Machine for conveying objects and multi-bay carousel for use therewith

Information

  • Patent Grant
  • 11401115
  • Patent Number
    11,401,115
  • Date Filed
    Thursday, October 11, 2018
    5 years ago
  • Date Issued
    Tuesday, August 2, 2022
    a year ago
Abstract
A machine for conveying objects, including: a base; a turret mounted to the base for rotation about an axis, the turret including a turret mounted track, and a turret shuttle with a gripper to grip an object, the turret shuttle mounted on the turret mounted track; a boom mounted to the turret, whereby turret rotation sweeps the boom radially about the axis, the boom including: a boom mounted track extending therealong, a boom shuttle with a gripper to grip an object, the boom shuttle mounted to the boom mounted track, and a carousel located proximal to the base extending around the turret and rotatable about the axis, the carousel having a plurality of object bays, the carousel being controllably rotatable about the axis to locate any of the object bays proximal to the turret mounted track for transfer of an object between the object bay and the turret shuttle.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a United States national phase entry of International Application No. PCT/AU2018/051102 filed on Oct. 11, 2018, which claims priority to Australian Patent Application No. 2017904110 filed on Oct. 11, 2017, both of which are incorporated herein by reference in their entireties.


BACKGROUND OF THE INVENTION

The present invention relates to machines for performing operations and to conveyance of objects and materials in such machines. The invention has particular application in automated equipment for additive construction.


DESCRIPTION OF THE PRIOR ART

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.


In this specification the word “brick” is intended to encompass any building element such as a brick or block, to be placed during the construction of a building or wall or the like. Further, it is anticipated that the conveyance of items other than bricks is contemplated by the invention.


The applicant has described a machine for conveying objects which is incorporated into an automated brick laying machine, which is the subject of international patent application PCT/AU2017/050730. A boom for conveying objects such as bricks is supported on a turret which is mounted to a base. The turret is rotatable about a vertical axis so that the boom may sweep radially about the base. The boom includes at least one shuttle which locates on a track which runs along the boom. The shuttle has a gripper (hereafter “boom shuttle gripper”) to grip and convey an object along the boom. Where the boom has telescoping boom elements, there is one shuttle on a track in each element of the boom (that is one shuttle in the main boom element and one shuttle in each telescoping element), and the object is passed from shuttle to shuttle to move the object out along the boom.


The turret has a shuttle with a gripper (hereafter “turret shuttle gripper”) which grips an object and is mounted on a vertically extending track, so that the object can be transported from where it is placed at the bottom of the turret, up the turret, to be presented to a pivoting gripper mounted on a pivot with a horizontal axis. The pivoting gripper can rotate about its horizontal axis to align with the turret shuttle gripper, to receive the object from the turret shuttle gripper, and rotate to align with the boom shuttle gripper, to transfer the object from the turret to the boom.


As the turret rotates relative to the base, the vertically extending track with its turret shuttle rotates with it. This gave rise to the provision of a carousel located around the base of the turret, and rotatable therearound, so that an object could be placed on the carousel, and the carousel rotated to the correct angular position to present the object to the turret shuttle. The carousel described in PCT/AU2017/050730 had a gripper (hereafter “carousel gripper”) which the object was placed into and gripped. The gripper was mounted to the carousel about a horizontal pivot axis located radially toward the base of the turret, so that the carousel which could pivot about the horizontal axis to rotate the object (a brick) upward and toward the turret to present it to be gripped by the turret shuttle gripper.


It should be noted that the terms horizontal and vertical are relative. If the above described arrangement was to be deployed in space in zero gravity conditions for moving objects from one location out along a boom to another location, whether a particular orientation is vertical is moot.


In an arrangement for transporting objects from a base and out along a telescoping boom, there may be a procession of objects being placed on the carousel and transferred out along the boom. Where the objects differ from each other, such as in matters of shape and configuration, where they are presented in a particular order to assemble a structure, if damage occurs to one of the objects after it has been placed on the turret shuttle, this may necessitate the objects being reversed, which can be back from the boom or even a telescoping stick, to the carousel and thence to be stacked so a replacement for the damaged object can be provided, and then the stacked objects returned to the carousel and the boom in the correct order, for the operation to continue.


It would be advantageous to provide improved utility in such an arrangement.


It is against this background, and the problems and difficulties associated therewith, that the present invention has been developed.


SUMMARY OF THE PRESENT INVENTION

In one broad form, an aspect of the present invention seeks to provide a machine for conveying objects, the machine including:

    • a) a base;
    • b) a turret mounted to the base for rotation about an axis, the turret including:
      • i) a turret mounted track extending between the base and a position proximate a boom mounting; and,
      • ii) a turret shuttle with a gripper to grip an object, the turret shuttle mounted on the turret mounted track;
    • c) a boom mounted to the turret at a position located away from the base, the boom extending away from the turret, whereby rotation of the turret sweeps the boom radially about the axis, the boom including:
      • i) a boom mounted track extending therealong; and,
      • ii) a boom shuttle with a gripper to grip an object, the boom shuttle mounted to the boom mounted track for controlled movement therealong, wherein when the turret shuttle and the boom shuttle are located proximate to the boom mounting, an object may be transferred therebetween; and,
    • d) a carousel located proximal to the base extending around the turret and rotatable about the axis, the carousel having a plurality of object bays in which may be located an object, the carousel being controllably rotatable about the axis to locate any of the object bays proximal to the turret mounted track for transfer of an object between the object bay and the turret shuttle.


In one embodiment, each of the object bays includes a gripper to grip an object.


In one embodiment, the machine includes a loading gripper arranged to load an object into any one of the object bays, at a predetermined position on the base relative to the turret. The carousel will then rotate if necessary to align the object bay concerned, with the turret mounted track, so that the gripper of the turret shuttle can pick up the object from the object bay.


In one embodiment, the turret shuttle gripper is arranged with an offset pivot to rotate the turret shuttle gripper radially outwardly toward any one of the object bays in which position the turret shuttle gripper may grip an object before rotating the turret shuttle gripper and gripped object to a position extending along the axial extent of the turret, in which position of the turret shuttle gripper, the turret shuttle gripper may transfer the object to the boom.


In one embodiment, the boom is mounted to the turret about a boom mounting axis extending transversely to the axis, allowing the boom to be rotated in order to adjust a pitch of the boom. Where the axis is vertical the boom will sweep radially horizontally when the turret is rotated, and the transverse axis will be horizontal, allowing the boom to be raised and lowered arcuately thereabout.


In one embodiment, a transfer gripper is located rotatably about the boom mounting axis and is aligned to receive the object from the turret shuttle gripper and transfer the object to the boom shuttle for conveyance out along the boom.


In one embodiment, the boom has telescoping boom elements, wherein each of the telescoping boom elements has a telescoping boom element mounted track extending therealong, and a shuttle with gripper to grip an object, the shuttle being mounted on the telescoping boom element mounted track for controlled movement therealong.


In one embodiment, the boom has a stick pivotally mounted at a remote end thereof, the stick having a stick mounted track extending therealong, and a stick shuttle with gripper to grip an object, the stick shuttle being mounted on the stick mounted track for controlled movement therealong.


In one embodiment, the stick has telescoping stick elements, wherein each of the telescoping stick elements has a telescoping stick element mounted track extending therealong, and a shuttle with gripper to grip an object, the shuttle being mounted on the telescoping stick element mounted track for controlled movement therealong.


In one embodiment, the number of object bays on the carousel is equal to or greater than the number of shuttles in the machine. The number of shuttles may include the turret shuttle, boom shuttle, and stick shuttle, if present.


In one embodiment, the carousel is mounted to the turret so as to be rotatable therewith whilst also being controllably rotatable relative to the turret.


In one embodiment, the object is a block.


In one embodiment, the size and/or configuration of the block is variable.


In another broad form, an aspect of the invention seeks to provide a carousel for use in a conveying system including a conveyer carrying a plurality of objects in an assembly line, the carousel located adjacent to the conveyor and having a plurality of object bays in which an object may be located, the carousel being controllably rotatable about an axis to locate any of the object bays proximal to a robotic gripper for controlled transfer of an object between the object bay and the conveyor.


In one embodiment, each of the object bays includes a gripper to grip an object.


In one embodiment, objects are transferred from a loading gripper to the conveyer via the carousel.


In one embodiment, the loading gripper is configured to load an object into any one of the object bays and the robotic gripper is configured to unload an object from the carousel to the conveyer and optionally reload an object into any one of the object bays.


In another broad form, an aspect of the invention seeks to provide a machine for conveying objects having a base with a turret mounted to said base for rotation about an axis, said turret having a boom mounted to said turret at a position located away from said base, said boom extending away from said turret, where rotation of said turret sweeps said boom radially about said axis; said turret having a turret mounted track extending between said base and said position, and a turret shuttle with gripper to grip an object, said turret shuttle being mounted on said turret mounted track; said boom having a boom mounted track extending therealong, and a boom shuttle with gripper to grip an object, said boom shuttle being mounted on said boom mounted track for controlled movement therealong; where when said turret shuttle and said boom shuttle are located proximal to said position, an object may be transferred therebetween; said machine having a carousel located proximal to said base extending around said turret and also rotatable about said axis; wherein said carousel has a plurality of object bays in which may be located an object, said carousel being controllably rotatable about said axis to locate any of said object bays proximal to said turret mounted track for transfer of an object between said object bay and said turret shuttle.


In yet a further broad form, an aspect of the invention seeks to provide in a conveyor carrying a plurality of objects in an assembly line, a carousel located adjacent to said conveyor, said carousel having a plurality of object bays in which an object may be located, said carousel being controllably rotatable about said axis to locate any of said object bays proximal to a robotic gripper for controlled transfer of an object between said object bay and said conveyor. The objects may be carried on the conveyor in an assembly line. Where the processing of the objects prior to their reaching the carousel takes some time, the carousel acts as a buffer, continuing to despatch prior-located objects for downstream processing.


In one embodiment, the carousel intersects said conveyor and a loading gripper is provided, arranged to load an object into any one of said object bays, and said robotic gripper may unload an object from said carousel to said conveyor, and optionally reload said object into any one of said object bays. The carousel may rotate if necessary to align the object bay loaded with the required object, so the required object can be loaded by said robotic gripper to said conveyor.


It will be appreciated that the broad forms of the invention and their respective features can be used in conjunction, interchangeably and/or independently, and reference to separate broad forms is not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

An example of the present invention will now be described with reference to the accompanying drawings, in which:



FIG. 1 is a schematic side view of an arm with an end effector utilised in an embodiment;



FIG. 2 is a schematic side view detail of part of the arm shown in FIG. 1;



FIG. 3 is a schematic cross-section through part of the arm shown in FIG. 1;



FIG. 4 is a schematic side view of detail of part of a conveyer according to an embodiment;



FIG. 5A is a perspective view of a turret used in the conveyer with a turret shuttle extended radially outward;



FIG. 5B is a perspective view of the turret of FIG. 5A with turret shuttle extending along the axial extent of the turret;



FIG. 6 is a perspective view of a multi-bay carousel used in the conveyer,



FIGS. 7 to 14 are a sequence of side views showing detail of part of the conveyer in operation;



FIG. 15 is a perspective view of an example of a transfer robot shown placing an object onto the multi-bay carousel; and,



FIG. 16 is a side view of an automatic brick laying machine having a conveyer for transferring bricks to an end effector.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiment is a conveying system having a multi-bay carousel 11 for use in a supply line where piece parts are transferred from unloading and initial processing, to further processing in an additive manufacturing process. The particular application envisaged for the carousel 11 is in an automated brick laying machine. The carousel 11 is placed in a position between unloading and cutting and milling operations for bricks, and transport to an end effector 15 where the bricks are glued and laid.


An example of an automated brick laying robot machine 300 is shown in FIG. 16. The brick laying machine has a base 310 in the form of a truck with a turntable in the form of a tower (or turret) 25 supported on a vertical yaw axis, and an articulated arm having a telescoping boom 17 supported on the tower 25 about a horizontal pitch axis about which the arm may be raised or lowered. The boom 17 has a telescoping stick, mounted on the end of the boom 17 about a horizontal pivot axis, and an end effector 15 in the form of an adhesive applying and brick laying head 43 mounted to the remote end of the stick. Bricks are stored in a storage area of the truck and a conveyer conveys the bricks from the truck 13 to the adhesive applying and brick laying head 43 via the carousel, turret and arm.


The bricks are transported inside a boom in the form of a folding and telescoping arm indicated generally at 17. The boom 17 has telescoping boom elements 19 and 21 that telescope with respect to each other in a controlled manner, powered by servo motors. The near end 23 of the boom element 19 is mounted to a turret 25 about a horizontal axis 27 allowing the boom 17 to be raised and lowered in a vertical plane.


At the remote end 29 of boom element 21, a telescoping stick assembly comprising telescoping stick elements 31, 33, and 35 is mounted about a horizontal axis 37. The telescoping stick elements 31, 33, and 35 can telescope with respect to each other in a controlled manner, powered by servo motors. Further details of an embodiment of the boom and end effector are shown in FIG. 1. At the remote end 39 of stick element 35, mounted about a horizontal axis 41 for pivoting movement is an adhesive applying and brick laying head 43. The adhesive applying and brick laying head 43 has the end effector 15 attached thereto. The end effector 15 has a base 45, robotic arm 47 and gripper 49 for receiving gripping and placing bricks 13. The base 45 can rotate the robotic arm 47 about a horizontal axis 51 and the arm can both pivot about a horizontal axis 53 and slide along its axial length in a carriage located in the base 45, in order to effect fine positioning of the gripper 49. The adhesive applying and brick laying head 43 is rotated about its axis 41 under control of an actuator, controlled so that the base 45 axis 51 is maintained horizontally.


Telescoping boom element 19 has a track 55 extending therealong, along the bottom of the boom element 19. The track supports a shuttle 57 with gripper 59 to grip a brick 61. The shuttle 57 can traverse the length of the track 55 until it reaches boom element 21. Telescoping boom element 21 also has a track 63 extending therealong, the top of the boom element 21. The track 63 supports a shuttle 65 with gripper 67 to grip a brick 69. The shuttle 65 can traverse the entire length of the track 63 until it reaches stick element 31.


Telescoping stick element 31 has a track 71 extending therealong, along the top of the stick element 31. The track 71 supports a shuttle 73 with gripper 75 to grip a brick 77. The shuttle 73 can traverse the length of the track 71 until it reaches stick element 33. Telescoping stick element 33 has a track 79 extending therealong, along the bottom of the stick element 33. The track 79 supports a shuttle 81 with gripper 83 to grip a brick 85. The shuttle 81 can traverse the length of the track 79 until it reaches stick element 35. Telescoping stick element 35 has a track 87 extending therealong, along the top of the stick element 35. The track 87 supports a shuttle 89 with gripper 91 to grip a brick 93. The shuttle 89 can traverse the length of the track 87 until it reaches the adhesive applying and brick laying head 43.


The shuttles can move along the tracks within their respective boom or stick elements, to move bricks along the folding telescoping arm. Where the telescoping elements meet, the shuttles can meet with their grippers coincident, as shown in FIG. 2, allowing a brick to be passed from one shuttle to the next. In this manner the bricks are passed from shuttle to shuttle to move the object out along the folding and telescoping arm 17.


The turret 25 is mounted to a base 95, and is rotatable about a vertical axis 97 so that the folding and telescoping arm 17 may sweep radially about the base 95.


The turret 25 has a shuttle 101 with a gripper 103 which grips a brick and is mounted on a vertically extending track 104, so that the object can be transported from where it is placed at the bottom of the turret 25, up the turret 25, to be presented to a gripper 105 mounted on a pivoting bracket 107 also about the horizontal axis 27. The pivoting gripper 105 can rotate about the horizontal axis 27 to align with the turret shuttle gripper 103, to receive the brick from the turret shuttle gripper 103, and rotate to align with the boom shuttle gripper 59, to transfer the brick from the turret 25 to the boom element 19.


As the turret 25 rotates relative to the base, the vertically extending track 104 with its turret shuttle 101 rotates with it. The carousel 11 is located extending around the bottom 113 of the turret 25, and is controllably rotatable around the turret 25, so that a brick can be placed on the carousel 11 by a transfer robot gripper 115 (as shown in FIG. 15), and the carousel 11 can be rotated so that the brick is aligned with the turret shuttle track 104 to present the brick to the turret shuttle gripper 103. The gripper 103 on the turret shuttle 101 rotates about a transverse axis formed by a pivot hub 117 driven by a servo motor 119, so the gripper 103 can reach horizontally across the carousel 11, and swing upward to the vertical position (shown as 103′) so it can present the brick to the pivoting gripper 105 after the turret shuttle has traversed the turret 25 along the vertically extending track 104. An exemplary example of a transfer robot 200 is shown in FIG. 15 in which a robotic arm 210 with gripper 115 carrying a brick 230 extend over the carousel 11 and places the brick into one of the object bays.


Referring to FIG. 6, the carousel 11 is shown in greater detail. The carousel 11 has a ring frame 121 which rotates around the turret 25. The ring frame 121 has six object bays 123, 125, 127, 129, 131, and 133. Each object bay supports a gripper formed by jaws 135 and 137, carried on a bearing rod 139 and a lead screw 141. The jaws 135 and 137 have precision threads or lead nuts to match the threads on the lead screw 141. A motor 143 with toothed pulley drives a toothed belt 145 to drive a toothed pulley secured to the lead screw 141. Rotation of the motor 143 in one direction moves both jaws 135 and 137 away from each other, and rotation in the other direction moves the jaws 135 and 137 towards each other. A centre plane between the jaws 135 and 137 remains in a constant position as the jaws 135 and 137 move, so that any brick will be located centrally relative to the jaws 135 and 137 despite possible differing brick widths.


The base 95 supports a ring guide 147 mounted on a frame 148. The ring guide 147 supports a plurality of rollers that in turn support the ring frame 121 forming a slew bearing which is thus able to rotate about the vertical axis 97. The ring frame 121 is rotated about the vertical axis 97 by a servo motor and gearbox 153 that drives a pinion 155 engaged with a ring gear fixed to the underside of the ring fame 121. The servo motor and gearbox 153 is mounted to the frame 148. A cable chain 157 extends from the frame 148 and is confined by circular sheet metal cable chain guide 159 with circumferential wall 161 to contain the cable chain 157. The cable chain 157 extends to a cable duct 163 which supplies power and control signals to the motors 143 on the object bays 123, 125, 127, 129, 131, and 133. The cable chain guide 157 and cable duct 163 rotate with the ring frame 121.


The carousel 11 can rotate to present any of the object bays 123, 125, 127, 129, 131, and 133 to a position where the transfer robot gripper 115 can place a brick, and rotate the predetermined object bay 123, 125, 127, 129, 131, or 133 to a drop off position where the gripper 103 of the shuttle 101 on the turret 25 can rotate down to pick up the brick, ascend the turret, and rotate upward to align the brick vertically along the turret.


Referring to FIGS. 5A and 5B, the vertically extending track 104 is formed by two parallel spaced linear bearing rails. The linear bearing rails respectively support four bearing cars which support the turret shuttle 101 which in turn supports the gripper 103. As can be seen in FIG. 5a, the turret shuttle supports a servo motor 165 with toothed pinion which engages a toothed rack 167 to drive the turret shuttle 101 along the vertically extending track 104.


The grippers 103 are located on bearing cars 169 running along tracks 171, driven by a servo motor driving a drive belt 173 that drives a lead screw to open and close the grippers 103, to grip and release the brick.


Similarly, in the pivoting bracket 107, there is located a servo motor 175 driving a toothed belt 177 which drives a lead screw to move the jaws that make up the gripper 105. The grippers are also mounted on bearing cars for linear movement along tracks. The grippers 105 are referred to as pivoting grippers for brevity, on account of the pivoting bracket 107 on which they are mounted. The pivoting bracket 107 is rotated about the axis 27 by a servo motor 179 driving a toothed belt 181 which drives a hub 183 with internal reduction gearing.


A bracket 191 extends laterally outward from one side 193 of the turret 25 and another like bracket 195 extends laterally outward from the other side 197 of the turret. Bolts 199 on the brackets 191 and 195 are arranged with their axial extents coaxial with the vertical axis 97, and secure to the ring guide 147 of the carousel 11. Thus as the turret is rotated about the vertical axis 97, the carousel 11 rotates with it, but the carousel 11 may be independently rotated relative to the turret 25 by operation of servo motor and gearbox 153.


The turret 25 supports a lug 209 with a bore 213 having a horizontal axis 214, the bore receiving a fastener to connect an end of hydraulic ram (not shown) to control the pose of the boom element 19. The turret 25 supports clevis plates 210, 211 which have a bore 212 with horizontal axis 27, about which the near end 23 of the boom element 19 is attached for pivoting movement.


Referring to FIGS. 4 and 7 to 14, a sequence of views illustrate the conveyance of bricks for constructing a building through the carousel 11, turret 25 into the near end 23 of the boom element 19. In FIG. 4, the transfer robot gripper 115 holds a brick and one at a time places such bricks horizontally in one of the object bays 123, 125, 127, 129, 131, and 133. In this case, transfer robot gripper 115 and brick is poised over object bay 131. The carousel 11 is rotated to present any one of the object bays 123, 125, 127, 129, 131, and 133 to the gripper 103 on the turret shuttle 101. Referring to FIG. 7, the carousel is rotated to present object bay 123 in a position where it can be accessed by the gripper 103 on the turret shuttle 101. Turret shuttle 101 descends down the turret 25 until its gripper 103 reaches a predetermined position in which it can grip the brick, as shown in FIG. 8. The gripper 103 grips the brick and the grippers 135137 of object bay 123 release the brick.


The gripper 103 of the turret shuttle 101 is rotated about the pivot hub 117 in order to present the brick vertically as shown in FIG. 9. The turret shuttle 101 ascends the turret 25 until the brick reaches a predetermined position proximal to the gripper 105 of the pivoting bracket 107, as shown in FIG. 10. In this position, the gripper 105 grips the brick before the gripper 103 releases the brick. The pivoting bracket 107 rotates about the horizontal axis 27 as shown in FIGS. 11 and 12, until the brick is aligned with the axial extent of the boom 19. While this has progressed, the shuttle 57 has moved on its track within the boom element 19 until its gripper 59 reaches a predetermined position where the gripper 59 grips the brick before the gripper 105 releases the brick, whereafter the shuttle moves the brick along the boom 19. Gripper 105 is rotated to a horizontal position about the horizontal axis 27, before pivoting bracket 107 rotates away from the boom 19, as shown in FIGS. 13 and 14. The carousel may then rotate to present another object bay to the turret shuttle and the process repeats.


The object bays 123, 125, 127, 129, 131, and 133 of the carousel 11 function as a buffer which can be operated in two ways. Where the brick laying operation is running smoothly, the object bays may be fully stocked with bricks. In this manner where there is an operation performed on a brick, taking some time to perform, prior to it being placed in an object bay, such as a cutting operation or routing operation, or especially both a cutting and a routing operation, the brick laying may continue with stock already loaded onto the carousel, depleting that stock until the loading of the carousel is able to catch up. Where there has been a cutting operation, both the cut to length brick and the offcut can be stored in separate object bays, with the offcut being saved until such time as a brick of the length of the offcut is required.


The other mode of operation is where the placement of a brick by the adhesive applying and bricklaying head is potentially troublesome. This could be where the brick has been machined in a configuration that risks breakage as it is handled. In such a situation, the object bays are run empty, and any bricks that are enroute along the boom and stick, can be reversed out and back down the tower, before being stored in the object bays 123, 125, 127, 129, 131, and 133 of the carousel 11, while a replacement brick is machined and placed in one of the object bays 123, 125, 127, 129, 131, and 133 of the carousel 11, and is transferred as described to the boom and out to the brick laying and adhesive applying head.


Thus the carousel allows storage of brick offcuts for later use, as well as providing a buffer to provide some surge capacity, allowing for different processes that take different times. The buffer may absorb stock from previous processes and provide stock immediately to the next process.


The carousel is also able to receive stock in a random order from a number of parallel previous processes and through selection of the object bays, the stock can be sequenced into a desired order for downstream processes.


Throughout this specification and claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers or steps but not the exclusion of any other integer or group of integers.


Persons skilled in the art will appreciate that numerous variations and modifications will become apparent. All such variations and modifications which become apparent to persons skilled in the art, should be considered to fall within the spirit and scope that the invention broadly appearing before described.

Claims
  • 1. A machine for conveying objects, the machine including: a) a base;b) a turret mounted to the base for rotation about an axis, the turret including: i) a turret mounted track extending between the base and a position proximate a boom mounting; and,ii) a turret shuttle with a gripper to grip an object, the turret shuttle mounted on the turret mounted track;c) a boom mounted to the turret at a position located away from the base, the boom extending away from the turret, whereby rotation of the turret sweeps the boom radially about the axis, the boom including: i) a boom mounted track extending therealong; and,ii) a boom shuttle with a gripper to grip an object, the boom shuttle mounted to the boom mounted track for controlled movement therealong, wherein when the turret shuttle and the boom shuttle are located proximate to the boom mounting, an object may be transferred therebetween; and,d) a carousel located proximal to the base extending around the turret and rotatable about the axis, the carousel having a plurality of object bays in which may be located an object, the carousel being controllably rotatable about the axis to locate any of the object bays proximal to the turret mounted track for transfer of an object between the object bay and the turret shuttle.
  • 2. The machine for conveying objects as claimed in claim 1, wherein each of the object bays includes a gripper to grip an object.
  • 3. The machine for conveying objects as claimed in claim 1, wherein the machine includes a loading gripper arranged to load an object into any one of the object bays, at a predetermined position on the base relative to the turret.
  • 4. The machine for conveying objects as claimed in claim 1, wherein the turret shuttle gripper is arranged with an offset pivot to rotate the turret shuttle gripper radially outwardly toward any one of the object bays in which position the turret shuttle gripper may grip an object before rotating the turret shuttle gripper and gripped object to a position extending along the axial extent of the turret, in which position of the turret shuttle gripper, the turret shuttle gripper may transfer the object to the boom.
  • 5. The machine for conveying objects as claimed in claim 1, wherein the boom is mounted to the turret about a boom mounting axis extending transversely to the axis, allowing the boom to be rotated in order to adjust a pitch of the boom.
  • 6. The machine for conveying objects as claimed in claim 5, wherein a transfer gripper is located rotatably about the boom mounting axis and is aligned to receive the object from the turret shuttle gripper and transfer the object to the boom shuttle for conveyance out along the boom.
  • 7. The machine for conveying objects as claimed in claim 1, wherein the boom has telescoping boom elements, wherein each of the telescoping boom elements has a telescoping boom element mounted track extending therealong, and a shuttle with gripper to grip an object, the shuttle being mounted on the telescoping boom element mounted track for controlled movement therealong.
  • 8. The machine for conveying objects as claimed in claim 7, wherein the boom has a stick pivotally mounted at a remote end thereof, the stick having a stick mounted track extending therealong, and a stick shuttle with gripper to grip an object, the stick shuttle being mounted on the stick mounted track for controlled movement therealong.
  • 9. The machine for conveying objects as claimed in claim 7, wherein the stick has telescoping stick elements, wherein each of the telescoping stick elements has a telescoping stick element mounted track extending therealong, and a shuttle with gripper to grip an object, the shuttle being mounted on the telescoping stick element mounted track for controlled movement therealong.
  • 10. The machine for conveying objects as claimed in claim 1, wherein the number of object bays on the carousel is equal to or greater than the number of shuttles in the machine.
  • 11. The machine for conveying objects as claimed in claim 1, wherein the carousel is mounted to the turret so as to be rotatable therewith whilst also being controllably rotatable relative to the turret.
  • 12. The machine for conveying objects as claimed in claim 1, wherein the object is a block.
  • 13. The machine for conveying objects as claimed in claim 12, wherein the size and/or configuration of the block is variable.
Priority Claims (1)
Number Date Country Kind
2017904110 Oct 2017 AU national
PCT Information
Filing Document Filing Date Country Kind
PCT/AU2018/051102 10/11/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/071313 4/18/2019 WO A
US Referenced Citations (392)
Number Name Date Kind
1633192 Reagan Jun 1927 A
1829435 Barnhart Oct 1931 A
3438171 Demarest Apr 1969 A
3757484 Williamson et al. Sep 1973 A
3790428 Lingl Feb 1974 A
RE28305 Williamson et al. Jan 1975 E
3930929 Lingl Jan 1976 A
3950914 Lowen Apr 1976 A
4033463 Cervin Jul 1977 A
4106259 Taylor-Smith Aug 1978 A
4221258 Richard Sep 1980 A
4245451 Taylor-Smith Jan 1981 A
4303363 Cervin Dec 1981 A
4523100 Payne Jun 1985 A
4708562 Melan et al. Nov 1987 A
4714339 Lau Dec 1987 A
4758036 Legille et al. Jul 1988 A
4765789 Lonardi et al. Aug 1988 A
4790651 Brown et al. Dec 1988 A
4827689 Lonardi et al. May 1989 A
4852237 Tradt et al. Aug 1989 A
4911595 Kirchen et al. Mar 1990 A
4945493 Huang et al. Jul 1990 A
4952772 Zana Aug 1990 A
4954762 Miyake et al. Sep 1990 A
4969789 Searle Nov 1990 A
5004844 Van et al. Apr 1991 A
5013986 Gauggel May 1991 A
5018923 Melan May 1991 A
5049797 Phillips Sep 1991 A
5080415 Bjornson Jan 1992 A
5196900 Pettersen Mar 1993 A
5284000 Milne et al. Feb 1994 A
5321353 Furness Jun 1994 A
5403140 Carmichael et al. Apr 1995 A
5413454 Movsesian May 1995 A
5419669 Kremer et al. May 1995 A
5420489 Hansen et al. May 1995 A
5469531 Faure et al. Nov 1995 A
5497061 Nonaka et al. Mar 1996 A
5523663 Tsuge et al. Jun 1996 A
5527145 Duncan Jun 1996 A
5557397 Hyde et al. Sep 1996 A
5581975 Trebbi Dec 1996 A
5737500 Seraji et al. Apr 1998 A
5838882 Gan et al. Nov 1998 A
6018923 Wendt Feb 2000 A
6049377 Lau et al. Apr 2000 A
6101455 Davis Aug 2000 A
6134507 Markey, Jr. et al. Oct 2000 A
6166809 Pettersen et al. Dec 2000 A
6166811 Long et al. Dec 2000 A
6172754 Niebuhr Jan 2001 B1
6213309 Dadisho Apr 2001 B1
6285959 Greer Sep 2001 B1
6310644 Keightley Oct 2001 B1
6330503 Sharp et al. Dec 2001 B1
6370837 Mcmahon et al. Apr 2002 B1
6427122 Lin Jul 2002 B1
6429016 Mcneil Aug 2002 B1
6512993 Kacyra et al. Jan 2003 B2
6516272 Lin Feb 2003 B2
6584378 Anfindsen Jun 2003 B1
6611141 Schulz Aug 2003 B1
6618496 Tassakos et al. Sep 2003 B1
6628322 Cerruti Sep 2003 B1
6643002 Drake, Jr. Nov 2003 B2
6664529 Pack et al. Dec 2003 B2
6681145 Greenwood et al. Jan 2004 B1
6683694 Cornil Jan 2004 B2
6704619 Coleman et al. Mar 2004 B1
6741364 Lange et al. May 2004 B2
6825937 Gebauer et al. Nov 2004 B1
6850946 Rappaport et al. Feb 2005 B1
6859729 Breakfield et al. Feb 2005 B2
6864966 Giger Mar 2005 B2
6868847 Ainedter et al. Mar 2005 B2
6873880 Hooke et al. Mar 2005 B2
6917893 Dietsch et al. Jul 2005 B2
6935036 Barber et al. Aug 2005 B2
6957496 Raab et al. Oct 2005 B2
6965843 Hobden et al. Nov 2005 B2
6970802 Ban et al. Nov 2005 B2
6996912 Raab et al. Feb 2006 B2
7050930 Hobden et al. May 2006 B2
7051450 Barber et al. May 2006 B2
7069664 Barber et al. Jul 2006 B2
7107144 Capozzi et al. Sep 2006 B2
7111437 Ainedter Sep 2006 B2
7130034 Barvosa-carter et al. Oct 2006 B2
7142981 Hablani Nov 2006 B2
7145647 Suphellen et al. Dec 2006 B2
7153454 Khoshnevis Dec 2006 B2
7174651 Barber et al. Feb 2007 B2
7230689 Lau Jun 2007 B2
7246030 Raab et al. Jul 2007 B2
7269910 Raab et al. Sep 2007 B2
7347311 Rudge Mar 2008 B2
7519493 Atwell et al. Apr 2009 B2
7551121 Oconnell et al. Jun 2009 B1
7564538 Sakimura et al. Jul 2009 B2
7570371 Storm Aug 2009 B1
7576836 Bridges Aug 2009 B2
7576847 Bridges Aug 2009 B2
7591078 Crampton Sep 2009 B2
7639347 Eaton Dec 2009 B2
7693325 Pulla et al. Apr 2010 B2
7701587 Shioda et al. Apr 2010 B2
7774159 Cheng et al. Aug 2010 B2
7800758 Bridges et al. Sep 2010 B1
7804602 Raab Sep 2010 B2
RE42055 Raab et al. Jan 2011 E
RE42082 Raab et al. Feb 2011 E
7881896 Atwell et al. Feb 2011 B2
7967549 Geist et al. Jun 2011 B2
7993289 Quistgaard et al. Aug 2011 B2
8036452 Pettersson et al. Oct 2011 B2
8054451 Karazi et al. Nov 2011 B2
8060344 Stathis Nov 2011 B2
8145446 Atwell et al. Mar 2012 B2
8166727 Pivac May 2012 B2
8169604 Braghiroli et al. May 2012 B2
8185240 Williams et al. May 2012 B2
8229208 Pulla et al. Jul 2012 B2
8233153 Knuettel Jul 2012 B2
8244030 Pettersson et al. Aug 2012 B2
8248620 Wicks et al. Aug 2012 B2
8269984 Hinderling et al. Sep 2012 B2
8327555 Champ Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8345926 Clark et al. Jan 2013 B2
8346392 Walser et al. Jan 2013 B2
8405716 Yu et al. Mar 2013 B2
8467072 Cramer et al. Jun 2013 B2
8537372 Siercks et al. Sep 2013 B2
8537376 Day et al. Sep 2013 B2
8558992 Steffey Oct 2013 B2
8593648 Cramer et al. Nov 2013 B2
8595948 Raab et al. Dec 2013 B2
8606399 Williams et al. Dec 2013 B2
8634950 Simonetti et al. Jan 2014 B2
8644964 Hendron et al. Feb 2014 B2
8668074 Davidson Mar 2014 B2
8670114 Bridges et al. Mar 2014 B2
8677643 Bridges et al. Mar 2014 B2
8792709 Pulla et al. Jul 2014 B2
8803055 Lau et al. Aug 2014 B2
8812155 Brethe Aug 2014 B2
8825208 Benson Sep 2014 B1
8832954 Atwell et al. Sep 2014 B2
8848203 Bridges et al. Sep 2014 B2
8875409 Kretschmer et al. Nov 2014 B2
8898919 Bridges et al. Dec 2014 B2
8902408 Bridges Dec 2014 B2
8913814 Gandyra Dec 2014 B2
8931182 Raab et al. Jan 2015 B2
8942940 York Jan 2015 B2
8965571 Peters et al. Feb 2015 B2
8996244 Summer et al. Mar 2015 B2
8997362 Briggs et al. Apr 2015 B2
9020240 Pettersson et al. Apr 2015 B2
9033998 Schaible et al. May 2015 B1
RE45565 Bridges et al. Jun 2015 E
9046360 Atwell et al. Jun 2015 B2
9074381 Drew Jul 2015 B1
9109877 Thierman Aug 2015 B2
9146315 Bosse et al. Sep 2015 B2
9151830 Bridges Oct 2015 B2
9163922 Bridges et al. Oct 2015 B2
9170096 Fowler et al. Oct 2015 B2
9188430 Atwell et al. Nov 2015 B2
9207309 Bridges Dec 2015 B2
9223025 Debrunner et al. Dec 2015 B2
9229108 Debrunner et al. Jan 2016 B2
9266238 Huettenhofer Feb 2016 B2
9267784 Atwell et al. Feb 2016 B2
9278448 Freeman Mar 2016 B2
9279661 Tateno et al. Mar 2016 B2
9303988 Tani Apr 2016 B2
9353519 Williams May 2016 B2
9354051 Dunne et al. May 2016 B2
9358688 Drew Jun 2016 B2
9367741 Le Marec Jun 2016 B2
9377301 Neier et al. Jun 2016 B2
9383200 Hulm et al. Jul 2016 B2
9395174 Bridges Jul 2016 B2
9405293 Meuleau Aug 2016 B2
9423282 Moy Aug 2016 B2
9437005 Tateno et al. Sep 2016 B2
9443308 Pettersson et al. Sep 2016 B2
9452533 Calkins et al. Sep 2016 B2
9454818 Cramer Sep 2016 B2
9476695 Becker et al. Oct 2016 B2
9482524 Metzler et al. Nov 2016 B2
9482525 Bridges Nov 2016 B2
9482746 Bridges Nov 2016 B2
9494686 Maryfield et al. Nov 2016 B2
9513100 Raab et al. Dec 2016 B2
9536163 Veeser et al. Jan 2017 B2
9541371 Pettersson et al. Jan 2017 B2
9561019 Mihailescu et al. Feb 2017 B2
9607239 Bridges et al. Mar 2017 B2
9618620 Zweigle et al. Apr 2017 B2
9658061 Wilson et al. May 2017 B2
9671221 Ruhland et al. Jun 2017 B2
9679385 Suzuki et al. Jun 2017 B2
9686532 Tohme Jun 2017 B2
9708079 Desjardien et al. Jul 2017 B2
9715730 Suzuki Jul 2017 B2
9720087 Christen et al. Aug 2017 B2
9734609 Pulla et al. Aug 2017 B2
9739595 Lau Aug 2017 B2
9746308 Gong Aug 2017 B2
9757859 Kolb et al. Sep 2017 B1
9768837 Charvat et al. Sep 2017 B2
9772173 Atwell et al. Sep 2017 B2
9803969 Gong Oct 2017 B2
9816813 Lettau et al. Nov 2017 B2
9829305 Gong Nov 2017 B2
9835717 Bosse et al. Dec 2017 B2
9844792 Pettersson et al. Dec 2017 B2
9879976 Bridges et al. Jan 2018 B2
9897442 Pettersson et al. Feb 2018 B2
9903939 Charvat et al. Feb 2018 B2
9909855 Becker et al. Mar 2018 B2
9915733 Fried et al. Mar 2018 B2
9921046 Gong Mar 2018 B2
9958268 Ohtomo et al. May 2018 B2
9958545 Eichenholz et al. May 2018 B2
9964398 Becker et al. May 2018 B2
9964402 Tohme et al. May 2018 B2
9967545 Tohme May 2018 B2
9989353 Bartmann et al. Jun 2018 B2
10012732 Eichenholz et al. Jul 2018 B2
10030972 Iseli et al. Jul 2018 B2
10041793 Metzler et al. Aug 2018 B2
10054422 Böckem et al. Aug 2018 B2
10058394 Johnson et al. Aug 2018 B2
10073162 Charvat et al. Sep 2018 B2
10074889 Charvat et al. Sep 2018 B2
10082521 Atlas et al. Sep 2018 B2
10090944 Charvat et al. Oct 2018 B1
10094909 Charvat et al. Oct 2018 B2
10126415 Becker et al. Nov 2018 B2
10189176 Williams Jan 2019 B2
10220511 Linnell et al. Mar 2019 B2
10240949 Peters et al. Mar 2019 B2
10315904 Landler Jun 2019 B2
10635758 Pivac Apr 2020 B2
10865578 Pivac Dec 2020 B2
10876308 Pivac et al. Dec 2020 B2
11106836 Pivac et al. Aug 2021 B2
20020176603 Bauer et al. Nov 2002 A1
20030048459 Gooch Mar 2003 A1
20030090682 Gooch et al. May 2003 A1
20030120377 Hooke et al. Jun 2003 A1
20030206285 Lau Nov 2003 A1
20040078137 Breakfield et al. Apr 2004 A1
20040093119 Gunnarsson et al. May 2004 A1
20040200947 Lau Oct 2004 A1
20050007450 Hill et al. Jan 2005 A1
20050057745 Bontje Mar 2005 A1
20050060092 Hablani Mar 2005 A1
20050086901 Chisholm Apr 2005 A1
20050131619 Rappaport et al. Jun 2005 A1
20050196484 Khoshnevis Sep 2005 A1
20050252118 Matsufuji Nov 2005 A1
20060167587 Read Jul 2006 A1
20060215179 Mcmurtry et al. Sep 2006 A1
20070024870 Girard et al. Feb 2007 A1
20070229802 Lau Oct 2007 A1
20070284215 Rudge Dec 2007 A1
20080030855 Lau Feb 2008 A1
20080189046 Eliasson et al. Aug 2008 A1
20090038258 Pivac et al. Feb 2009 A1
20090074979 Krogedal et al. Mar 2009 A1
20100025349 Khoshnevis Feb 2010 A1
20100138185 Kang Jun 2010 A1
20100281822 Murray Nov 2010 A1
20110066393 Groll et al. Mar 2011 A1
20110153524 Schnackel Jun 2011 A1
20110208347 Otake et al. Aug 2011 A1
20120038074 Khoshnevis Feb 2012 A1
20120099096 Bridges et al. Apr 2012 A1
20120136524 Everett et al. May 2012 A1
20120265391 Letsky Oct 2012 A1
20120277898 Kawai et al. Nov 2012 A1
20130028478 St-pierre et al. Jan 2013 A1
20130068061 Yoon Mar 2013 A1
20130103192 Huettenhofer Apr 2013 A1
20130104407 Lee May 2013 A1
20130222816 Briggs et al. Aug 2013 A1
20130250285 Bridges et al. Sep 2013 A1
20130286196 Atwell Oct 2013 A1
20140002608 Atwell et al. Jan 2014 A1
20140067121 Brooks et al. Mar 2014 A1
20140176677 Valkenburg et al. Jun 2014 A1
20140192187 Atwell et al. Jul 2014 A1
20140309960 Vennegeerts et al. Oct 2014 A1
20140343727 Calkins et al. Nov 2014 A1
20140366481 Benson Dec 2014 A1
20150082740 Peters et al. Mar 2015 A1
20150100066 Kostrzewski et al. Apr 2015 A1
20150134303 Chang et al. May 2015 A1
20150153720 Pettersson et al. Jun 2015 A1
20150241203 Jordil et al. Aug 2015 A1
20150258694 Hand et al. Sep 2015 A1
20150276402 Grsser et al. Oct 2015 A1
20150293596 Krausen et al. Oct 2015 A1
20150309175 Hinderling et al. Oct 2015 A1
20150314890 Desjardien et al. Nov 2015 A1
20150352721 Wicks et al. Dec 2015 A1
20150355310 Gong et al. Dec 2015 A1
20150367509 Georgeson Dec 2015 A1
20150371082 Csaszar et al. Dec 2015 A1
20150377606 Thielemans Dec 2015 A1
20160005185 Geissler Jan 2016 A1
20160153786 Liu et al. Jun 2016 A1
20160187130 Metzler et al. Jun 2016 A1
20160187470 Becker et al. Jun 2016 A1
20160223364 Peters et al. Aug 2016 A1
20160242744 Mihailescu et al. Aug 2016 A1
20160263767 Williams Sep 2016 A1
20160274237 Stutz Sep 2016 A1
20160282107 Roland et al. Sep 2016 A1
20160282110 Vagman et al. Sep 2016 A1
20160282179 Nazemi et al. Sep 2016 A1
20160288331 Sivich et al. Oct 2016 A1
20160313114 Tohme et al. Oct 2016 A1
20160327383 Becker et al. Nov 2016 A1
20160340873 Eidenberger et al. Nov 2016 A1
20160341041 Puura et al. Nov 2016 A1
20160349746 Grau Dec 2016 A1
20160363436 Clark et al. Dec 2016 A1
20160363659 Mindell et al. Dec 2016 A1
20160363663 Mindell et al. Dec 2016 A1
20160363664 Mindell et al. Dec 2016 A1
20160364869 Siercks et al. Dec 2016 A1
20160364874 Tohme et al. Dec 2016 A1
20170066157 Peters et al. Mar 2017 A1
20170067739 Siercks et al. Mar 2017 A1
20170082436 Siercks et al. Mar 2017 A1
20170091922 Siercks et al. Mar 2017 A1
20170091923 Siercks et al. Mar 2017 A1
20170108528 Atlas et al. Apr 2017 A1
20170122736 Dold et al. May 2017 A1
20170166399 Stubbs Jun 2017 A1
20170173796 Kim et al. Jun 2017 A1
20170176572 Charvat et al. Jun 2017 A1
20170179570 Charvat Jun 2017 A1
20170179603 Charvat et al. Jun 2017 A1
20170227355 Pettersson et al. Aug 2017 A1
20170236299 Valkenburg et al. Aug 2017 A1
20170254102 Peters et al. Sep 2017 A1
20170269203 Trishaun Sep 2017 A1
20170307757 Hinderling et al. Oct 2017 A1
20170314909 Dang Nov 2017 A1
20170333137 Roessler Nov 2017 A1
20170343336 Lettau Nov 2017 A1
20180003493 Bernhard et al. Jan 2018 A1
20180017384 Siercks et al. Jan 2018 A1
20180023935 Atwell et al. Jan 2018 A1
20180038684 Fröhlich et al. Feb 2018 A1
20180046096 Shibazaki Feb 2018 A1
20180052233 Frank et al. Feb 2018 A1
20180108178 Murugappan et al. Apr 2018 A1
20180121571 Tiwari et al. May 2018 A1
20180149469 Becker et al. May 2018 A1
20180156601 Pontai Jun 2018 A1
20180170719 Tasch et al. Jun 2018 A1
20180180416 Edelman et al. Jun 2018 A1
20180202796 Ziegenbein Jul 2018 A1
20180209156 Pettersson Jul 2018 A1
20180239010 Mindell et al. Aug 2018 A1
20180300433 Maxam et al. Oct 2018 A1
20190026401 Benjamin et al. Jan 2019 A1
20190032348 Parkes Jan 2019 A1
20190184555 Linnell et al. Jun 2019 A1
20190224846 Pivac et al. Jul 2019 A1
20190251210 Pivac et al. Aug 2019 A1
20190316369 Pivac et al. Oct 2019 A1
20190352146 Pivac et al. Nov 2019 A1
20200173777 Pivac et al. Jun 2020 A1
20200206923 Pivac et al. Jul 2020 A1
20200206924 Pivac et al. Jul 2020 A1
20200215688 Pivac et al. Jul 2020 A1
20200215692 Pivac et al. Jul 2020 A1
20200215693 Pivac et al. Jul 2020 A1
20210016437 Pivac et al. Jan 2021 A1
20210016438 Pivac et al. Jan 2021 A1
20210080582 Pivac et al. Mar 2021 A1
20210291362 Pivac et al. Sep 2021 A1
Foreign Referenced Citations (151)
Number Date Country
645640 Jan 1994 AU
673498 Mar 1990 CH
2730976 Oct 2005 CN
2902981 May 2007 CN
2923903 Jul 2007 CN
101100903 Jan 2008 CN
201184054 Jan 2009 CN
101360873 Feb 2009 CN
101476883 Jul 2009 CN
100557169 Nov 2009 CN
101694130 Apr 2010 CN
201972413 Sep 2011 CN
102359282 Feb 2012 CN
202248944 May 2012 CN
202292752 Jul 2012 CN
102995911 Mar 2013 CN
202925913 May 2013 CN
103363902 Oct 2013 CN
103698769 Apr 2014 CN
203701626 Jul 2014 CN
104141391 Nov 2014 CN
104153591 Nov 2014 CN
104493810 Apr 2015 CN
204295678 Apr 2015 CN
104612411 May 2015 CN
204311767 May 2015 CN
103774859 Nov 2015 CN
103753586 Dec 2015 CN
105113373 Dec 2015 CN
105178616 Dec 2015 CN
105257008 Jan 2016 CN
105544998 May 2016 CN
104806028 Nov 2016 CN
205668271 Nov 2016 CN
205840368 Dec 2016 CN
205990775 Mar 2017 CN
206185879 May 2017 CN
206189878 May 2017 CN
105089274 Jun 2017 CN
105064699 Jul 2017 CN
107217859 Sep 2017 CN
107237483 Oct 2017 CN
107357294 Nov 2017 CN
107605167 Jan 2018 CN
206844687 Jan 2018 CN
107654077 Feb 2018 CN
107675891 Feb 2018 CN
107740591 Feb 2018 CN
106088632 Mar 2018 CN
107762165 Mar 2018 CN
207063553 Mar 2018 CN
106088631 May 2018 CN
107975245 May 2018 CN
108061551 May 2018 CN
108222527 Jun 2018 CN
108301628 Jul 2018 CN
108331362 Jul 2018 CN
106150109 Aug 2018 CN
108457479 Aug 2018 CN
108708560 Oct 2018 CN
208023979 Oct 2018 CN
106881711 Apr 2019 CN
107083845 Jun 2019 CN
108016585 Jul 2019 CN
3430915 Mar 1986 DE
4038260 Jun 1991 DE
4207384 Sep 1993 DE
19509809 Oct 1995 DE
4417928 Nov 1995 DE
29601535 May 1997 DE
19600006 Jul 1997 DE
19603234 Sep 1997 DE
19743717 Apr 1999 DE
19849720 May 2000 DE
10230021 Jul 2003 DE
102006030130 Sep 2007 DE
102009018070 Oct 2010 DE
102009042014 Mar 2011 DE
202012100646 Jun 2013 DE
102013019869 May 2015 DE
190076 Aug 1986 EP
370682 May 1990 EP
456020 Jan 1995 EP
493020 Apr 1995 EP
495525 Apr 1995 EP
836664 Jan 1999 EP
674069 Dec 1999 EP
1918478 May 2008 EP
2112291 Oct 2009 EP
2219528 Aug 2010 EP
2249997 Nov 2010 EP
2353801 Aug 2011 EP
2199719 Oct 2014 EP
3084719 Oct 2016 EP
2296556 Apr 2008 ES
2230825 Dec 1974 FR
2524522 Oct 1983 FR
119331 Oct 1918 GB
2198105 May 1923 GB
673472 Jun 1952 GB
682010 Nov 1952 GB
839253 Jun 1960 GB
1067604 May 1967 GB
1465068 Feb 1977 GB
125079 Dec 2001 GB
2422400 Jul 2006 GB
64006719 Jan 1989 JP
H07101509 Nov 1999 JP
2005283600 Oct 2005 JP
4294990 Apr 2009 JP
2009521630 Jun 2009 JP
5508895 Mar 2014 JP
87054 Jun 1989 LU
87381 Jun 1990 LU
88144 Apr 1994 LU
85392 Aug 2009 RU
9702397 Jan 1997 WO
2001076830 Oct 2001 WO
2004020760 Mar 2004 WO
2004083540 Feb 2005 WO
2005014240 Feb 2005 WO
2005017550 Feb 2005 WO
2005070657 Aug 2005 WO
2004011734 Nov 2005 WO
2006111827 Oct 2006 WO
2007076581 Jul 2007 WO
2008124713 Oct 2008 WO
2009026641 Mar 2009 WO
2009026642 Mar 2009 WO
2010020457 Feb 2010 WO
2011077006 Jun 2011 WO
2013088154 Jun 2013 WO
2013134559 Sep 2013 WO
2018009978 Jan 2018 WO
2018009980 Jan 2018 WO
2018009981 Jan 2018 WO
2018009985 Jan 2018 WO
2018009986 Jan 2018 WO
2018052469 Apr 2018 WO
201899323 Jun 2018 WO
2019006511 Jan 2019 WO
2019014701 Jan 2019 WO
2019014702 Jan 2019 WO
2019014705 Jan 2019 WO
2019014706 Jan 2019 WO
2019014707 Jan 2019 WO
2019033165 Feb 2019 WO
2019033166 Feb 2019 WO
2019033170 Feb 2019 WO
2019068128 Apr 2019 WO
2019071313 Apr 2019 WO
Non-Patent Literature Citations (81)
Entry
Delgado, R. et al.: “Development and Control of an Omnidirectional Mobile Robot on an EtherCAT Network”, International Journal of Applied Engineering Research, vol. 11, No. 21, 2016, pp. 10586-10592, XP055574484.
Dorfler, K. et al.: “Mobile Robotic Brickwork , Automation of a Discrete Robotic Fabrication Process Using an Autonomous Mobile Robot Robotic Fabrication in Architecture”, Art and Design 2016, Feb. 4, 2016 (Feb. 4, 2016), pp. 204-217, XP055567451.
Egerstedt, M. et al.: “Control of Mobile Platforms using a Virtual Vehicle Approach”, IEEE Transactions on Automatic Control, vol. 46, No. 11, Nov. 2001 (Nov. 1, 2001), XP055567515.
Fastbrick Robotics, Fastbrick Robotics: Hadrian 105 First Look Revealed, Nov. 16, 2015 (Nov. 16, 2015), XP054978174, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=7Zw7qHxMtrY> [retrieved on Nov. 16, 2015].
Fastbrick Robotics: Hadrian 105 Demonstrative Model Animation, Jun. 29, 2015 (Jun. 29, 2015), XP054979424, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=Rebqcsb61gY> [retrieved on Mar. 7, 2018].
Fastbrick Robotics: Hadrian 105 Time Lapse, Fastbrick Robotics Time Lapse, May 22, 2016 (May 22, 2016), XP054978173, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=4YcrO8ONcfY> [retrieved on May 22, 2016].
Feng, C. et al.: “Vision Guided Autonomous Robotic Assembly and as-built Scanning on Unstructured Construction Sites”, Automation in Construction, vol. 59, Nov. 2015 (Nov. 1, 2015), pp. 128-138, XP055567454.
Gao, X. et al.: “Complete Solution Classification for the Perspective-Three-Point Problem”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 8, Aug. 2003 (Aug. 1, 2003), pp. 930-943, XP011099374.
Giftthaler, M. et al., “Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control”, 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29-Jun. 3, 2017.
Heintze, H., “Design and Control of a Hydraulically Actuated Industrial Brick Laying Robot,” 264 pages.
Heintze, J. et al., “Controlled hydraulics for a direct drive brick laying robot,” Automation in Construction 5 (1996), pp. 23-29.
Helm, V. et al.: “Mobile Robotic Fabrication on Construction Sites: dimRob”, IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, pp. 4335-4341, XP032287463.
http://www.new-technologies.org/ECT/Other/brickrob.htm. “Emerging Construction Technologies.” Dec. 1, 2006.
Huang, S. et al., “Applying High-Speed Vision Sensing to an Industrial Robot for High-Performance Position Regulation under Uncertainties,” Sensors, 2016, 16, 1195, 15 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050731; dated Jan. 15, 2019; 5 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050738; dated Jan. 15, 2019; 13 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2017/050739; dated Jan. 15, 2019; 6 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050733; dated Jan. 21, 2020; 6 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050734; dated Jan. 21, 2020; 9 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050737; dated Jan. 21, 2020; 6 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050739; dated Jan. 21, 2020; 6 pages.
International Preliminary Report on Patentability for International Application No. PCT/AU2018/050740; dated Jan. 21, 2020; 6 pages.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050730; dated Aug. 23, 2017; 17 pages.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050731; dated Aug. 31, 2017; 8 pages.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050738; dated Oct. 17, 2017; 19 pages.
International Search Report and Written Opinion for International Application No. PCT/AU2017/050739; dated Sep. 28, 2017; 9 pages.
Kazemi, M. et al.: “Path Planning for Image-based Control of Wheeled Mobile Manipulators”, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, XP055567470.
Kleinkes, M. et al.: “Laser Tracker and 6DoF measurement strategies in industrial robot applications”, CMSC 2011: Coordinate Metrology System Conference, Jul. 25, 2011 (Jul. 25, 2011), XP055456272.
Koren et al.: “End-effector guidance of robot arms”, CIRP Annals-Manufacturing Technology, vol. 36, No. 1, 1987, pp. 289-292, XP055456270.
Kwon, S. et al., “On the Coarse/Fine Dual-Stage Manipulators with Robust Perturbation Compensator,” IEEE, May 21-26, 2001, pp. 121-126.
Kyle in CMSC: Charlotte-Concord, Jul. 21-25, 2008.
Latteur, et al., “Drone-Based Additive Manufacturing of Architectural Structures,” IASS Symposium 2015, Amsterdam, The Netherlands; Aug. 17-20, 2015; 12 pages.
Lippiello, V. et al.: “Position-Based Visual Servoing in Industrial Multirobot Cells Using a Hybrid Camera Configuration”, IEEE Transactions On Robotics, vol. 23, No. 1, Feb. 2007 (Feb. 1, 2007), XP011163518.
Liu, Z. et al.: “EtherCAT Based Robot Modular Joint Controller”, Proceeding of The 2015 IEEE International Conference on Information and Automation, Aug. 2015 (Aug. 1, 2015), Lijiang, China, pp. 1708-1713, XP033222650.
Notice of Acceptance of Patent Application received for priority Australian Patent Application No. 2017294796, dated May 15, 2019 (158 pages).
Partial Supplementary European Search Report dated Apr. 14, 2020 in European Patent Application No. 17826696.1, 10 pages.
Pless, R .: “Using Many Cameras as One”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 18, 2003 (Jun. 18, 2003), Madison , WI, USA, pp. 1-7, XP055564465.
Posada et al.: “High accurate robotic drilling with external sensor and compliance model-based compensation”, Robotics and Automation (ICRA), 2016 IEEE International Conference, May 16, 2016 (May 16, 2016), pp. 3901-3907, XP032908649.
Pritschow, G. et al., “A Mobile Robot for On-Site Construction of Masonry,” Inst. of Control Tech. for Machine Tools and Manuf. Units, pp. 1701-1707.
Pritschow, G. et al., “Application Specific Realisation of a Mobile Robot for On-Site Construction of Masonry,” Automation and Robotics in Construction XI, 1994, pp. 95-102.
Pritschow, G. et al., “Configurable Control System of a Mobile Robot for ON-Site Construction of Masonry,” Inst. of Control Technology for Machine Tools and Manuf. Units, pp. 85-92.
Pritschow, G. et al., “Technological aspects in the development of a mobile bricklaying robot,” Automation in Construction 5 (1996), pp. 3-13.
Riegl Laser Measurement Systems. “Long Range & High Accuracy 3D Terrestrial Laser Scanner System—LMS-Z420i.” pp. 1-4.
Salcudean, S. et al., “On the Control of Redundant Coarse-Fine Manipulators,” IEEE, pp. 1834-1840.
Sandy, T. et al.: “Autonomous Repositioning and Localization of an In Situ Fabricator”, 2016 IEEE International Conference on Robotics and Automation (ICRA), May 16, 2016 (May 16, 2016), pp. 2852-2858, XP055567467.
Skibniewski, M.J., “Current Status of Construction Automation and Robotics in the United States of America,” The 9th International Symposium on Automation and Robotics in Construction, Jun. 3-5, 1992, 8 pages.
Trimble ATS. “Advanced Tracking Sensor (ATS) with target recognition capability for stakeless machine control survey applications.” pp. 1-4.
Vincze, M. et al., “A Laser Tracking System to Measure Position and Orientation of Robot End Effectors Under Motion,” The International Journal of Robotics Research, vol. 13, No. 4, Aug. 1994, pp. 305-314.
Warszawski, A. et al., “Implementation of Robotics in Building: Current Status and Future Prospects,” Journal of Construction Engineering and Management, Jan./Feb. 1998, 124(1), pp. 31-41.
Willmann, J. et al.: “Robotic Timber Construction—Expanding Additive Fabrication to New Dimensions”, Automation in Construction, vol. 61, 2016, pp. 16-23, XP029310896.
Xu, H. et al.: “Uncalibrated Visual Serving of Mobile Manipulators with an Eye-to-hand Camera”, Proceedings of The 2016 IEEE International Conference on Robotics and Biomimetics, Dec. 3, 2016 (Dec. 3, 2016), Qingdao, China, pp. 2145-2150, XP033071767.
Yu, S.N. et al., “Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization,” Dept. of Mech. Eng., Automation in Construction (2009), pp. 644-655.
Zaki, T., “Parametric modeling of Blackwall assemblies for automated generation of shop drawings and detailed estimates using BIM”, Master's Thesis, May 23, 2016, pp. 1-151.
Boston Dynamics: “Introducing Spot (previously SpotMini)”, Jun. 28, 2016, YouTube video, 1 page (screenshot of video); video retrieved at <https://www.youtube.com/watch?v=tf7IEVTDjng>.
Examination Report dated Apr. 18, 2021 in GCC Patent Application No. 2018-35644, 5 pages.
Examination Report dated Apr. 30, 2021 in GCC Patent Application No. 2018-35643, 3 pages.
Examination Report dated Jun. 29, 2021 for India Patent Application No. 201927004006, 6 pages.
Examination Report dated Sep. 30, 2021 for Australian Patent Application No. 2017295316, 3 pages.
Extended European Search Report dated Jun. 4, 2021 for European Patent Application No. 18865644.1, 7 pages.
Extended European Search Report dated Mar. 16, 2021 for European Patent Application No. 18834565.6, 19 pages.
Extended European Search Report dated Mar. 17, 2021 for European Patent Application No. 18835861.8, 12 pages.
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18834673.8, 14 pages.
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18834893.2, 12 pages.
Extended European Search Report dated Mar. 18, 2021 for European Patent Application No. 18835737.0, 10 pages.
Extended European Search Report dated Mar. 30, 2021 for European Patent Application No. 18845794.9, 13 pages.
Extended European Search Report dated Mar. 5, 2021 for European Patent Application No. 18828425.1, 7 pages.
Fastbrick Robotics: Hadrian X Digital Construction System, published on Sep. 21, 2016 <URL: https://www.youtube.com/watch?v=5bW1vuCgEaA >.
Gander H et al: “Application of a floating point digital signal processor to a dynamic robot measurement system”, Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10th Anniversary. Advanced Technologies in I & M., 1994 IEEE Hamamatsu, Japan May 10-12, 1994, New York, NY, USA, IEEE, May 10, 1994 (May 10, 1994), pp. 372-375, XP010121924, DOI: 10.1109/IMTC.1994.352046, ISBN: 978-0-7803-1880-9, *whole document*.
Garrido, S. et al., “FM2: A real-time fast marching sensor based motion planner”, Advanced Intelligent Mechatronics, 2007 IEEE/ASME International Conference on, IEEE, PI, Sep. 1, 2007 (Sep. 1, 2007), pp. 1-6.
International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50742; dated Sep. 23, 2019; 5 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50743; dated Oct. 1, 2019; 10 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50367; dated Jun. 29, 2020; 15 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50368; dated Jun. 25, 2020; 11 pages.
Kleinigger, M. et al.: “Application of 6-DOF sensing for robotic disturbance compensation”, Automation Science and Engineering (Case), 2010 IEEE Conference on, IEEE, Piscataway, NJ, USA, Aug. 21, 2010 (Aug. 21, 2010, pp. 344-349, XP031762876, ISBN: 978-1-4244-5477-1, *abstract*, *sections 1 to 3*.
Mercedes-Benz: “Mercedes-Benz “Chicken” Magic Body Control TV commercial”, YouTube, Sep. 23, 2013, 1 page. Retrieved from the internet: <https://www.youtube.com/watch?v+nLwML2PagbY>.
Office Action dated Apr. 21, 2021 in Japanese Patent Application No. 2019-523148, 4 pages.
Office Action dated Aug. 20, 2021 for Japanese Patent Application No. 2019-523147, 3 pages.
Office Action dated Jul. 5, 2021 for Japanese Patent Application No. 2019-523145, 4 pages.
Office Action dated May 24, 2021 for Chinese Patent Application No. 201880067520.0, 8 pages.
Office Action dated Sep. 3, 2021 for Chinese Patent Application No. 201780056460.8, 9 pages.
Siciliano, B. et al., “Robotics—chapters 2-4” Robotics, Dec. 31, 2009 (Dec. 31, 2009), Springer London, London, pp. 39-189.
Related Publications (1)
Number Date Country
20200324981 A1 Oct 2020 US