cabinets 14, panels and structures may provide enhanced insulative properties as compared to traditional foam filled insulating structures in addition to a reduced size (e.g., thickness decrease of greater than about 55%, 60% or 70%). Sixth, as explained above, it will be understood that the present disclosure is not limited to cabinets for refrigerators, but may be used to from a variety of panels, structures and containers which have insulative properties. It will be understood that although the disclosure was described in terms of a refrigerator, the disclosure may equally be applied to coolers, ovens, dishwashers, laundry applications, water heaters, household insulation systems, ductwork and other applications.
Modifications of the disclosure will occur to those skilled in the art and to those who make or use the disclosure. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the disclosure, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
It will be understood by one having ordinary skill in the art that construction of the described disclosure and other components, is not limited to any specific material. Other exemplary embodiments of the disclosure disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms: couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature, or may be removable or releasable in nature, unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the disclosure, as shown in the exemplary embodiments, is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts, or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, and the nature or numeral of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes, or steps within described processes, may be combined with other disclosed processes or steps to form structures within the scope of the present disclosure. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present disclosure, and further, it is to be understood that such concepts are intended to be covered by the following claims, unless these claims, by their language, expressly state otherwise. Further, the claims as set forth below, are incorporated into and constitute part of this Detailed Description.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/047558 | 8/18/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/034665 | 2/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
948541 | Coleman | Feb 1910 | A |
1275511 | Welch | Aug 1918 | A |
1849369 | Frost | Mar 1932 | A |
1921576 | Muffly | Aug 1933 | A |
2108212 | Schellens | Feb 1938 | A |
2128336 | Torstensson | Aug 1938 | A |
2164143 | Munters | Jun 1939 | A |
2191659 | Hintze | Feb 1940 | A |
2318744 | Brown | May 1943 | A |
2356827 | Coss | Aug 1944 | A |
2432042 | Richard | Dec 1947 | A |
2439602 | Heritage | Apr 1948 | A |
2439603 | Heritage | Apr 1948 | A |
2451884 | Stelzer | Oct 1948 | A |
2538780 | Hazard | Jan 1951 | A |
2559356 | Hedges | Jul 1951 | A |
2729863 | Kurtz | Jan 1956 | A |
2768046 | Evans | Oct 1956 | A |
2817123 | Jacobs | Dec 1957 | A |
2942438 | Schmeling | Jun 1960 | A |
2985075 | Knutsson-Hall | May 1961 | A |
3086830 | Malia | Apr 1963 | A |
3125388 | Costantini et al. | Mar 1964 | A |
3137900 | Carbary | Jun 1964 | A |
3218111 | Steiner | Nov 1965 | A |
3258883 | Louis et al. | Jul 1966 | A |
3290893 | Haldopoulos | Dec 1966 | A |
3338451 | Kesling | Aug 1967 | A |
3353301 | Heilweil et al. | Nov 1967 | A |
3353321 | Heilweil et al. | Nov 1967 | A |
3358059 | Snyder | Dec 1967 | A |
3379481 | Fisher | Apr 1968 | A |
3408316 | Mueller et al. | Oct 1968 | A |
3471416 | Fijal | Oct 1969 | A |
3597850 | Jenkins | Aug 1971 | A |
3607169 | Coxe | Sep 1971 | A |
3632012 | Kitson | Jan 1972 | A |
3633783 | Aue | Jan 1972 | A |
3634971 | Kesling | Jan 1972 | A |
3635536 | Lackey et al. | Jan 1972 | A |
3670521 | Dodge, III et al. | Jun 1972 | A |
3688384 | Mizushima et al. | Sep 1972 | A |
3769770 | Deschamps et al. | Nov 1973 | A |
3862880 | Feldman | Jan 1975 | A |
3868829 | Mann et al. | Mar 1975 | A |
3875683 | Waters | Apr 1975 | A |
3910658 | Lindenschmidt | Oct 1975 | A |
3933398 | Haag | Jan 1976 | A |
3935787 | Fisher | Feb 1976 | A |
4005919 | Hoge et al. | Feb 1977 | A |
4006947 | Haag et al. | Feb 1977 | A |
4043624 | Lindenschmidt | Aug 1977 | A |
4050145 | Benford | Sep 1977 | A |
4067628 | Sherburn | Jan 1978 | A |
4170391 | Bottger | Oct 1979 | A |
4242241 | Rosen et al. | Dec 1980 | A |
4260876 | Hochheiser | Apr 1981 | A |
4303730 | Torobin | Dec 1981 | A |
4303732 | Torobin | Dec 1981 | A |
4325734 | Burrage et al. | Apr 1982 | A |
4330310 | Tate, Jr. et al. | May 1982 | A |
4332429 | Frick | Jun 1982 | A |
4396362 | Thompson et al. | Aug 1983 | A |
4417382 | Schilf | Nov 1983 | A |
4492368 | DeLeeuw et al. | Jan 1985 | A |
4529368 | Makansi | Jul 1985 | A |
4548196 | Torobin | Oct 1985 | A |
4580852 | Smitte | Apr 1986 | A |
4583796 | Nakajima et al. | Apr 1986 | A |
4660271 | Lenhardt | Apr 1987 | A |
4671909 | Torobin | Jun 1987 | A |
4671985 | Rodrigues et al. | Jun 1987 | A |
4681788 | Barito et al. | Jul 1987 | A |
4745015 | Cheng et al. | May 1988 | A |
4777154 | Torobin | Oct 1988 | A |
4781968 | Kellerman | Nov 1988 | A |
4805293 | Buchser | Feb 1989 | A |
4865875 | Kellerman | Sep 1989 | A |
4870735 | Jahr et al. | Oct 1989 | A |
4914341 | Weaver et al. | Apr 1990 | A |
4917841 | Jenkins | Apr 1990 | A |
5007226 | Nelson | Apr 1991 | A |
5018328 | Cur et al. | May 1991 | A |
5033636 | Jenkins | Jul 1991 | A |
5066437 | Barito et al. | Nov 1991 | A |
5082335 | Cur et al. | Jan 1992 | A |
5084320 | Barito et al. | Jan 1992 | A |
5094899 | Rusek, Jr. | Mar 1992 | A |
5118174 | Benford et al. | Jun 1992 | A |
5121593 | Forslund | Jun 1992 | A |
5157893 | Benson et al. | Oct 1992 | A |
5168674 | Molthen | Dec 1992 | A |
5171346 | Hallett | Dec 1992 | A |
5175975 | Benson et al. | Jan 1993 | A |
5212143 | Torobin | May 1993 | A |
5221136 | Hauck et al. | Jun 1993 | A |
5227245 | Brands et al. | Jul 1993 | A |
5231811 | Andrepont et al. | Aug 1993 | A |
5248196 | Lynn et al. | Sep 1993 | A |
5251455 | Cur et al. | Oct 1993 | A |
5252408 | Bridges et al. | Oct 1993 | A |
5263773 | Gable et al. | Nov 1993 | A |
5273801 | Barry et al. | Dec 1993 | A |
5318108 | Benson et al. | Jun 1994 | A |
5340208 | Hauck et al. | Aug 1994 | A |
5353868 | Abbott | Oct 1994 | A |
5359795 | Mawby et al. | Nov 1994 | A |
5375428 | LeClear et al. | Dec 1994 | A |
5397759 | Torobin | Mar 1995 | A |
5418055 | Chen et al. | May 1995 | A |
5433056 | Benson et al. | Jul 1995 | A |
5477676 | Benson et al. | Dec 1995 | A |
5500287 | Henderson | Mar 1996 | A |
5500305 | Bridges et al. | Mar 1996 | A |
5505810 | Kirby et al. | Apr 1996 | A |
5507999 | Cospey et al. | Apr 1996 | A |
5509248 | Dellby et al. | Apr 1996 | A |
5512345 | Tsutsumi et al. | Apr 1996 | A |
5532034 | Kirby et al. | Jul 1996 | A |
5533311 | Tirrell et al. | Jul 1996 | A |
5562154 | Benson et al. | Oct 1996 | A |
5586680 | Dellby et al. | Dec 1996 | A |
5599081 | Revlett et al. | Feb 1997 | A |
5600966 | Valence et al. | Feb 1997 | A |
5632543 | McGrath et al. | May 1997 | A |
5640828 | Reeves et al. | Jun 1997 | A |
5643485 | Potter et al. | Jul 1997 | A |
5652039 | Tremain et al. | Jul 1997 | A |
5716581 | Tirrell | Feb 1998 | A |
5768837 | Sjoholm | Jun 1998 | A |
5792801 | Tsuda et al. | Aug 1998 | A |
5813454 | Potter | Sep 1998 | A |
5826780 | Nesser et al. | Oct 1998 | A |
5827385 | Meyer et al. | Oct 1998 | A |
5834126 | Sheu | Nov 1998 | A |
5843353 | De Vos et al. | Dec 1998 | A |
5866228 | Awata | Feb 1999 | A |
5866247 | Klatt et al. | Feb 1999 | A |
5868890 | Fredrick | Feb 1999 | A |
5900299 | Wynne | May 1999 | A |
5918478 | Bostic et al. | Jul 1999 | A |
5924295 | Park | Jul 1999 | A |
5950395 | Takemasa et al. | Sep 1999 | A |
5952404 | Simpson et al. | Sep 1999 | A |
5966963 | Kovalaske | Oct 1999 | A |
5985189 | Lynn et al. | Nov 1999 | A |
6013700 | Asano et al. | Jan 2000 | A |
6063471 | Dietrich et al. | May 2000 | A |
6094922 | Ziegler | Aug 2000 | A |
6101819 | Onaka et al. | Aug 2000 | A |
6109712 | Haworth | Aug 2000 | A |
6128914 | Tamaoki et al. | Oct 2000 | A |
6132837 | Boes et al. | Oct 2000 | A |
6158233 | Cohen et al. | Dec 2000 | A |
6163976 | Tada et al. | Dec 2000 | A |
6164030 | Dietrich | Dec 2000 | A |
6164739 | Schultz et al. | Dec 2000 | A |
6187256 | Aslan et al. | Feb 2001 | B1 |
6209342 | Banicevic et al. | Apr 2001 | B1 |
6210625 | Matsushita et al. | Apr 2001 | B1 |
6220473 | Lehman et al. | Apr 2001 | B1 |
6221456 | Pogorski et al. | Apr 2001 | B1 |
6224179 | Wenning et al. | May 2001 | B1 |
6244458 | Frysinger et al. | Jun 2001 | B1 |
6260377 | Tamaoki et al. | Jul 2001 | B1 |
6266970 | Nam et al. | Jul 2001 | B1 |
6294595 | Tyagi et al. | Sep 2001 | B1 |
6305768 | Nishimoto | Oct 2001 | B1 |
6485122 | Wolf et al. | Jan 2002 | B2 |
6390378 | Briscoe, Jr. et al. | May 2002 | B1 |
6406449 | Moore et al. | Jun 2002 | B1 |
6408841 | Hirath et al. | Jun 2002 | B1 |
6415623 | Jennings et al. | Jul 2002 | B1 |
6428130 | Banicevic et al. | Aug 2002 | B1 |
6430780 | Kim et al. | Aug 2002 | B1 |
6460955 | Vaughan et al. | Oct 2002 | B1 |
6519919 | Takenouchi et al. | Feb 2003 | B1 |
6623413 | Wynne | Sep 2003 | B1 |
6629429 | Kawamura et al. | Oct 2003 | B1 |
6689840 | Eustace et al. | Feb 2004 | B1 |
6716501 | Kovalchuk et al. | Apr 2004 | B2 |
6736472 | Banicevic | May 2004 | B2 |
6749780 | Tobias | Jun 2004 | B2 |
6773082 | Lee | Aug 2004 | B2 |
6855766 | Oppenheimer-Stix et al. | Feb 2005 | B2 |
6858280 | Allen et al. | Feb 2005 | B2 |
6860082 | Yamamoto et al. | Mar 2005 | B1 |
6938968 | Tanimoto et al. | Sep 2005 | B2 |
7008032 | Chekal et al. | Mar 2006 | B2 |
7026054 | Ikegawa et al. | Apr 2006 | B2 |
7197792 | Moon | Apr 2007 | B2 |
7197888 | LeClear et al. | Apr 2007 | B2 |
7207181 | Murray et al. | Apr 2007 | B2 |
7210308 | Tanimoto et al. | May 2007 | B2 |
7234247 | Maguire | Jun 2007 | B2 |
7263744 | Kim et al. | Sep 2007 | B2 |
7284390 | Van Meter et al. | Oct 2007 | B2 |
7296423 | Müller et al. | Nov 2007 | B2 |
7316125 | Uekado et al. | Jan 2008 | B2 |
7343757 | Egan et al. | Mar 2008 | B2 |
7360371 | Feinauer et al. | Apr 2008 | B2 |
7449227 | Echigoya et al. | Nov 2008 | B2 |
7475562 | Jackovin | Jan 2009 | B2 |
7517031 | Laible | Apr 2009 | B2 |
7614244 | Venkatakrishnan et al. | Nov 2009 | B2 |
7625622 | Teckoe et al. | Dec 2009 | B2 |
7641298 | Hirath et al. | Jan 2010 | B2 |
7665326 | LeClear et al. | Feb 2010 | B2 |
7703217 | Tada et al. | Apr 2010 | B2 |
7703824 | Kittelson et al. | Apr 2010 | B2 |
7757511 | LeClear et al. | Jul 2010 | B2 |
7762634 | Tenra et al. | Jul 2010 | B2 |
7794805 | Aumaugher et al. | Sep 2010 | B2 |
7815269 | Wenning et al. | Oct 2010 | B2 |
7842269 | Schachtely et al. | Nov 2010 | B2 |
7845745 | Gorz et al. | Dec 2010 | B2 |
7861538 | Welle et al. | Jan 2011 | B2 |
7886559 | Hell et al. | Feb 2011 | B2 |
7893123 | Luisi | Feb 2011 | B2 |
7908873 | Cur et al. | Mar 2011 | B1 |
7930892 | Vonderhaar | Apr 2011 | B1 |
7938148 | Carlier et al. | May 2011 | B2 |
7992257 | Kim | Aug 2011 | B2 |
8049518 | Wern et al. | Nov 2011 | B2 |
8074469 | Hamel et al. | Dec 2011 | B2 |
8079652 | Laible et al. | Dec 2011 | B2 |
8083985 | Luisi et al. | Dec 2011 | B2 |
8108972 | Bae et al. | Feb 2012 | B2 |
8113604 | Olson et al. | Feb 2012 | B2 |
8117865 | Allard et al. | Feb 2012 | B2 |
8157338 | Seo et al. | Apr 2012 | B2 |
8162415 | Hagele et al. | Apr 2012 | B2 |
8163080 | Meyer et al. | Apr 2012 | B2 |
8176746 | Allard et al. | May 2012 | B2 |
8182051 | Laible et al. | May 2012 | B2 |
8197019 | Kim | Jun 2012 | B2 |
8202599 | Henn | Jun 2012 | B2 |
8211523 | Fujimori et al. | Jul 2012 | B2 |
8266923 | Bauer et al. | Sep 2012 | B2 |
8281558 | Hiemeyer et al. | Oct 2012 | B2 |
8299656 | Allard et al. | Oct 2012 | B2 |
8343395 | Hu et al. | Jan 2013 | B2 |
8353177 | Adamski et al. | Jan 2013 | B2 |
8382219 | Hottmann et al. | Feb 2013 | B2 |
8434317 | Besore | May 2013 | B2 |
8439460 | Laible et al. | May 2013 | B2 |
8456040 | Allard et al. | Jun 2013 | B2 |
8491070 | Davis et al. | Jul 2013 | B2 |
8516845 | Wuesthoff et al. | Aug 2013 | B2 |
8528284 | Aspenson et al. | Sep 2013 | B2 |
8590992 | Lim et al. | Nov 2013 | B2 |
8717029 | Chae et al. | May 2014 | B2 |
8739568 | Allard et al. | Jun 2014 | B2 |
8752918 | Kang | Jun 2014 | B2 |
8752921 | Gorz et al. | Jun 2014 | B2 |
8763847 | Mortarotti | Jul 2014 | B2 |
8764133 | Park et al. | Jul 2014 | B2 |
8770682 | Lee et al. | Jul 2014 | B2 |
8776390 | Hanaoka et al. | Jul 2014 | B2 |
8840204 | Bauer et al. | Sep 2014 | B2 |
8852708 | Kim et al. | Oct 2014 | B2 |
8871323 | Kim et al. | Oct 2014 | B2 |
8881398 | Hanley et al. | Nov 2014 | B2 |
8905503 | Sahasrabudhe et al. | Dec 2014 | B2 |
8943770 | Sanders et al. | Feb 2015 | B2 |
8944541 | Allard et al. | Feb 2015 | B2 |
9009969 | Choi et al. | Apr 2015 | B2 |
RE45501 | Maguire | May 2015 | E |
9056952 | Eilbracht et al. | Jun 2015 | B2 |
9074811 | Korkmaz | Jul 2015 | B2 |
9080808 | Choi et al. | Jul 2015 | B2 |
9102076 | Doshi et al. | Aug 2015 | B2 |
9103482 | Fujimori et al. | Aug 2015 | B2 |
9125546 | Kleemann et al. | Sep 2015 | B2 |
9140480 | Kuehl et al. | Sep 2015 | B2 |
9140481 | Curr et al. | Sep 2015 | B2 |
9170045 | Oh et al. | Oct 2015 | B2 |
9170046 | Jung et al. | Oct 2015 | B2 |
9188382 | Kim et al. | Nov 2015 | B2 |
8955352 | Lee et al. | Dec 2015 | B2 |
9221210 | Wu et al. | Dec 2015 | B2 |
9228386 | Thielmann et al. | Jan 2016 | B2 |
9267727 | Lim et al. | Feb 2016 | B2 |
9303915 | Kim et al. | Apr 2016 | B2 |
9328951 | Shin et al. | May 2016 | B2 |
9353984 | Kim et al. | May 2016 | B2 |
9410732 | Choi et al. | Aug 2016 | B2 |
9423171 | Betto et al. | Aug 2016 | B2 |
9429356 | Kim et al. | Aug 2016 | B2 |
9448004 | Kim et al. | Sep 2016 | B2 |
9463917 | Wu et al. | Oct 2016 | B2 |
9482463 | Choi et al. | Nov 2016 | B2 |
9506689 | Carbajal et al. | Nov 2016 | B2 |
9518777 | Lee et al. | Dec 2016 | B2 |
9568238 | Kim et al. | Feb 2017 | B2 |
D781641 | Incukur | Mar 2017 | S |
D781642 | Incukur | Mar 2017 | S |
9605891 | Lee et al. | Mar 2017 | B2 |
9696085 | Seo et al. | Jul 2017 | B2 |
9702621 | Cho et al. | Jul 2017 | B2 |
9759479 | Ramm et al. | Sep 2017 | B2 |
9777958 | Choi et al. | Oct 2017 | B2 |
9791204 | Kim et al. | Oct 2017 | B2 |
9791205 | Mukherjee | Oct 2017 | B2 |
9833942 | Wu et al. | Dec 2017 | B2 |
9976798 | Mukherjee | May 2018 | B2 |
20020004111 | Matsubara et al. | Jan 2002 | A1 |
20020114937 | Albert et al. | Aug 2002 | A1 |
20020144482 | Henson et al. | Oct 2002 | A1 |
20020168496 | Morimoto et al. | Nov 2002 | A1 |
20030008100 | Horn | Jan 2003 | A1 |
20030041612 | Piloni et al. | Mar 2003 | A1 |
20030056334 | Finkelstein | Mar 2003 | A1 |
20030157284 | Tanimoto et al. | Aug 2003 | A1 |
20030167789 | Tanimoto et al. | Sep 2003 | A1 |
20030173883 | Koons | Sep 2003 | A1 |
20040144130 | Jung | Jul 2004 | A1 |
20040178707 | Avendano et al. | Sep 2004 | A1 |
20040180176 | Rusek | Sep 2004 | A1 |
20040226141 | Yates et al. | Nov 2004 | A1 |
20040253406 | Hayashi et al. | Dec 2004 | A1 |
20050042247 | Gomoll et al. | Feb 2005 | A1 |
20050229614 | Ansted | Oct 2005 | A1 |
20050235682 | Hirai et al. | Oct 2005 | A1 |
20060064846 | Espendola et al. | Mar 2006 | A1 |
20060076863 | Echigoya et al. | Apr 2006 | A1 |
20060201189 | Adamski et al. | Sep 2006 | A1 |
20060261718 | Miseki et al. | Nov 2006 | A1 |
20060263571 | Tsunetsugu et al. | Nov 2006 | A1 |
20060266075 | Itsuki et al. | Nov 2006 | A1 |
20070001563 | Park et al. | Jan 2007 | A1 |
20070099502 | Ferinauer et al. | May 2007 | A1 |
20070176526 | Gomoll et al. | Aug 2007 | A1 |
20070266654 | Noale | Nov 2007 | A1 |
20080044488 | Zimmer et al. | Feb 2008 | A1 |
20080048540 | Kim | Feb 2008 | A1 |
20080138458 | Ozasa et al. | Jun 2008 | A1 |
20080196441 | Ferreira | Aug 2008 | A1 |
20080300356 | Meyer et al. | Dec 2008 | A1 |
20080309210 | Luisi et al. | Dec 2008 | A1 |
20090032541 | Rogala et al. | Feb 2009 | A1 |
20090056367 | Nuemann | Mar 2009 | A1 |
20090058244 | Cho et al. | Mar 2009 | A1 |
20090113925 | Korkmaz | May 2009 | A1 |
20090131571 | Fraser et al. | May 2009 | A1 |
20090179541 | Smith et al. | Jul 2009 | A1 |
20090205357 | Lim et al. | Aug 2009 | A1 |
20090302728 | Rotter et al. | Dec 2009 | A1 |
20090322470 | Yoo et al. | Dec 2009 | A1 |
20090324871 | Henn | Dec 2009 | A1 |
20100170279 | Aoki | Jul 2010 | A1 |
20100206464 | Heo et al. | Aug 2010 | A1 |
20100218543 | Duchame | Sep 2010 | A1 |
20100231109 | Matzke et al. | Sep 2010 | A1 |
20100287843 | Oh | Nov 2010 | A1 |
20100287974 | Cur et al. | Nov 2010 | A1 |
20100293984 | Adamski et al. | Nov 2010 | A1 |
20100295435 | Kendall et al. | Nov 2010 | A1 |
20110011119 | Kuehl et al. | Jan 2011 | A1 |
20110023527 | Kwon et al. | Feb 2011 | A1 |
20110030894 | Tenra et al. | Feb 2011 | A1 |
20110095669 | Moon et al. | Apr 2011 | A1 |
20110146325 | Lee | Jun 2011 | A1 |
20110146335 | Jung et al. | Jun 2011 | A1 |
20110165367 | Kojima et al. | Jul 2011 | A1 |
20110215694 | Fink et al. | Sep 2011 | A1 |
20110220662 | Kim et al. | Sep 2011 | A1 |
20110241513 | Nomura et al. | Oct 2011 | A1 |
20110241514 | Nomura et al. | Oct 2011 | A1 |
20110260351 | Corradi et al. | Oct 2011 | A1 |
20110290808 | Bai et al. | Dec 2011 | A1 |
20110309732 | Horii et al. | Dec 2011 | A1 |
20110315693 | Cur et al. | Dec 2011 | A1 |
20120000234 | Adamski et al. | Jan 2012 | A1 |
20120011879 | Gu | Jan 2012 | A1 |
20120060544 | Lee et al. | Mar 2012 | A1 |
20120099255 | Lee et al. | Apr 2012 | A1 |
20120103006 | Jung et al. | May 2012 | A1 |
20120104923 | Jung et al. | May 2012 | A1 |
20120118002 | Kim et al. | May 2012 | A1 |
20120137501 | Allard et al. | Jun 2012 | A1 |
20120152151 | Meyer et al. | Jun 2012 | A1 |
20120196059 | Fujimori et al. | Aug 2012 | A1 |
20120231204 | Jeon et al. | Sep 2012 | A1 |
20120237715 | McCraken | Sep 2012 | A1 |
20120240612 | Wusthoff et al. | Sep 2012 | A1 |
20120273111 | Nomura et al. | Nov 2012 | A1 |
20120279247 | Katu et al. | Nov 2012 | A1 |
20120280608 | Park et al. | Nov 2012 | A1 |
20120285971 | Junge et al. | Nov 2012 | A1 |
20120297813 | Hanley et al. | Nov 2012 | A1 |
20120324937 | Adamski et al. | Dec 2012 | A1 |
20130026900 | Oh et al. | Jan 2013 | A1 |
20130033163 | Kang | Feb 2013 | A1 |
20130043780 | Ootsuka et al. | Feb 2013 | A1 |
20130068990 | Eilbracht et al. | Mar 2013 | A1 |
20130111941 | Yu et al. | May 2013 | A1 |
20130221819 | Wing | Aug 2013 | A1 |
20130255304 | Cur et al. | Oct 2013 | A1 |
20130256318 | Kuehl et al. | Oct 2013 | A1 |
20130256319 | Kuehl et al. | Oct 2013 | A1 |
20130257256 | Allard et al. | Oct 2013 | A1 |
20130257257 | Cur et al. | Oct 2013 | A1 |
20130264439 | Allard et al. | Oct 2013 | A1 |
20130270732 | Wu et al. | Oct 2013 | A1 |
20130285527 | Choi et al. | Oct 2013 | A1 |
20130293080 | Kim et al. | Nov 2013 | A1 |
20130305535 | Cur et al. | Nov 2013 | A1 |
20130328472 | Shim et al. | Dec 2013 | A1 |
20140009055 | Cho et al. | Jan 2014 | A1 |
20140097733 | Seo et al. | Apr 2014 | A1 |
20140132144 | Kim et al. | May 2014 | A1 |
20140166926 | Lee et al. | Jun 2014 | A1 |
20140171578 | Meyer et al. | Jun 2014 | A1 |
20140190978 | Bowman et al. | Jul 2014 | A1 |
20140196305 | Smith | Jul 2014 | A1 |
20140216706 | Melton et al. | Aug 2014 | A1 |
20140232250 | Kim et al. | Aug 2014 | A1 |
20140260332 | Wu | Sep 2014 | A1 |
20140346942 | Kim et al. | Nov 2014 | A1 |
20140364527 | Wintermantel et al. | Dec 2014 | A1 |
20150011668 | Kolb et al. | Jan 2015 | A1 |
20150015133 | Carbajal et al. | Jan 2015 | A1 |
20150017386 | Kolb et al. | Jan 2015 | A1 |
20150027628 | Cravens et al. | Jan 2015 | A1 |
20150059399 | Hwang et al. | Mar 2015 | A1 |
20150115790 | Ogg | Apr 2015 | A1 |
20150147514 | Shinohara et al. | May 2015 | A1 |
20150159936 | Oh et al. | Jun 2015 | A1 |
20150168050 | Cur et al. | Jun 2015 | A1 |
20150176888 | Cur et al. | Jun 2015 | A1 |
20150184923 | Jeon | Jul 2015 | A1 |
20150190840 | Muto et al. | Jul 2015 | A1 |
20150224685 | Amstutz | Aug 2015 | A1 |
20150241115 | Strauss et al. | Aug 2015 | A1 |
20150241118 | Wu | Aug 2015 | A1 |
20150285551 | Aiken et al. | Oct 2015 | A1 |
20160084567 | Fernandez et al. | Mar 2016 | A1 |
20160116100 | Thiery et al. | Apr 2016 | A1 |
20160123055 | Ueyama | May 2016 | A1 |
20160161175 | Benold et al. | Jun 2016 | A1 |
20160178267 | Hao et al. | Jun 2016 | A1 |
20160178269 | Hiemeyer et al. | Jun 2016 | A1 |
20160235201 | Soot | Aug 2016 | A1 |
20160240839 | Umeyama et al. | Aug 2016 | A1 |
20160258671 | Allard et al. | Sep 2016 | A1 |
20160290702 | Sexton et al. | Oct 2016 | A1 |
20160348957 | Hitzelberger et al. | Dec 2016 | A1 |
20170038126 | Lee et al. | Feb 2017 | A1 |
20170157809 | Deka et al. | Jun 2017 | A1 |
20170167781 | Mukherjee | Jun 2017 | A1 |
20170167782 | Diptesh | Jun 2017 | A1 |
20170176086 | Kang | Jun 2017 | A1 |
20170184339 | Liu et al. | Jun 2017 | A1 |
20170190081 | Naik | Jul 2017 | A1 |
20170191746 | Seo | Jul 2017 | A1 |
20180031306 | Mukherjee | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
626838 | May 1961 | CA |
1320631 | Jul 1993 | CA |
2259665 | Jan 1998 | CA |
2640006 | Aug 2007 | CA |
1158509 | Sep 1997 | CN |
1970185 | May 2007 | CN |
100359272 | Jan 2008 | CN |
101437756 | May 2009 | CN |
201680116 | Dec 2010 | CN |
201748744 | Feb 2011 | CN |
102296714 | Dec 2011 | CN |
102452522 | May 2012 | CN |
102717578 | Oct 2012 | CN |
102720277 | Oct 2012 | CN |
103072321 | May 2013 | CN |
202973713 | Jun 2013 | CN |
203331442 | Dec 2013 | CN |
104816478 | Aug 2015 | CN |
105115221 | Dec 2015 | CN |
204963379 | Jan 2016 | CN |
1150190 | Jun 1963 | DE |
4110292 | Oct 1992 | DE |
4409091 | Sep 1995 | DE |
19818890 | Nov 1999 | DE |
19914105 | Sep 2000 | DE |
19915311 | Oct 2000 | DE |
102008026528 | Dec 2009 | DE |
102009046810 | May 2011 | DE |
102010024951 | Dec 2011 | DE |
102011051178 | Dec 2012 | DE |
102012223536 | Jun 2014 | DE |
102012223541 | Jun 2014 | DE |
0480451 | Apr 1992 | EP |
0645576 | Mar 1995 | EP |
0691518 | Jan 1996 | EP |
0260699 | Mar 1998 | EP |
0860669 | Aug 1998 | EP |
1087186 | Mar 2001 | EP |
1200785 | May 2002 | EP |
1243880 | Sep 2002 | EP |
1484563 | Dec 2004 | EP |
1496322 | Jan 2005 | EP |
1505359 | Feb 2005 | EP |
1602425 | Dec 2005 | EP |
1624263 | Aug 2006 | EP |
2342511 | Jul 2011 | EP |
2543942 | Jan 2013 | EP |
2607073 | Jun 2013 | EP |
2789951 | Oct 2014 | EP |
2878427 | Jun 2015 | EP |
2980963 | Apr 2013 | FR |
2991698 | Dec 2013 | FR |
837929 | Jun 1960 | GB |
1214548 | Dec 1970 | GB |
S4828353 | Aug 1973 | JP |
S5157777 | May 1976 | JP |
S59191588 | Dec 1984 | JP |
403013779 | Jan 1991 | JP |
404165197 | Jun 1992 | JP |
04165197 | Oct 1992 | JP |
04309778 | Nov 1992 | JP |
H06159922 | Jun 1994 | JP |
H071479 | Jan 1995 | JP |
H07167377 | Jul 1995 | JP |
H08300052 | Nov 1996 | JP |
H08303686 | Nov 1996 | JP |
H09166271 | Jun 1997 | JP |
H10113983 | May 1998 | JP |
11159693 | Jun 1999 | JP |
H11311395 | Nov 1999 | JP |
H11336990 | Dec 1999 | JP |
2000097390 | Apr 2000 | JP |
20000117334 | Apr 2000 | JP |
2000320958 | Nov 2000 | JP |
2001038188 | Feb 2001 | JP |
2001116437 | Apr 2001 | JP |
2001336691 | Dec 2001 | JP |
2001343176 | Dec 2001 | JP |
2002068853 | Mar 2002 | JP |
3438948 | Aug 2003 | JP |
3478771 | Dec 2003 | JP |
2004303695 | Oct 2004 | JP |
2005069596 | Mar 2005 | JP |
2005098637 | Apr 2005 | JP |
2005114015 | Apr 2005 | JP |
2005164193 | Jun 2005 | JP |
2005256849 | Sep 2005 | JP |
2006-92 | Mar 2006 | JP |
2006161834 | Jun 2006 | JP |
2006161945 | Jun 2006 | JP |
3792801 | Jul 2006 | JP |
2006200685 | Aug 2006 | JP |
2007263186 | Oct 2007 | JP |
4111096 | Jul 2008 | JP |
2008157431 | Jul 2008 | JP |
2008190815 | Aug 2008 | JP |
2009063064 | Mar 2009 | JP |
2009162402 | Jul 2009 | JP |
2009524570 | Jul 2009 | JP |
2010017437 | Jan 2010 | JP |
2010071565 | Apr 2010 | JP |
2010108199 | May 2010 | JP |
2010145002 | Jul 2010 | JP |
4545126 | Sep 2010 | JP |
2010236770 | Oct 2010 | JP |
2010276309 | Dec 2010 | JP |
2011002033 | Jan 2011 | JP |
2011069612 | Apr 2011 | JP |
4779684 | Sep 2011 | JP |
2011196644 | Oct 2011 | JP |
2012026493 | Feb 2012 | JP |
4897473 | Mar 2012 | JP |
2012063029 | Mar 2012 | JP |
2012087993 | May 2012 | JP |
2012163258 | Aug 2012 | JP |
2012189114 | Oct 2012 | JP |
2012242075 | Dec 2012 | JP |
2013002484 | Jan 2013 | JP |
2013050242 | Mar 2013 | JP |
2013050267 | Mar 2013 | JP |
2013076471 | Apr 2013 | JP |
2013088036 | May 2013 | JP |
2013195009 | Sep 2013 | JP |
20010068977 | Jul 2001 | KR |
20020057547 | Jul 2002 | KR |
20020080938 | Oct 2002 | KR |
20030083812 | Nov 2003 | KR |
20040000126 | Jan 2004 | KR |
20050095357 | Sep 2005 | KR |
100620025 | Sep 2006 | KR |
20070044024 | Apr 2007 | KR |
1020070065743 | Jun 2007 | KR |
20080103845 | Nov 2008 | KR |
20090026045 | Mar 2009 | KR |
101017776 | Feb 2011 | KR |
20120007241 | Jan 2012 | KR |
20120046621 | May 2012 | KR |
20120051305 | May 2012 | KR |
20120055052 | May 2012 | KR |
20150089495 | Aug 2015 | KR |
2061925 | Jun 1996 | RU |
2077411 | Apr 1997 | RU |
2081858 | Jun 1997 | RU |
2132522 02 | Jun 1999 | RU |
2162576 02 | Jan 2001 | RU |
2162576 | Jan 2001 | RU |
2166158 | Apr 2001 | RU |
2187433 02 | Aug 2002 | RU |
2234645 | Aug 2004 | RU |
2234645 | Aug 2004 | RU |
2252377 | May 2005 | RU |
2253792 02 | Jun 2005 | RU |
2349618 02 | Mar 2009 | RU |
2414288 02 | Mar 2011 | RU |
2422598 | Jun 2011 | RU |
142892 | Jul 2014 | RU |
2529525 | Sep 2014 | RU |
2571031 | Dec 2015 | RU |
203707 | Dec 1967 | SU |
00476407 | Jul 1975 | SU |
547614 | May 1977 | SU |
648780 | Feb 1979 | SU |
01307186 | Apr 1987 | SU |
9614207 | May 1996 | WO |
9721767 | Jun 1997 | WO |
098049506 | Nov 1998 | WO |
9920961 | Apr 1999 | WO |
9920964 | Apr 1999 | WO |
200160598 | Aug 2001 | WO |
200202987 | Jan 2002 | WO |
2002052208 | Apr 2002 | WO |
02060576 | Aug 2002 | WO |
03072684 | Sep 2003 | WO |
2003089729 | Oct 2003 | WO |
2004010042 | Jan 2004 | WO |
2006045694 | May 2006 | WO |
2006073540 | Jul 2006 | WO |
2007033836 | Mar 2007 | WO |
2007085511 | Aug 2007 | WO |
2007106067 | Sep 2007 | WO |
2008065453 | Jun 2008 | WO |
2008077741 | Jul 2008 | WO |
2008118536 | Oct 2008 | WO |
2008122483 | Oct 2008 | WO |
2009013106 | Jan 2009 | WO |
2009112433 | Sep 2009 | WO |
2009147106 | Dec 2009 | WO |
2010007783 | Jan 2010 | WO |
2010029730 | Mar 2010 | WO |
2010043009 | Apr 2010 | WO |
2010092627 | Aug 2010 | WO |
2010127947 | Nov 2010 | WO |
2010127947 | Nov 2010 | WO |
2011003711 | Jan 2011 | WO |
2011058678 | May 2011 | WO |
2011058678 | May 2011 | WO |
2011081498 | Jul 2011 | WO |
2012023705 | Feb 2012 | WO |
2012026715 | Mar 2012 | WO |
2012031885 | Mar 2012 | WO |
2012043990 | Apr 2012 | WO |
2012044001 | Apr 2012 | WO |
2012085212 | Jun 2012 | WO |
2012119892 | Sep 2012 | WO |
2012152646 | Nov 2012 | WO |
2013116103 | Aug 2013 | WO |
2013116302 | Aug 2013 | WO |
2014038150 | Mar 2014 | WO |
2014038150 | Mar 2014 | WO |
2014095542 | Jun 2014 | WO |
2014121893 | Aug 2014 | WO |
2014184393 | Nov 2014 | WO |
2014184393 | Nov 2014 | WO |
2013140816 | Aug 2015 | WO |
2016082907 | Jun 2016 | WO |
2017029782 | Feb 2017 | WO |
Entry |
---|
Cai et al., “Generation of Metal Nanoparticles by Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636. |
Raszewski et al., “Methods For Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20190137167 A1 | May 2019 | US |