The present invention relates to a machine for cutting hoses, comprising a support table, at least two hose rests protruding therefrom and spaced apart from one another, and a cutting device disposed between them, wherein the support table has a substantially plane hose support face and the cutting device comprises a cutting blade, which extends in a cutting plane disposed substantially perpendicular to the hose support face, as well as a hose feed, movable parallel to the cutting plane, with two thrust pieces disposed on both sides of the cutting plane with one hose contact face each.
Machines of the type indicated in the foregoing, so-called “hose-cutting machines,” are known (for example from GB 1505113) and in practical service. They are used in particular for cutting hose portions to length from a hose supply, for example prior to further processing of the hose portion in question for production of a product comprising it.
In the case of manufacture of lines for hydraulic applications, in which connecting fittings are pressed in end position onto the hose portion in question, very stringent requirements are applicable—especially in the case of high-pressure applications—to the quality of the separating cut, and are so specifically both with regard to the geometry of the cut profile (exactly perpendicular to the axis of the hose) and with regard to the neatness of the cut (e.g. no jagged edges). This is so because such deviations from the ideal cut profile result potentially in reduced reliability of the hydraulic line in question, failure of which may certainly have serious consequences in the individual case. Production of ideal separating cuts is made particularly difficult by the fact that the manufacture of hoses used for hydraulic lines are regularly reinforced with an inlay (e.g. of braided steel wire), so that extremely different materials (rubber on the one hand and steel wire on the other) must be completely severed neatly with a single separating cut.
In practice, unsatisfactory deviations from ideal execution of the separating cut have occurred in the past—even during use of ultra-modern hose-cutting machines—during the cutting of hoses used in the manufacture of hydraulic lines. Accordingly, the present invention is oriented toward remedying this disadvantage. In particular, the intention is to provide a hose-cutting machine of the class in question, improved compared with the prior art, wherein improved results can be achieved during the use thereof for cutting of standard hoses intended for hydraulic applications.
The present object is achieved according to the present invention by the fact that, in a machine mentioned in the introduction for cutting hoses, at least one first of the thrust pieces is provided with a thrust-piece attachment affixed positionably on a carrier and provided with the associated hose contact face. Taking advantage of this, the present invention is based on the entirely surprising fact that, by means of positioning (at least) of one of the thrust pieces of the hose feed in such a way that the two hose contact faces do not lie for a long distance in a common plane perpendicular to the cutting plane, the result of cutting of the hose can be improved in the sense of a cut structure that approximates the ideal condition. As the inventors have ascertained, it is possible, by selective asymmetry of the two hose contact faces relative to the cutting plane, in a manner matched to the individual application situation—particular hose (inside diameter, outside diameter, base material, reinforcing material) and particular cutting blade (thickness, diameter, cutting-teeth geometry)—to correct or compensate for a deviation of the separating cut from the ideal condition during use of conventional hose-cutting machines.
According to a first preferred further development of the invention, the positionability of the thrust-piece attachment comprises at least an ability to change the angular position of the hose contact face relative to the hose support face. With this angular positionability of the thrust-piece attachment of the first thrust piece relative to the hose support face, relative angular positioning of the two hose contact faces relative to one another is achieved, so that these—as the result of appropriate positioning—are oriented in skewed manner relative to one another. In a particularly preferred further development, the thrust-piece attachment of this first thrust piece may be positionable on the carrier by the fact that it can be pivoted around an axis disposed substantially parallel to the hose support face and perpendicular to the cutting plane.
Another preferred further development of the invention is characterized in that the positionability of the thrust-piece attachment associated with the first thrust piece comprises its parallel displacement on the carrier to generate a parallel offset of the two hose support faces relative to one another. In this sense, for example, the thrust-piece attachment may be guided such that it can be displaced in parallel manner in a corresponding receptacle or pocket made in the carrier of the corresponding thrust piece. The axis of this said displacement movement may run parallel to the hose support face. In a preferred further development, however, it includes an angle with the hose support face. This is the case in particular when the hose contact faces for their part are not directed perpendicularly relative to the hose support face but instead include therewith an angle deviating from 90°. According to yet another preferred further development, the axis of this said displacement movement may be directed perpendicularly relative to the orientation of the hose contact face of the pressure-piece attachment in question. However, this is not absolutely necessary.
The possibilities explained in the foregoing for optimizing the positioning of the two hose contact faces relative to one another and to the cutting blade with regard to the individual application are particularly obvious when the thrust-piece attachment of the first thrust piece can be both pivotable and displaceable in parallel manner relative to the associated carrier, so that mounting of the thrust-piece attachment of the first thrust piece on the carrier in question in a manner that permits both positioning capabilities is provided particularly preferably.
A comparably favorable result can be achieved when the second thrust piece of the hose feed also comprises a carrier and a thrust-piece attachment affixed positionably thereon and provided with the associated hose support face, wherein (at least) parallel displaceability of the thrust-piece attachment in question is provided for one of the two thrust pieces and (at least) angular displaceability of the thrust-piece attachment in question is provided for the other thrust piece.
According to yet another preferred further development of the present invention, the hose feed comprises a one-piece feed block, on which the carrier of the first thrust piece and the second thrust piece or its carrier are constructed. This is favorable with regard to the absolutely synchronized feed of both thrust pieces during cutting of a hose and the application of force necessary for this purpose.
In an alternative construction of the present invention, it is provided that a hose feed that is movable parallel to the cutting plane comprises a feed block on which two thrust pieces disposed on both sides of the cutting plane are designed with one hose contact face each, wherein the feed block is mounted positionably in such a way that the orientation of the two hose contact faces relative to the cutting plane is variable. In this alternative to the configurations explained in the foregoing, a substantially identical result can be achieved at least partly, namely by the fact that the two hose contact faces are not necessarily disposed symmetrically relative to the cutting plane but instead may optionally be adjusted more or less asymmetrically relative thereto, in the sense that one of the two thrust pieces leads the other more or less noticeably in feed direction of the hose feed. For this purpose, the feed block may be mounted with the ability to rotate, especially relative to a pivot axis, for example directed substantially perpendicularly relative to the hose support face.
Regardless of the specific configuration of the present invention, i.e. regardless of the respective specifically realized positionability, scaling proves to be expedient, by means of which the respective individual adjustment of the hose feed is reproducible.
The present invention will be explained in more detail hereinafter on the basis of several preferred exemplary embodiments illustrated in the drawing, wherein:
The machine for cutting hoses, schematically illustrated in
Building on this basic configuration of the hose-cutting machine, the exemplary embodiment of the invention shown in
In the second exemplary embodiment illustrated in
For this purpose, in order to receive a substantially rectangular thrust-piece attachment 12, each of the two carriers 11 is provided with a corresponding pocket 18, open toward the end face of carrier 11. Thrust-piece attachment 12 protrudes out of the associated carrier 11, wherein the extent by which it protrudes can be positioned. For this purpose, a positioning screw 19 is provided, which is fixed at its end on thrust-piece attachment 12 by rotation around a fixed axis, wherein it cooperates with a thread 20 constructed in carrier 11.
In
Merely for the sake of completeness, it must be pointed out that a combination of the two illustrated positioning capabilities in a single hose feed is possible, by constructing one of the thrust pieces according to
According to
In other respects, the embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
10 2016 109 686 | May 2016 | DE | national |
This application is a continuation under 35 U.S.C. § 120 of International Application PCT/EP2017/061995, filed May 18, 2017, which claims priority to German Application No. 10 2016 109 686.5, filed May 25, 2016, the contents of each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
455816 | Hadfield | Jul 1891 | A |
2925005 | Hensley | Feb 1960 | A |
3066564 | Carpenter | Dec 1962 | A |
3212185 | Keiter | Oct 1965 | A |
3232159 | Stanley | Feb 1966 | A |
3253333 | Keiter | May 1966 | A |
3683557 | Maples | Aug 1972 | A |
3863538 | Behnke | Feb 1975 | A |
4567795 | Pool | Feb 1986 | A |
5253558 | Guddal, Jr. | Oct 1993 | A |
8261646 | De Matteis | Sep 2012 | B2 |
20130186246 | Franze | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2425492 | Dec 1975 | DE |
8907173 | Oct 1989 | DE |
1787745 | May 2007 | EP |
1505113 | Mar 1978 | GB |
5541204 | Mar 1980 | JP |
5514204 | Jun 2014 | JP |
Entry |
---|
EP1787745 English Translation; May 2007; Siemens Kornelius. |
DE-2425492-A1 English Translation; Dec. 1975 Heckhausen Hans. |
DE8907173-U1 English translation; Eyer et al. |
JP-5514204-B2 English Translation; Jun. 2014. |
International Search Report issued for International Patent Application No. PCT/EP2017/061665 dated Jul. 20, 2017. |
Number | Date | Country | |
---|---|---|---|
20190077035 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2017/061995 | May 2017 | US |
Child | 16184588 | US |