This application claims priority to parent application number PCT/US2004/008311 filed Mar 18, 2004, which claims priority to U.S. patent application Ser. No. 10/391,827, filed Mar. 19, 2003, now U.S Pat. No. 6,896,009, the disclosures of which are hereby incorporated herein by reference.
The present invention relates generally to papermaking, and relates more specifically to forming fabrics employed in papermaking.
In the conventional fourdrinier papermaking process, a water slurry, or suspension, of cellulosic fibers (known as the paper “stock”) is fed onto the top of the upper run of an endless belt of woven wire and/or synthetic material that travels between two or more rolls. The belt, often referred to as a “forming fabric,” provides a papermaking surface on the upper surface of its upper run which operates as a filter to separate the cellulosic fibers of the paper stock from the aqueous medium, thereby forming a wet paper web. The aqueous medium drains through mesh openings of the forming fabric, known as drainage holes, by gravity or vacuum located on the lower surface of the upper run (i.e., the “machine side”) of the fabric.
After leaving the forming section, the paper web is transferred to a press section of the paper machine, where it is passed through the nips of one or more pairs of pressure rollers covered with another fabric, typically referred to as a “press felt.” Pressure from the rollers removes additional moisture from the web; the moisture removal is often enhanced by the presence of a “batt” layer of the press felt. The paper is then transferred to a dryer section for further moisture removal. After drying, the paper is ready for secondary processing and packaging.
As used herein, the terms machine direction (“MD”) and cross machine direction (“CMD”) refer, respectively, to a direction aligned with the direction of travel of the papermakers' fabric on the papermaking machine, and a direction parallel to the fabric surface and traverse to the direction of travel. Likewise, directional references to the vertical relationship of the yarns in the fabric (e.g., above, below, top, bottom, beneath, etc.) assume that the papermaling surface of the fabric is the top of the fabric and the machine side surface of the fabric is the bottom of the fabric.
Typically, papermaker's fabrics are manufactured as endless belts by one of two basic weaving techniques. In the first of these techniques, fabrics are flat woven by a flat weaving process, with their ends being joined to form an endless belt by any one of a number of well-known joining methods, such as dismantling and reweaving the ends together (commonly known as splicing), or sewing on a pin-seamable flap or a special foldback on each end, then reweaving these into pin-seamable loops. A number of auto-joining machines are now commercially available, which for certain fabrics may be used to automate at least part of the joining process. In a flat woven papermaker's fabric, the warp yarns extend in the machine direction and the filling yarns extend in the cross machine direction.
In the second basic weaving technique, fabrics are woven directly in the form of a continuous belt with an endless weaving process. In the endless weaving process, the warp yarns extend in the cross machine direction and the filling yarns extend in the machine direction. Both weaving methods described hereinabove are well known in the art, and the term “endless belt” as used herein refers to belts made by either method.
Effective sheet and fiber support are important considerations in papermaking, especially for the forming section of the papermaking machine, where the wet web is initially formed. Additionally, the forming fabrics should exhibit good stability when they are run at high speeds on the papermaking machines, and preferably are highly permeable to reduce the amount of water retained in the web when it is transferred to the press section of the paper machine. In both tissue and fine paper applications (i.e., paper for use in quality printing, carbonizing, cigarettes, electrical condensers, and like) the papermaking surface comprises a very finely woven or fine wire mesh structure.
Typically, finely woven fabrics such as those used in fine paper and tissue applications include at least some relatively small diameter machine direction or cross machine direction yarns. Regrettably, however, such yarns tend to be delicate, leading to a short surface life for the fabric. Moreover, the use of smaller yarns can also adversely affect the mechanical stability of the fabric (especially in terms of skew resistance, narrowing propensity and stiffness), which may negatively impact both the service life and the performance of the fabric.
To combat these problems associated with fine weave fabrics, multi-layer forming fabrics have been developed with fine-mesh yarns on the paper forming surface to facilitate paper formation and coarser-mesh yarns on the machine contact side to provide strength and durability. For example, fabrics have been constructed which employ one set of machine direction yarns which interweave with two sets of cross machine direction yarns to form a fabric having a fine paper forming surface and a more durable machine side surface. These fabrics form part of a class of fabrics which are generally referred to as “double layer” fabrics. Similarly, fabrics have been constructed which include two sets of machine direction yarns and two sets of cross machine direction yarns that form a fine mesh paperside fabric layer and a separate, coarser machine side fabric layer. In these fabrics, which are part of a class of fabrics generally referred to as “triple layer” fabrics, the two fabric layers are typically bound together by separate stitching yarns. However, they may also be bound together using yarns from one or more of the sets of bottom and top cross machine direction and machine direction yarns. As double and triple layer fabrics include additional sets of yarn as compared to single layer fabrics, these fabrics typically have a higher “caliper” (i.e., they are thicker) than comparable single layer fabrics. An illustrative double layer fabric is shown in U.S. Pat. No. 4,423,755 to Thompson, and illustrative triple layer fabrics are shown in U.S. Pat. No. 4,501,303 to Osterberg, U.S. Pat. No. 5,152,326 to Vohringer, U.S. Pat. No. 5,437,315 to Ward and U.S. Pat. No. 5,967,195 to Ward.
The present invention relates to machine direction yarn stitched triple layer papermaker's forming fabrics which can exhibit relatively good drainage, permeability and machine direction yarn stacking characteristics, and in some instances may have reduced diagonal marking.
In one embodiment of the present invention, a triple layer papermaker's fabric includes: a set of top CMD yarns; a set of top MD yarns interwoven exclusively with the top CMD yarns to form at least part of a top fabric layer having a papermaking surface; a set of bottom CMD yarns; a set of bottom MD yarns interwoven exclusively with the bottom CMD yarns to form at least part of a bottom fabric layer having a machine side surface, the bottom MD yarns forming bottom MD knuckles as they pass below bottom CMD yarns; and a pair of additional MD yarns disposed on either side of each top MD yarn, wherein the first yarn of each pair of additional MD yarns weaves exclusively in the top fabric layer and the second yarn of each pair of additional MD yarns completes the weave of the first yarn of each pair of additional MD yarns on the papermaking surface and also weaves with the bottom fabric layer beneath a bottom CMD yarn to form a bottom MD stitching yarn knuckle so as to bind the top fabric layer and the bottom fabric layers together. Each bottom stitching yarn knuckle is formed below a bottom CMD yarn under which an adjacent bottom MD yarn forms a bottom MD knuckle.
In another embodiment of the present invention, a triple layer papermaker's forming fabric includes: a set of top CMD yarns; a set of top MD yarns interwoven exclusively with the top CMD yarns to form at least part of a top fabric layer having a papermaking surface; a set of bottom CMD yarns; a set of bottom MD yarns interwoven exclusively with the bottom CMD yarns to form at least part of a bottom fabric layer having a machine side surface, the bottom MD yarns forming bottom MD knuckles as they pass below bottom CMD yarns; and a pair of additional MD yarns disposed on either side of each top MD yarn, wherein the first yarn of each pair of additional MD yarns weaves exclusively in the top fabric layer and the second yarn of each pair of additional MD yarns completes the weave of the first yarn of each pair of additional MD yarns on the papermaking surface and also weaves with the bottom fabric layer beneath a bottom CMD yarn to form a bottom MD stitching yarn knuckle so as to bind the top fabric layer and the bottom fabric layers together. In this embodiment, each of the additional MD yarns forms knuckles by passing over the top CMD yarns, and wherein the number of knuckles formed by the first yarn of each pair of additional MD yarns differs from the number of knuckles formed by the second yarn of each pair.
Another aspect of the present invention includes methods of using a triple layer papermaker's forming fabric as described above for making paper.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments or other embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the figures, the dimensions of some components may be exaggerated for clarity.
One aspect of the present invention is directed to machine direction yarn stitched triple layer papermaker's forming fabrics that include both a top fabric layer and a bottom fabric layer. These fabrics are “true” triple layer fabrics in that they include sets of machine direction yarns and cross machine direction yarns that only weave in the top fabric layer, as well as sets of machine direction yarns and cross machine direction yarns that only weave in the bottom fabric layer. The fabrics also include pairs of adjacent machine direction yarns that together replace the equivalent of a single machine direction yarn in the weave pattern on the papermaking surface. These yarns are woven such that when one yarn in the pair is weaving in the top fabric layer so as to complete the weave pattern on the papermaking surface, the second yarn in the pair weaves below the papermaking surface. Throughout the fabric, these yarns trade these positions. At least one of the yarns in the pair also drops down to the bottom fabric layer at one or more points so as to bind the top and bottom fabric layers together. Herein, these yarn pairs are referred to as “stitching MD yarn pairs” (even in those embodiments in which only one yarn of the pair actually “stitches” with the bottom fabric layer). Individual yarns from these yarn pairs are typically referred to as a “stitching MD yarn.”
An embodiment of the machine direction yarn stitched triple layer fabrics of the present invention is illustrated in
As seen in
As shown in
Referring now to
As shown best in
As noted above, in the fabric depicted in
As can be seen from
As can also be seen in
The coupling arrangement that occurs between the bottom MD yarns 150-153 and the stitching MD yarns 120-127 may have several beneficial effects in certain applications. First, by coupling at these locations each individual yarn may come into less contact with the papermaking machine since the yarns tend to act to protect each other. This may advantageously extend the life of the fabric, as a potential failure point for the fabric is wear of the MD yarns that come in contact with the papermaking machine. Additionally, having two MD yarns coupled at the locations where the MD yarns float below the CMD yarns potentially acts to increase the upward force on the bottom CMD yarn at that location. This increased upward force helps to “bury” the machine side MD yarn floats up into the bottom fabric layer 104, which further may help to reduce the machine-induced wear on the bottom MD yarns 150-153 and the stitching MD yarns 120-127. Third, as best seen in
In the embodiment of
Another fabric 200 constructed according to the teachings of the present invention is illustrated in
As seen in
Referring now to
As shown in
As shown in
Pursuant to another aspect of the present invention, it will be realized that the position of the stitching MD yarns in the fabric may have a significant impact on fabric performance. For example, in the fabric 100 of
The fabric 300 depicted in
As shown best in
Note that in fabric 300, the stitching MD yarns in each stitching MD yarn pair are pulled toward each other by the forces that cause those yarns to couple with the bottom MD yarns. As a result, the stitching MD yarns tend to align themselves approximately halfway between the bottom MD yarns (except at the locations where they couple with a bottom MD yarn), which provides for improved straight through drainage in the fabric. In contrast, in the fabric 100 of
The principles of the present invention can be extended to fabrics woven with different repeat patterns. For instance, a triple layer fabric 400 according to the present invention woven on 20 harnesses is depicted in
As seen in
Referring now to
As shown in
Another sixteen harness triple layer fabric embodiment of the present invention is illustrated in
The top layer of the fabric 500 is a plain weave surface formed by the interweaving of the top MD yarns 501-504, the top CMD yarns 511-526, and stitching portions of the stitching yarns 531a-534b. As shown in
As is the case with the fabric 300 illustrated in
Top MD yarns 501-504 are each separated from one another by a stitching yarn pair. For example, stitching yarn pair 532a, 532b is positioned between top MD yarn 501, 502. Thus, as the top MD yarns 501, 502 both pass over top CMD yarn 511, the stitching yarn pair 532b passes under top CMD yarn 511, as the top MD yarns 501, 502b both pass under top CMD yarn 512, the stitching yarn 532b passes over top CMD yarn 512, and so on to form the plain weave top surface for the fabric 500.
Each pair of stitching yarns is offset from its neighboring stitching yarn pairs by four top CMD yarns. This can be seen by examination of
The bottom layer of the fabric 500 is illustrated in FIGS. 14 and 15A-15D. Each of the bottom MD yarns is positioned beneath a top MD yarn, and each of the bottom CMD yarns is positioned beneath a top CMD yarn. Because there are eight bottom CMD yarns and sixteen top CMD yarns, every other top CMD yarn (for example, top CMd yarn 511) has no bottom CMD yarn beneath it. These relationships can be seen in
Referring still to
Referring now to
For example, as shown in
In the illustrated embodiment, the stitches formed by the “a” stitching yarns are positioned adjacent a bottom side knuckle formed by a neighboring MD yarn. As an example, stitching yarn 531a stitches under bottom CMD yarn 556. Neighboring bottom MD yarn 541 also forms a bottom side knuckle below bottom CMD yarn 556.
In this configuration, the bottom side MD yarn knuckle can help to protect the stitching knuckle from wear caused by contact with a paper machine during use. It can also be seen that, for every other bottom CMD yarn, the bottom MD yarns forming knuckles below it are adjacent to one another. For example, adjacent bottom MD yarns 541, 542 form knuckles below bottom CMD yarn 551, adjacent bottom MD yarns 544, 541 form knuckles below bottom CMD yarn 553, and so on for bottom CMD yarns 555 and 557.
This sixteen harness embodiment may be less susceptible to diagonal marking than other fabrics, and in particular other MD-stitched fabrics. The potential improvement in diagonal marking performance may be attributed to multiple factors, including the absence of interweaving between the “b” stitching yarns and the bottom CMD yarns, and reduced crimping of the “a” yarns.
Turning first to FIGS. 16 and 18A-D, each of the top MD yarns 601-603 is interwoven with alternating top CMD yarns 611-622 in an “over 1/under 1” sequence, with each top MD yarn 601-603 passing over the same top CMD yarns. Thus, top MD yarn 601 passes over top CMD yarn 611, under top CM yarn 612, over top CMD yarn 613, and so on throughout the pattern.
Each of the stitching yarn pairs 651a, 651b-653a, 653b includes an “a” stitching yarn that weaves with the top CMD yarns 611-622 in an “over 1/under 1” sequence with the exception of one segment that passes under three top CMD yarns. For example, stitching yarn 651a passes below top CMD yarn 611, above top CMD yarn 612, below top CMD yarn 613, above top CMD yarn 614, below top CMD yarns 615-617, above top CMD yarn 618, below top CMD yarn 619, above top CMD yarn 620, below top CMD yarn 621, and above top CMD yarn 622. The “b” stitching yarn of each pair passes below all of the top CMD yarns with the exception of the CMD yarn that defines the center of the three yarn segment of the paired “a” stitching yarn. As an example, stitching yarn 651b passes above only top CMD yarn 616, which is in the center of the three yarn segment of stitching yarn 651a that passes below top CMD yarns 615-617. In this manner, together stitching yarns 651a, 651b effectively form a top CMD yarn that has an “over 1/under 1” sequence. Because the top surface knuckles of the stitching yarn pairs are offset from the top knuckles of the top MD yarns by one top CMD yarn, the top MD yarns and stitching yarn pairs form a plain weave surface on the top surface of the fabric 600. It should be noted that the top surface knuckles formed by the “b” yarns are offset from adjacent “b” yarn top surface knuckles by four top CMD yarns.
Turning now to
The “b” stitching yarns also pass below one bottom CMD yarn. More specifically, the “b” stitching yarns pass below a bottom CMD yarn that is positioned directly below a top CMD yarn that is offset from the top CMD yarn over which the “b” yarn passes by five top CMD yarns. As an example, stitching yarn 651b passes above top CMD yarn 616 and below bottom CMD yarn 641, which is located beneath top CMD yarn 612. Adjacent “b” stitching yarns are offset from each other by two bottom CMD yarns. Also, the bottom side knuckles formed by the “b” stitching yarns are offset from one adjacent bottom MD yarn by one bottom CMD yarn and from the other adjacent bottom CMD yarn by three bottom CMD yarns.
Embodiments of twelve harness versions of fabrics of the present invention may have improved life and lower caliper than other similar fabrics.
Turning first to FIGS. 19 and 21A-D, each of the top MD yarns 701-706 is interwoven with alternating top CMD yarns 711-722 in an “over 1/under 1” sequence, with each top MD yarn 701-706 passing over the same top CMD yarns. Thus, top MD yarn 701 passes over top CMD yarn 701, under top CMD yarn 702, over top CMD yarn 703, and so on throughout the pattern.
The stitching yarn pairs 751a, 751b-756a, 756b combine to act as a single yarn in completing the plain weave pattern on the top surface of the fabric 700. Each of the stitching yarns forms three top surface knuckles in passing over top CMD yarns; together, they form six top surface knuckles that are formed over the top CMD yarns that are passed under by the top MD yarns 701-706. For example, stitching yarn 751a passes over top CMD yarns 702, 704, 706 and stitching yarn 751b passes over top CMD yarns 708, 710, 712, thereby forming an entire “effective” top MD yarn. (Those stitching yarns designated with an “a” are woven immediately adjacent a top MD yarn to their left (from the vantage point of
Turning now to
Still referring to FIGS. 20 and 21A-D, the lower portions of each stitching yarn 751a-756b stitch below one bottom CMD yarn, with the stitching locations of the stitching yarns within a stitching yarn pair being offset by three bottom CMD yarns. This results in the lower portions of the stitching yarns forming an “effective” bottom MD yarn. For example, stitching yarns 751a, 751b stitch below, respectively, bottom CMD yarns 745 and 742. Each of these stitching locations is immediately adjacent a bottom surface knuckle formed by one of the adjacent bottom MD yarns. As a result, bottom side knuckle pairs are formed by one bottom MD yarn and one stitching yarn. For example, both bottom MD yarn 741 and stitching yarn 752a form bottom surface knuckles below bottom CMD yarn 746.
The stitching yarns 751a-756b are woven as “reversed” MD yarns in the illustrated embodiment, in that the knuckle positions for stitching yarn pairs that form top surface knuckles over the same top CMD yarns are reversed between the “a” yarns and the “b” yarns. For example, stitching yarn 751b forms knuckles over top CMD yarns 708, 7010, 712, and stitching yarn 751a forms knuckles over top CMD yarns 702, 704, 706. The next pair of stitching yarns that forms knuckles over these same subsets of top CMD yarns, namely stitching yarns 754a, 754b, is reversed; i.e., it is the “b” yarn (754b) that forms knuckles over top CMD yarns 702, 704, 706 and it is the “a” yarn (754a) that forms knuckles over top CMD yarns 708, 710, 712. This configuration is optional (and not employing it would reduce the size of the repeat unit of the fabric to three top MD yarns, three bottom MD yarns, and three stitching yarn pairs), but has shown to improve marking performance in some embodiments of the fabric.
Turning first to FIGS. 22 and 24A-B, each of the top MD yarns 801-803 is interwoven with the top CMD yarns 811-822 in an “over 1/under 1” pattern. The top MD yarn 803 is offset from the top MD yarns 801 and 802 by one top CMD yarn to form a plain weave pattern. This pattern is completed by the stitching yarn pair 851a, 851b. Stitching yarn 851a follows an “over 1/under 1/over 1/under 3” sequence that is repeated twice in the repeat unit. More specifically, stitching yarn 851a passes over top CMD yarns 813 and 815, then passes below top CMD yarns 816-818 before passing above top CMD yarn 819 to recommence the sequence. Stitching yarn 851b passes over one top CMD yarn (CMD yarn 817) to complete the plain weave top surface.
Turning now to FIGS. 23 and 24A-B, each bottom MD yarn 831-833 is located below a corresponding top MD yarn and interweaves in an “over 3/under 1” sequence with the bottom CMD yarns 841-848. The stitching yarn 851b also stitches in an “over 3/under 1” sequence, but, as noted above, in its “over 3” segment the stitching yarn 851b also passes over a top CMD yarn. The bottom MD yarns 831-833 and the stitching yarn 851b are offset from each other such that the knuckles in the bottom surface of the fabric 800 form a broken twill pattern.
The fabric 800 may exhibit increased life over similar forming fabrics. In addition, the fabric 800 may be prone to less edge curl, and have lower void volume, than similar fabrics. It should be understood that, although the fabric 800 has a 3:1 ratio of top MD yarns to stitching yarn pairs, other ratios, (such as 2:1 or 3:2) may also be employed.
A further fabric embodiment, designated broadly at 900 in
Turning first to
The top MD yarns 901, 903 of the first set are offset from one another by two top CMD yarns. Each of the knuckles formed by the MD yarns 902, 904 of the second set is located on a diagonal line A defined between two of the knuckles of the top MD yarns 901, 903. The knuckles formed by the stitching yarns 941, 942 are positioned along an opposite diagonal line B formed between the same knuckle of the top MD yarn 903 and the next adjacent knuckle of the top MD yarn 901. The result is a general herringbone pattern of knuckles on the top surface of the fabric 900.
The bottom surface of the fabric 900 (see FIGS. 26 and 27A-D) is formed by the interweaving of the bottom MD yarns 921, 922 with the bottom CMD yarns 931-934 in an “over 3/under 1” pattern, and by the stitching of the stitching yarns 941, 942 in a similar “over 3/under 1” pattern. The bottom surface knuckles formed by the bottom MD yarns 921, 922 and the stitching yarns 941, 942 are offset from each other by one bottom CMD yarn such that the bottom MD knuckles form a relatively distinct diagonal on the bottom surface of the fabric 900.
The fabric 900, with its herringbone pattern on the top surface, may be particularly suitable for the formation of tissue paper. This fabric also helps to demonstrate that patterns other than the plain weave top surface of the other fabrics illustrated above may be suitable for use with the present invention.
The present invention is directed to “true” triple layer fabrics—meaning triple layer fabrics that include (1) a set of MD yarns and a set of CMD yarns that each weave exclusively in a top fabric layer and (2) a set of MD yarns and a set of CMD yarns that each weave exclusively in a bottom fabric layer—that are stitched together by machine direction yarns. Such machine direction yarn stitched true triple layer fabrics may typically be manufactured less expensively than most high-performance cross machine direction yarn triple layer fabrics while providing improved fiber support (with the plain weave top surface) compared to conventional double layer fabrics. Pursuant to the teachings of the present invention, it will be appreciated that the machine direction yarn stitched true triple layer fabrics may have improved stacking of the machine direction yarns, increased permeability and higher void volumes as compared to double layer fabrics. Additionally, by using yarn pairs that complete the weave in the papermaking surface as the stitching yarns it is possible to bind the fabric together at numerous locations, thereby providing a very stable fabric that is not particularly susceptible to interlayer wear.
Each of the fabrics 100, 200, 300, 400, 500, 600, 700, 800, 900 depicted in the figures includes MD stitching yarn pairs in which the yarns that comprise the pair interlace with the top fabric layer an unequal number of times in each repeat of the fabric. For example, as shown best in
Those of skill in the art will appreciate that numerous modifications can be made to the above described fabrics. By way of example, the stitching MD yarn pairs can have a wide variety of weave patterns in terms which they complete the weave of the top fabric layer. Thus, the number of top MD yarns that each stitching MD yarn passes over to complete the plain weave pattern on the papermaking surface may vary, as may the frequency with which the yarns pass in and out of the top fabric layer. Additionally, a variety of different weave patterns may be employed in the top fabric layer, specifically including 1×2 twill, 2×2 twill, 1×3 twill and 1×4 twill papermaking surfaces, as well as various derivatives of the above-mentioned weave patterns, specifically including broken twill patterns such as those embodied in 4 or 5 harness satin single layer fabrics, which are known in the art as providing a good papermaking surface. Likewise, the frequency of the stitch points and/or the ratio of top-to-bottom machine direction and/or cross machine direction yarns may be varied. Thus, the scope of the present invention should be construed based on the claims appended hereto, as opposed to the illustrative examples of the claimed fabrics which are provided herein to fully enable those of skill in the art to practice the claimed invention.
Another exemplary modification would be to alternate for each adjacent stitching MD yarn pair the warp beam from which the stitching MD yarns are woven. For example, the fabric of
Those of skill in the art will likewise appreciate that the stitching MD yarn pairs need not be included between every adjacent pair of top MD yarns. Instead, a stitching MD yarn pair may be provided after every second, third, fourth or fifth top MD yarn. Those of skill in the art will also appreciate that the frequency of interlacing can be varied from that shown in the fabrics pictured herein. However, the stitching MD yarns should sufficiently bind the upper and lower fabric layers together to prevent excessive movement between the fabric layers, as such excessive movement could result in severe inter-layer wear problems.
Yet another exemplary modification would be to shift the positions of the top fabric layer and the bottom fabric layer of the depicted embodiments (or other embodiments) relative to each other. For example, in the fabric 100 of
Pursuant to another aspect of the present invention, the size and or stiffness of selected of the top CMD yarns may be varied to improve fabric performance. As illustrated best in
The use of larger diameter and/or higher modulus top CMD yarns may also improve uniformity of the papermaking surface at the transition points themselves. If such yarns are not used, the papermaking surface knuckle formed by the top CMD yarn directly over the transition point may be lower than the remainder of the knuckles formed by the top CMD yarns because the stitching MD yarns at that location dive down at a steeper angle and hence provide less support to the top CMD yarn. By using larger diameter or higher modulus yarns on the top CMD yarn positions that straddle the transition point it is possible to raise the height of the top CMD yarn that passes over the transition point at the transition point location.
Notably, in the bottom fabric layers 104, 204, 304, 404 of fabrics 100, 200, 300, 400, 500 respectively, the set of bottom MD yarns and the set of bottom CMD yarns form a machine-side surface having only “single float” machine direction knuckles. By a “single float” machine-side machine direction knuckle it is meant that when the bottom fabric layer is viewed from the top, no machine direction yarn passes under more than one consecutive cross machine direction yarn (such that the MD yarn is on the machine-side surface) before passing back to the top surface of the bottom fabric layer. In a preferred embodiment of the triple layer forming fabrics of the present invention, the bottom fabric layer is woven so as to have a machine side surface composed exclusively of machine side “single float” machine direction knuckles.
The fabrics pictured and otherwise described and claimed herein may be employed in a variety of applications, including forming fine paper grades, tissue paper, brown paper and newsprint, but is especially beneficial for fine paper, newsprint and brown paper applications.
The configurations of the individual yarns utilized in the fabrics of the present invention can vary, depending upon the desired properties of the final papermakers' fabric. For example, the yarns may be multifilament yarns, monofilament yarns, twisted multifilament or monofilament yarns, spun yarns, or any combination thereof. Also, the materials comprising yarns employed in the fabric of the present invention may be those commonly used in papermakers' fabric. For example, the yarns may be formed of polypropylene, polyester, nylon, or the like. The skilled artisan should select a yarn material according to the particular application of the final fabric.
Regarding yarn dimensions, the particular size of the yarns is typically governed by the mesh of the papermaking surface. In a typical embodiment of the triple layer fabrics disclosed herein, preferably the diameter of the top CMD yarns, and all of the MD yarns is between about 0.10 and 0.20 mm, and the diameter of the bottom CMD yarns is between about 0.22 and 0.50 mm. Those of skill in the art will appreciate that yarns having diameters outside the above ranges may be used in certain applications. In one embodiment of the present invention, the top CMD yarns and all of the MD yarns have diameters between about 0.15 and 0.17 mm, and the diameter of the bottom CMD yarns is between about 0.25 and 0.40 mm to provide fabrics with a target top mesh of 75×75 yarns per inch. Fabrics employing these yarn sizes may be implemented with polyester yarns or a combination of polyester and nylon yarns.
Pursuant to another aspect of the present invention, methods of making paper are provided. Pursuant to these methods, one of the exemplary papermaker's forming fabrics described herein is provided, and paper is then made by applying paper stock to the forming fabric and by then removing moisture from the paper stock. As the details of how the paper stock is applied to the forming fabric and how moisture is removed from the paperstock is well understood by those of skill in the art, additional details regarding this aspect of the present invention will not be provided herein.
The foregoing embodiments are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/008311 | 3/18/2004 | WO | 00 | 11/20/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/085741 | 10/7/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2172430 | Barrell | Sep 1939 | A |
2554034 | Koester et al. | May 1951 | A |
3094149 | Keily | Jun 1963 | A |
3325909 | Clark | Jun 1967 | A |
4093512 | Fleischer | Jun 1978 | A |
4182381 | Gisbourne | Jan 1980 | A |
4244543 | Ericson | Jan 1981 | A |
4289173 | Miller | Sep 1981 | A |
4290209 | Buchanan et al. | Sep 1981 | A |
4414263 | Miller et al. | Nov 1983 | A |
4438788 | Harwood | Mar 1984 | A |
4452284 | Eckstein et al. | Jun 1984 | A |
4453573 | Thompson | Jun 1984 | A |
4501303 | Osterberg | Feb 1985 | A |
4515853 | Borel | May 1985 | A |
4529013 | Miller | Jul 1985 | A |
4564052 | Borel | Jan 1986 | A |
4564551 | Best | Jan 1986 | A |
4592395 | Borel | Jun 1986 | A |
4592396 | Borel et al. | Jun 1986 | A |
4605585 | Johansson | Aug 1986 | A |
4611639 | Bugge | Sep 1986 | A |
4621663 | Malmendier | Nov 1986 | A |
4633596 | Josef | Jan 1987 | A |
4636426 | Fleischer | Jan 1987 | A |
4642261 | Fearnhead | Feb 1987 | A |
4676278 | Dutt | Jun 1987 | A |
4705601 | Chiu | Nov 1987 | A |
4709732 | Kinnunen | Dec 1987 | A |
4729412 | Bugge | Mar 1988 | A |
4731281 | Fleischer et al. | Mar 1988 | A |
4739803 | Borel | Apr 1988 | A |
4755420 | Baker et al. | Jul 1988 | A |
4759975 | Sutherland et al. | Jul 1988 | A |
4815499 | Johnson | Mar 1989 | A |
4815503 | Borel | Mar 1989 | A |
4909284 | Kositzke | Mar 1990 | A |
RE33195 | McDonald et al. | Apr 1990 | E |
4934414 | Borel | Jun 1990 | A |
4941514 | Taipale | Jul 1990 | A |
4942077 | Wendt et al. | Jul 1990 | A |
4945952 | Vöhringer | Aug 1990 | A |
4967805 | Chiu et al. | Nov 1990 | A |
4987929 | Wilson | Jan 1991 | A |
4989647 | Marchand | Feb 1991 | A |
4989648 | Tate et al. | Feb 1991 | A |
4998568 | Vohringer | Mar 1991 | A |
4998569 | Tate | Mar 1991 | A |
5022441 | Tate et al. | Jun 1991 | A |
5025839 | Wright | Jun 1991 | A |
5067526 | Herring | Nov 1991 | A |
5074339 | Vohringer | Dec 1991 | A |
5084326 | Vohringer | Jan 1992 | A |
5092372 | Fitzka et al. | Mar 1992 | A |
5101866 | Quigley | Apr 1992 | A |
5116478 | Tate et al. | May 1992 | A |
5152326 | Vohringer | Oct 1992 | A |
5158118 | Tate et al. | Oct 1992 | A |
5219004 | Chiu | Jun 1993 | A |
5228482 | Fleischer | Jul 1993 | A |
5277967 | Zehle et al. | Jan 1994 | A |
5358014 | Kovar | Oct 1994 | A |
5421374 | Wright | Jun 1995 | A |
5421375 | Praetzel | Jun 1995 | A |
5429686 | Chiu et al. | Jul 1995 | A |
5437315 | Ward | Aug 1995 | A |
5449026 | Lee | Sep 1995 | A |
5454405 | Hawes | Oct 1995 | A |
5456293 | Ostermayer et al. | Oct 1995 | A |
5465764 | Eschmann et al. | Nov 1995 | A |
5482567 | Barreto | Jan 1996 | A |
5487414 | Kuji et al. | Jan 1996 | A |
5518042 | Wilson | May 1996 | A |
5520225 | Quigley et al. | May 1996 | A |
5542455 | Ostermayer et al. | Aug 1996 | A |
5555917 | Quigley | Sep 1996 | A |
5564475 | Wright | Oct 1996 | A |
5641001 | Wilson | Jun 1997 | A |
5651394 | Marchand | Jul 1997 | A |
5709250 | Ward et al. | Jan 1998 | A |
RE35777 | Givin | Apr 1998 | E |
5746257 | Fry | May 1998 | A |
5826627 | Seabrook et al. | Oct 1998 | A |
5857498 | Barreto et al. | Jan 1999 | A |
5881764 | Ward | Mar 1999 | A |
5894867 | Ward et al. | Apr 1999 | A |
5899240 | Wilson | May 1999 | A |
5937914 | Wilson | Aug 1999 | A |
5967195 | Ward | Oct 1999 | A |
5983953 | Wilson | Nov 1999 | A |
6073661 | Wilson | Jun 2000 | A |
6112774 | Wilson | Sep 2000 | A |
6123116 | Ward et al. | Sep 2000 | A |
6145550 | Ward | Nov 2000 | A |
6148869 | Quigley | Nov 2000 | A |
6158478 | Lee et al. | Dec 2000 | A |
6179013 | Gulya | Jan 2001 | B1 |
6179965 | Cunnane et al. | Jan 2001 | B1 |
6202705 | Johnson et al. | Mar 2001 | B1 |
6207598 | Lee et al. | Mar 2001 | B1 |
6227255 | Osterberg et al. | May 2001 | B1 |
6237644 | Hay et al. | May 2001 | B1 |
6240973 | Stone et al. | Jun 2001 | B1 |
6244306 | Troughton | Jun 2001 | B1 |
6253796 | Wilson et al. | Jul 2001 | B1 |
6276402 | Herring | Aug 2001 | B1 |
6379506 | Wilson et al. | Apr 2002 | B1 |
6581645 | Johnson et al. | Jun 2003 | B1 |
6585006 | Wilson et al. | Jul 2003 | B1 |
6745797 | Troughton | Jun 2004 | B2 |
6837277 | Troughton et al. | Jan 2005 | B2 |
6860969 | Troughton | Mar 2005 | B2 |
6896009 | Ward | May 2005 | B2 |
6959737 | Ward | Nov 2005 | B2 |
7059357 | Ward | Jun 2006 | B2 |
7059359 | Quigley et al. | Jun 2006 | B2 |
7195040 | Ward | Mar 2007 | B2 |
7219701 | Ward | May 2007 | B2 |
7243687 | Barratte | Jul 2007 | B2 |
RE40066 | Ward | Feb 2008 | E |
7357155 | Fahrer et al. | Apr 2008 | B2 |
7357157 | Ueda | Apr 2008 | B2 |
20030010393 | Kuji | Jan 2003 | A1 |
20040079434 | Martin et al. | Apr 2004 | A1 |
20040102118 | Hay et al. | May 2004 | A1 |
20040149342 | Troughton | Aug 2004 | A1 |
20040182464 | Ward | Sep 2004 | A1 |
20040182465 | Ward | Sep 2004 | A1 |
20050121097 | Ward | Jun 2005 | A1 |
20060185753 | Ward | Aug 2006 | A1 |
20070068591 | Ward | Mar 2007 | A1 |
20070157987 | Ward | Jul 2007 | A1 |
20070199609 | Ward | Aug 2007 | A1 |
20070251594 | Ward et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
454 092 | Dec 1927 | DE |
33 29 740 | Mar 1985 | DE |
0 048 962 | Sep 1981 | EP |
0 158 710 | Oct 1984 | EP |
0 185 177 | Oct 1985 | EP |
0 224 276 | Dec 1986 | EP |
0 264 881 | Oct 1987 | EP |
0 269 070 | Nov 1987 | EP |
0 284 575 | Feb 1988 | EP |
0 283 181 | Mar 1988 | EP |
0 350 673 | Jun 1989 | EP |
0 408 849 | May 1990 | EP |
0 408 849 | May 1990 | EP |
0 672 782 | Mar 1995 | EP |
0 794 283 | Sep 1997 | EP |
2 597 123 | Apr 1986 | FR |
2157328 | Oct 1985 | GB |
2245006 | Feb 1991 | GB |
8-158285 | Dec 1994 | JP |
WO 8600099 | Jan 1986 | WO |
WO 8909848 | Apr 1989 | WO |
WO 9961698 | Dec 1999 | WO |
WO 0200996 | Jan 2002 | WO |
WO 03010304 | Jun 2003 | WO |
WO 03093573 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070157987 A1 | Jul 2007 | US |