Not Applicable
Not Applicable
This invention relates generally to the field of mechanical fluid movement and more specifically to a machine for drawing fluid from a sump for circulation. The need to circulate fluids, fuel, coolant, lubrication, etc., within an internal combustion engine is as old as the internal combustion engine itself, and for this purpose many different systems have been devised which universally involve some type of pump and circulatory conduits or some means of agitating a body of lubricant such that said lubricant is splashed onto surfaces requiring lubrication. The instant disclosure is a fluid pumping and circulation means that is simple and highly efficient and which is actuated by the reciprocal motion of a piston rod.
U.S. Pat. No. 4,466,687 by Perry teaches a lubrication pumping means that takes advantage of the motion of one or more reciprocating rods to force lubrication through conduits to the particular surfaces requiring lubrication.
U.S. Pat. No. 6,681,737 by Shinoda et al, teaches a lubrication system of an impeller type that relies on rotary motion.
U.S. patent application Ser. No. 10/700,255 by Roberts teaches a fluid pumping system comprising two sump oil pick-up pipes having at their extremities sump oil pick up nozzles. The sump oil pick-up pipes communicate with a piston rod that reciprocates in a linear motion. The sump oil pick up nozzles face in opposite directions along the line of the piston rod motion that when said nozzles are immersed in the sump oil, the reciprocating motion of the rod causes them to be thrust to and fro through the oil. Sump oil will alternately be forced into by inertia one and then the other sump oil pick-up pipe as the direction of the linear movement of the piston rod changes.
The technology of Shinoda et al is typical of most pumping systems found in internal combustion engines in that it requires the reciprocal motion of the piston rods to be converted into rotary motion and that rotary motion used to power a pump. With such a system, when the engine is tilted, the efficiency of the pump decreases progressively until a point is reached at which the pump will no longer function. The instant technology, in substantial contrast to Shinoda et al, requires no such motion conversion and functions regardless of the orientation of the engine.
The Perry disclosure teaches utilization of the circular reciprocating motion of a piston rod to collect and drive lubricant. However, in substantial contrast to the instant disclosure, the technology as taught by Perry provides for only limited fluid circulation, having an inlet but not an outlet, thereby requiring any fluid that returns to the sump must do so via the same route as by which entered, but in the reverse direction. Fluid flow must change direction 180 degrees with each cycle. This severely limits potential heat exchange for cooling. It also limits the volume of fluid that can be effectively circulated in that the fluid inertia must restrict the distance of fluid travel between direction reversals within a very short range. In this, the herein taught technology differs significantly from Perry in that it provides for continuous, essentially unidirectional, high volume, fluid circulation.
Furthermore, although the technology taught herein relies wholly on inertia and dynamic pressure to impel fluid circulation, the Perry taught device relies heavily on piston cylinder vacuum created as a piston moves downward to move a fluid in further contrast to the present disclosure which comprises no such partial vacuum motive force.
The previous Roberts disclosure (U.S. patent application Ser. No. 10/700,255) teaches a fluid pumping means for an engine similar in principal to the instant Roberts disclosure. However, in substantial contrast, the previous Roberts technology teaches no means for the sump oil pick-up pipes to swivel about the piston rod in response to gravity or “g” forces so as to render the fluid pumping means operable regardless of the orientation of the engine. The instant Roberts disclosure is therefore an improvement over the previous Roberts disclosure.
The primary object of the invention is to provide for fluid pick-up and circulation over a broad range of engine angles and g-force directions.
Another object of the invention is to provide for fluid pick up and circulation of sufficient value that one fluid designed for a specific purpose, lubricant for example, may also be utilized for other purposes, cooling for example.
Another object of the invention is to provide for fluid pick up and circulation such that the fluid is returned to its original source.
Other objects and advantages of the present invention will become apparent from the following descriptions, taken in connection with the accompanying drawings, wherein, by way of illustration and example, an embodiment of the present invention is disclosed.
In accordance with a preferred embodiment of the invention, there is disclosed a machine for drawing fluid from a sump for circulation comprising: reciprocating rod, intake nozzle, rotating collar, fluid inlet, and fluid outlet.
The drawings constitute a part of this specification and include exemplary embodiments to the invention, which may be embodied in various forms. It is to be understood that in some instances various aspects of the invention may be shown exaggerated or enlarged to facilitate an understanding of the invention.
List of Illustrated Items
Detailed descriptions of the preferred embodiment are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in virtually any appropriately detailed system, structure or manner.
Referring to
Referring to
Further referring to
Referring to
In operation, using either of the above
Should the system become tilted, or even inverted, about the axis of the reciprocating rod, the pick-up nozzle 30 will revolve around the rod 10 on the rotating collar 45 as dictated by the forces of gravity and/or g forces, thus staying in contact with the sump fluid 70.
While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
This application is based on provisional application Ser. No. 60/580,464, filed on Jun. 17, 2004.
Number | Date | Country | |
---|---|---|---|
60580464 | Jun 2004 | US |