Machine control system and method

Information

  • Patent Grant
  • 10416314
  • Patent Number
    10,416,314
  • Date Filed
    Monday, March 12, 2018
    6 years ago
  • Date Issued
    Tuesday, September 17, 2019
    5 years ago
Abstract
A global navigation satellite system (GNSS) based control system is provided for positioning a working component relative to a work surface, such as an agricultural spray boom over a crop field. Inertial measurement unit (IMU) sensors, such as accelerometers and gyroscopes, are mounted on the working component and provide positioning signals to a control processor. A method of positioning a working component relative to a work surface using GNSS-based positioning signals is also disclosed. Further disclosed is a work order management system and method, which can be configured for controlling the operation of multiple vehicles, such as agricultural sprayers each equipped with GNSS-based spray boom height control subsystems. The sprayers can be remotely located from each other on multiple crop fields, and can utilize GNSS-based, field-specific terrain models for controlling their spraying operations.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates generally to automated machine control, which can be configured for work order management involving multiple agricultural vehicles and crop fields, and in particular to a global navigation satellite system (GNSS) based agricultural spray boom height control system and method.


2. Description of the Related Art

Mobile equipment and machinery, including vehicles, agricultural equipment, open-pit mining machines and crop duster aircraft, are commonly guided and operationally controlled using global navigation satellite system (GNSS) components. Currently-available satellite positioning systems (SATPS) provide parallel and contour swathing for precision farming. For example, equipment can be guided or automatically steered along adjacent parallel path swaths, which can be offset from each other by approximately the vehicle width in a parallel path mode of operation.


Various GNSS-based navigation systems have been installed in ground-based vehicles. Systems using Doppler radar guidance systems can encounter positioning errors with the radar and latency. Similarly, gyroscopes and accelerometers (collectively inertial measurement units (IMUs) provide heading, roll and pitch measurements (e.g., XYZ headings). However, IMUs tend to encounter drift and bias errors requiring external attitude measurements for gyroscope initialization and drift compensation. Gyroscopes have good short-term characteristics but undesirable long-term characteristics, especially lower-cost gyroscopes, such as those based on vibrating resonators.


Similarly, inertial systems employing gyroscopes and accelerometers have good short-term characteristics but also suffer from drift. Existing GNSS position computations may include lag times, which may be especially troublesome when, for example, GNSS velocity is used to derive vehicle heading. Many existing GNSS systems do not provide highly accurate heading information at slower vehicle speeds. Therefore, what is needed is a low cost sensor system to facilitate vehicle swath navigation that makes use of the desirable behaviors of both GNSS and inertial units while eliminating or reducing non-desirable behavior. Specifically, what is needed is a means to employ low-cost gyroscopes (e.g., micro electromechanical (MEM) gyroscopes) which tend to provide good short-term, low-noise, high-accuracy positioning while minimizing inherent long-term drift.


Providing multiple antennas on a vehicle can provide additional benefits by determining an attitude of the vehicle from the GNSS ranging signals received by its antennas, which are constrained on the vehicle at a predetermined spacing. For example, high dynamic roll compensation signals can be output directly to the vehicle steering using GNSS-derived attitude information. Components such as gyroscopes and accelerometers can be eliminated using such techniques. Real-time kinematic (RTK) navigation can be accomplished using relatively economical single frequency L1-only receivers with inputs from at least two antennas mounted in fixed relation on a rover vehicle. Still further, moving baselines can be provided for positioning solutions involving tractors and implements and multi-vehicle GNSS control can be provided.


Providing additional antennas in combination with standard SATPS and GNSS guidance, as mentioned above, along with optional gyroscopes, can provide an effective method to increase GNSS positioning precision and accuracy. However, accuracy and precision can only improve the efficiency of working vehicles, such as those in the agricultural field, to a limited extent. Although such systems are able to track and guide vehicles in three dimensions, including along ridges and sloped-regions, errors may appear in other aspects of a working vehicle. For example, in an agricultural field-working situation where a tractor is towing an implement, the implement may slide on a sloped-region, or the tractor may list to one side or another when entering softer soil or rocky areas. This can happen repeatedly when a vehicle is guided around the same field, regardless of the precision of the guidance system in pre-planning a path. Thus, a system that can detect such changes in uniformity of a field as the vehicle traverses a path, and can remember those changes, can predict and re-route a more accurate and more economical path than a guidance system alone.


Conventional agricultural spraying operations are carried out over an entire field, everywhere the crop is planted. In contrast, environmental spraying allows the spraying of certain materials which require restrictions in the area of deposition due to potential toxicity or strength. The restrictions can include the distance from waterways and slope of the ground which can affect run-off and concentrations of deposits. In spray equipment with booms, maintaining uniform boom height over field surfaces during product application is important for uniform application rates and optimum product drift management relative to the targets, e.g., field crops. These systems are limited in performance due to their ability to look ahead and react with a spray vehicle traveling at a high rate of speed. In addition, these methods encounter issues when there are rapid changes in terrain or skips in crop canopy. The present invention addresses both issues.


GNSS-based precision application of agricultural inputs, such as pesticides, fertilizers and seeds, are commonly performed with large fleets of vehicles dispatched from common or networked home-base locations. Communication of mission planning information to all working vehicles, in real time, is paramount to efficiency. One piece of such information, which is a key to the present invention, is the terrain model, which can be created with specialized software using previously-logged field data containing highly precise positioning information from real-time kinematic (RTK) GNSS receivers. The logged data can be uploaded to the processing center from the logging vehicle through any data connection, although a wireless/remote connection is most desired for efficiency. Once processed, the terrain models can be dispatched from the home-base or processing center location to any vehicle via wireless data connection. The data is thus available to operators preparing to work fields using the boom height control system of the present invention. Using wireless data connectivity, the Internet (i.e., via the “Cloud”) enables efficient use of a boom height invention via the seamless transfer of the terrain model, which is a key component of the system.


Work order management functions for coordinating multiple machines at multiple remote locations can be accommodated with the present invention.


Previous spray boom height control systems include sonic sensors for measuring spray boom heights over ground surfaces and crop canopies.


Heretofore there has not been available a system and method with the advantages and features of the present invention.


SUMMARY OF THE INVENTION

In the practice of the present invention, position sensors (such as GNSS and IMU) are used to accurately locate the implement (such as a spray boom) with reference to the ground, standing crop, or other field features. Real time compute engine processes control algorithms to compare sensor data with spatial data logged from a previous operation, or terrain model, to make control decisions which maintain desired implement height. Work order management systems and methods can be combined with the machine control functions of the present invention to further automate operations, including agricultural operations involving multiple machines operating at multiple locations and sharing data with each other and with centralized data facilities.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings constitute a part of this specification and include exemplary embodiments of the present invention illustrating various objects and features thereof.



FIG. 1 is a schematic diagram of a boom height control system embodying an aspect of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Introduction and Environment


As required, detailed aspects of the present invention are disclosed herein, however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed structure.


Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as orientated in the view being referred to. The words, “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the aspect being described and designated parts thereof. Forwardly and rearwardly are generally in reference to the direction of travel, if appropriate. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.


II. Preferred Embodiment



FIG. 1 is a schematic diagram of a boom height control system 2. Without limitation on the generality of useful applications of the present invention, the system 2 is shown for controlling the height of a spray boom 20, which can be used for agricultural applications, such as spraying fertilizer, herbicides, pesticides, water, etc. The control system 2 includes a guidance system 4, which can be global navigation satellite system (GNSS) based. A real-time control compute engine 6 is connected to the guidance system 4 and can be programmed with specific control instructions and applications, including variable-rate (VR), selective control, guidance, auto-steering, etc. A valve drive 8 can be connected to the compute engine 6 for connection to a steering system of a vehicle, such as a tractor or a self-propelled equipment piece.


The guidance system is connected to a job set up and graphical user interface (GUI) component 10, which can include suitable display monitor components. A field template file 12 is provided for specific fields and includes such information as GNSS-defined field coordinates, material prescription information, environmental conditions and equipment routing directions. Geodesic (e.g., geographic) information system (GIS) and cloud (e.g., Internet) 14 data sources and connectivity are provided for communicating bi-directionally with the other components of the system 2.


Boom inertial measurement units 16 are connected to the control compute engine 6, and can include such devices as accelerometers and gyroscopes for measuring inertia and positioning information in three axes (X, Y, Z). The boom 20 can include a GNSS receiver with an antenna 18, or can be directly controlled via the implement motive component, such as a tractor. The boom 20 includes sections 22, 24, 26, 28, 30, each equipped with its own inertial measurement unit (IMU) 16. The boom sections can be articulated for conforming to field conditions.


The system 2 can utilize a terrain model of the field, including field boundaries, topography, soil conditions, crop data and other pertinent information. Moreover, the terrain models can be generated in real-time as the equipment traverses the field, transmitted from the mobile equipment to a centralized server or base, and re-transmitted to the equipment for use in current field operations, which can be done based on work orders. Multiple mobile equipment pieces engaged in multiple different field locations can be controlled and coordinated.


III. Agricultural Spray Boom Height Control Method


Without limitation, the system 2 can be used for practicing a method of the present invention for controlling the height of an agricultural spray boom using the following steps:

    • 1) Field is logged/mapped using highly accurate sensors (such as RTK GNSS) for measurement of field terrain elevations. This may be done as an independent step using an ATV or field truck, or data may be used/collected from another farming operation such as harvesting, which covers the same terrain.
    • 2) Field log data may be stored and processed in an office/cloud GIS and data management toolset. The data element can be transferred from the field to the office and back using a remote data connection networking fleet vehicles with physical dispatch locations.
    • 3) File is loaded in guidance system on target machine (sprayer, for example).
    • 4) User selects the job file in the guidance system which includes the processed elevation data.
    • 5) The user chooses/sets up boom control options to use the field log including desired height above the target.
    • 6) As the system works across the field, sensor data is compared to elevation data and performs real-time control through a mechanical control system (typically electro-hydraulic or mechanical in nature).


      IV. Alternative Embodiment Agricultural Spray Boom Height Control


The system 2 can also be used in conjunction with a work order management system for controlling multiple pieces of equipment (e.g., without limitation, agricultural vehicles equipped with spray booms 20). Work order status including location, equipment status and field conditions can be transmitted via the cloud 14 to a central location equipped with a computer for coordinating the operation of a fleet of agricultural vehicles. A variety of user interface devices, including vehicle-mounted computers, smart phones, hand-held devices, etc. can be utilized. Data can be transmitted to and from the vehicles in real-time. Alternatively, data can be stored for later retrieval and processing (e.g., on removable storage media such as USB thumb drives, CDs, DVDs, etc.). These can be periodically downloaded and data thereon transferred to a central control computer or system.


Such data can include, without limitation, field terrain models as described above. Other data can comprise, for example, work orders, crop data, agricultural input (e.g., fertilizers, herbicides, seeds, nutrients, etc.) and machine-specific performance and location information. The system is scalable for accommodating multiple fields and fleets of vehicles, which can be located in proximity to, or remote from, each other. By interconnecting the vehicles via the cloud, specific operations (e.g., spray boom heights, spray materials and field conditions), can be recorded for reporting, monitoring, evaluating, tracking and controlling operations.


It is to be understood that while certain embodiments and/or aspects of the invention have been shown and described, the invention is not limited thereto and encompasses various other embodiments and aspects.

Claims
  • 1. A system for generating and distributing a terrain model to vehicles, the system comprising: a central control computer including a hardware processor to:receive field data from a first one of the vehicles including terrain elevations for a field;store the field data in a memory device;generate a terrain model from the field data; anddistribute the terrain model to a second one of the vehicles to compare with sensor data generated by the second one of the vehicles and to adjust a position of a working component on the second one of the vehicles relative to the field based on the comparison of the sensor data with the terrain model.
  • 2. The system according to claim 1 wherein the sensor data includes inertial data from multiple measurement units (IMU) mounted on different sections of an agricultural boom attached to the second one of the vehicles.
  • 3. The system according claim 1, wherein the terrain model includes boundaries of the field, a topography of the field, and soil conditions of the field.
  • 4. The system according to claim 1, further comprising the processor to send operation data to the second one of the vehicles based on the field data received from the first one of the vehicles.
  • 5. The system according to claim 4, wherein the working component on the second one of the vehicles comprises an agricultural sprayer including a spray boom.
  • 6. The system according to claim 5 wherein the operation data includes quantities of material to dispense from the agricultural sprayer.
  • 7. The system according to claim 1 further comprising the processor to: receive a work order from the first one of the vehicles; andgenerate the terrain model based on the work order.
  • 8. The system according to claim 7 wherein the work order identifies soil conditions of the field.
  • 9. The system according to claim 1, the processor further to: create a work order based on the field data; anddistribute the work order to the second one of the vehicles to control the working component and compete the work order.
  • 10. The system according to claim 1, further comprising a wireless interface coupled to the processor, the processor to receive the field data from the first one of the vehicles and distribute the terrain model to the second one of the vehicles via the wireless interface.
  • 11. A control system for controlling the position of a working component relative to a field, the working component coupled to a vehicle, comprising: a computer located on the vehicle to:receive a terrain model from a central computer, the terrain model including elevation measurements for the field taken from a global navigation satellite system (GNSS) located on a same or a different vehicle;receive inertial data from one or more inertial measurement units (IMUs) mounted on the working component;receive position data from a global navigation satellite system (GNSS) located on the vehicle;compare the position data from the GNSS and the inertial data from the IMUs with the terrain model; andmove the working component relative to the work surface based on the comparison of the position data and the inertial data with the terrain model.
  • 12. The control system according to claim 11, the computer further to: receive user inputs selecting a desired height of the working component above the field; andadjust a height of the working component relative to the field based on a comparison of the position data and the inertial data with the terrain model and the desired height.
  • 13. The control system according to claim 11, the computer further to send a work order status back to the central computer while the vehicle travels over the field, the work order status identifying a location of the vehicle and conditions of the field.
  • 14. The control system of claim 11, wherein the inertial data includes inertial data from multiple inertial measurement units (IMUs) mounted on different sections of the working component.
  • 15. The system according to claim 11, wherein the terrain model includes field boundaries, a field topography, and soil conditions for the field.
  • 16. The system according to claim 11, wherein the computer comprises at least one of an equipment-mounted virtual terminal, a laptop computer, a tablet computer, a smart phone, a desktop computer, and a netbook.
  • 17. A method of coordinating operations of vehicles in a field, comprising: downloading, by a computer operating on a first vehicle, a field terrain model from a central server, the field terrain model including terrain elevations for the field measured by a second vehicle;receiving, by the computer, position data from a global navigation satellite system (GNSS) located on the vehicle;receiving, by the computer, inertial data from an inertial measurement unit (IMU) located on the vehicle;comparing, by the computer, the position data from the GNSS and the inertial data from the IMU with the field terrain model; andpositioning, by the computer, a working component connected to the first vehicle relative to the work surface based on the comparison of the position data and the inertial data with the field terrain model.
  • 18. The method of claim 17, further comprising: generating, by the computer, a work order identifying a status of the first vehicle applying a material to the field; andreporting, by the computer, the work order back to the central server to coordinate operations with other vehicles.
  • 19. The method of claim 18 further comprising downloading the field terrain model from the central server and reporting the work order back to the central server via the Internet.
  • 20. The method of claim 17, wherein the working component comprises an agricultural spray boom and the inertial data and position data identify spray boom heights for different sections of the spray boom above the work surface.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 15/083,747, filed Mar. 29, 2016, which is a continuation-in-part of and claims priority in U.S. patent application Ser. No. 14/214,215, filed Mar. 14, 2014, now U.S. Pat. No. 9,781,915, issued October 10, 2017, which claims priority in U.S. Provisional Patent Application No. 61/783,973, filed Mar. 14, 2013, which are all incorporated herein by reference. U.S. Pat. Nos. 6,539,303; 6,711,501; 8,214,111; 8,386,129; 8,548,649; 8,583,315; 8,583,326; and 8,594,879 are also incorporated herein by reference.

US Referenced Citations (113)
Number Name Date Kind
5050771 Hanson Sep 1991 A
5194851 Kraning et al. Mar 1993 A
5348226 Heiniger Sep 1994 A
5390125 Sennott et al. Feb 1995 A
5663879 Trovato et al. Sep 1997 A
5684476 Anderson Nov 1997 A
5923270 Sampo et al. Jul 1999 A
6052647 Parkinson et al. Apr 2000 A
6070673 Wendte Jun 2000 A
6073070 Diekhans Jun 2000 A
6212453 Kawagoe et al. Apr 2001 B1
6373432 Rabinowitz et al. Apr 2002 B1
6377889 Soest Apr 2002 B1
6445983 Dickson et al. Sep 2002 B1
6539303 McClure et al. Mar 2003 B2
6711501 McClure et al. Mar 2004 B2
6789014 Rekow et al. Sep 2004 B1
6804587 O'Connor Oct 2004 B1
6819780 Benson et al. Nov 2004 B2
6865465 McClure Mar 2005 B2
6876920 Mailer Apr 2005 B1
7142956 Heiniger et al. Nov 2006 B2
7162348 McClure et al. Jan 2007 B2
7277792 Overschie Oct 2007 B2
7373231 McClure et al. May 2008 B2
7400956 Feller et al. Jul 2008 B1
7437230 McClure Oct 2008 B2
7460942 Mailer Dec 2008 B2
7623952 Unruh Nov 2009 B2
7650252 McClure Jan 2010 B2
7689354 Heiniger et al. Mar 2010 B2
RE41358 Heiniger et al. May 2010 E
7835832 Macdonald et al. Nov 2010 B2
7860628 Lange Dec 2010 B2
7885745 McClure et al. Feb 2011 B2
8018376 McClure et al. Sep 2011 B2
8140223 Whitehead Mar 2012 B2
8190337 McClure May 2012 B2
8214111 Heiniger et al. Jul 2012 B2
8265826 Feller Sep 2012 B2
8311696 Reeve Nov 2012 B2
8386129 Collins et al. Feb 2013 B2
8401704 Pollock et al. Mar 2013 B2
8437901 Anderson May 2013 B2
8489291 Dearborn et al. Jul 2013 B2
8521372 Hunt et al. Aug 2013 B2
8548649 Guyette et al. Oct 2013 B2
8583315 Whitehead et al. Nov 2013 B2
8583326 Collins et al. Nov 2013 B2
8589013 Pieper et al. Nov 2013 B2
8594879 Roberge et al. Nov 2013 B2
8634993 McClure et al. Jan 2014 B2
8639416 Jones et al. Jan 2014 B2
8649930 Reeve et al. Feb 2014 B2
8676620 Hunt et al. Mar 2014 B2
8718874 McClure et al. May 2014 B2
8768558 Reeve et al. Jul 2014 B2
8781685 McClure Jul 2014 B2
8803735 McClure Aug 2014 B2
8897973 Hunt et al. Nov 2014 B2
8924152 Hunt et al. Dec 2014 B2
9002565 Jones et al. Apr 2015 B2
9002566 McClure et al. Apr 2015 B2
9141111 Webber et al. Sep 2015 B2
9162703 Miller et al. Oct 2015 B2
9173337 Guyette et al. Nov 2015 B2
9223314 McClure et al. Dec 2015 B2
9255992 McClure Feb 2016 B2
9310477 Sampigethaya Apr 2016 B1
9389615 Webber et al. Jul 2016 B2
20020049538 Knapton Apr 2002 A1
20020072850 McClure et al. Jun 2002 A1
20040186644 McClure et al. Sep 2004 A1
20060167600 Nelson, Jr. et al. Jul 2006 A1
20080195268 Sapilewski Aug 2008 A1
20080234936 Weinmann Sep 2008 A1
20090099737 Wendte Apr 2009 A1
20090121932 Whitehead May 2009 A1
20090164067 Whitehead Jun 2009 A1
20090251366 McClure et al. Oct 2009 A1
20090312974 Douglas Dec 2009 A1
20100274452 Ringwald et al. Oct 2010 A1
20100312428 Roberge Dec 2010 A1
20110015817 Reeve Jan 2011 A1
20110018765 Whitehead Jan 2011 A1
20110054729 Whitehead Mar 2011 A1
20110224873 Reeve Sep 2011 A1
20110231061 Reeve Sep 2011 A1
20110266365 Hrnicek Nov 2011 A1
20120087771 Wenzel Apr 2012 A1
20120130593 Davis May 2012 A1
20120169495 Kowalchuk Jul 2012 A1
20120173093 Kowalchuk Jul 2012 A1
20120174445 Jones Jul 2012 A1
20120215410 McClure Aug 2012 A1
20120301220 Snoeck et al. Nov 2012 A1
20130008360 Follmer Jan 2013 A1
20130179026 McClure et al. Jul 2013 A1
20130311050 Cash et al. Nov 2013 A1
20130311153 Moughler Nov 2013 A1
20130345937 Strelioff et al. Dec 2013 A1
20140074360 Rosa et al. Mar 2014 A1
20140093397 Engelbrecht et al. Apr 2014 A1
20140168009 Peake Jun 2014 A1
20140266877 McClure Sep 2014 A1
20140277676 Gattis Sep 2014 A1
20150175194 Gattis Jun 2015 A1
20160039454 Mortimer Feb 2016 A1
20160154108 McClure et al. Jun 2016 A1
20160205864 Gattis et al. Jul 2016 A1
20160214643 Joughin et al. Jul 2016 A1
20160252909 Webber et al. Sep 2016 A1
20160334804 Webber et al. Nov 2016 A1
Foreign Referenced Citations (5)
Number Date Country
2002244539 Oct 2002 AU
2002325645 Mar 2003 AU
2008080193 Jul 2008 WO
2010-005945 Jan 2010 WO
2012-146255 Nov 2012 WO
Non-Patent Literature Citations (6)
Entry
U.S. Appl. No. 15/083,747, filed Mar. 29, 2016, Machine Control System and Method, 2016-0205864.
U.S. Appl. No. 14/214,215, filed Mar. 14, 2014, Implement and Boom Height Control System and Method, U.S. Pat. No. 9,781,915.
PCT/US15/20799, Mar. 16, 2015, Implement and Boom Height Control System and Method, WO 2015/139050.
Noh, Kwang-Mo, Self-tuning controller for farm tractor guidance, Iowa State University Retrospective Theses and Dissertations, Paper 9874, (1990).
Van Zuydam,. R.P., Centimeter-Precision Guidance of Agricultural Implements in the Open Field by Means of Real Tim Kinematic DGPS, ASA-CSSA-SSSA, pp. 1023-1034 (1999).
International Search Report and Written Opinion for PCT/US2015/020799 dated Jun. 25, 2015.
Related Publications (1)
Number Date Country
20180203126 A1 Jul 2018 US
Provisional Applications (1)
Number Date Country
61783973 Mar 2013 US
Continuations (1)
Number Date Country
Parent 15083747 Mar 2016 US
Child 15919076 US
Continuation in Parts (1)
Number Date Country
Parent 14214215 Mar 2014 US
Child 15083747 US