This application claims priority from European patent application No. 06425331.3, filed May 16, 2006, which is incorporated herein by reference.
An embodiment of the present invention relates to a machine for filling containers with at least one granular product.
More specifically, an embodiment of the present invention relates to a machine for filling capsules with a pharmaceutical product in the form of granules, to which the following description refers purely by way of example.
In the pharmaceutical industry, a machine is used to fill capsules with a granular pharmaceutical product, and which comprises a conveyor device moving continuously along a given path and having a number of pockets, each for receiving a respective bottom shell of a respective capsule; at least one container for the product; and a metering wheel mounted to rotate continuously about a substantially vertical longitudinal axis.
The metering wheel has a number of metering devices, each of which travels with the metering wheel along a portion of said path, in time with a respective bottom shell, to withdraw the product from the container and feed the product into the bottom shell.
Each metering device comprises a metering cylinder for receiving the product from the container; a drop chute for unloading the product in the metering cylinder into a respective bottom shell; and a piston which defines the bottom of the metering cylinder, and is moved along the metering cylinder, to and from a feed position to feed the product to the drop chute, by a cam follower roller on the piston engaging a cam.
Known machines of the above type have several drawbacks, mainly on account of engagement of the cam by the cam follower rollers moving each piston into the feed position to feed the product to the relative drop chute, regardless of whether the corresponding pocket on the conveyor device contains a bottom shell or not.
Another drawback of known machines of the above type is that, when using two containers containing different granular products, engagement of the cam by the cam follower rollers may not allow for selectively metering the product of only one of the containers into the bottom shells.
An embodiment of the present invention is a machine for filling containers with at least one granular product, designed to eliminate the aforementioned drawbacks.
One or more non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings.
a-5e show, schematically, a first operating mode of the
a-6e show, schematically, a second operating mode of the
With reference to
Machine 1 comprises a metering wheel 2, in turn comprising a supporting shaft (not shown), which has a substantially vertical longitudinal axis 3, is fitted in rotary manner to a fixed frame 4 of machine 1, is rotated continuously about axis 3 and with respect to frame 4 by a known actuating device not shown, and supports a top metering drum 5.
Drum 5 comprises a bottom plate 6 perpendicular to axis 3 and fitted in angularly fixed manner to said supporting shaft (not shown); and an annular top plate 7 fixed, coaxially with axis 3, to a top edge of plate 6.
A sprocket 8 is formed on the outer surface of plate 6, is coaxial with axis 3, and forms part of a known conveyor device 9 for feeding each bottom shell F along a given path P. Device 9 comprises a chain conveyor 10 looped about a number of powered sprockets (of which only sprocket 8 is shown in
In the example shown, frame 4 is fitted with two tubular containers 12a, 12b, which are mounted on plate 7, are axially open, are arranged about axis 3, and each of which extends a respective given angle about axis 3, and contains a respective granular pharmaceutical product.
Drum 5 has a number of (in the example shown, thirty-two) metering devices 13 equally spaced about axis 3 and fed continuously about axis 3 by wheel 2. Each device 13 is fed by wheel 2, in time with a respective pocket 11, along a portion of path P, so as to normally withdraw a given quantity of pharmaceutical product from each container 12a, 12b, and to feed the withdrawn pharmaceutical products into respective bottom shell F.
Each device 13 comprises a metering cylinder 14, which extends through plates 6 and 7, has a longitudinal axis 15 parallel to axis 3, is offset radially with respect to relative pocket 11, and is connected to relative pocket 11 by a sloping drop chute 16 formed through plate 7.
Cylinder 14 is closed at the bottom by the top end of a piston 17, which is mounted coaxially with axis 15, is bounded at the top by a flat surface 18 sloping with respect to axis 15, is fitted in axially-sliding manner to drum 5, and is moved back and forth linearly, with respect to drum 5 and under the control of an actuating device 19, in a direction 20 parallel to axes 3 and 15.
Device 19 comprises a cam 21, which extends about axis 3, is common to pistons 17 of all the metering devices 13, and in turn comprises a top track 22 and a bottom track 23 facing each other, and a cam follower roller 24 carried by piston 17 and engaging cam 21. At each container 12a, 12b, cam 21 comprises a first portion 25 (
At portions 25, rollers 24 are kept in contact with tracks 22 and 23 by a pneumatic push device 27 comprising an annular drum 28, which is mounted coaxially with axis 3, is fitted in angularly fixed manner to said supporting shaft (not shown) to rotate continuously about axis 3, is bounded at the bottom by a flat surface 29 substantially perpendicular to axis 3, and has a number of cavities 30, which are equal in number to cylinders 14, are equally spaced about axis 3 with the same spacing as cylinders 14, are each coaxial with a respective axis 15, and open outwards at surface 29.
Cavities 30 are closed at the bottom by an annular distributor disk 31 fitted in angularly fixed manner to drum 28 to rotate continuously about axis 3, and which, in contact with surface 29 and together with cavities 30, defines a number of actuating cylinders 32, in each of which slides the bottom end of a respective piston 17 which thus defines the output rod of respective cylinder 32 and, inside respective cylinder 32, a cylindrical bottom chamber 33 and an annular top chamber 34.
At portions 25 of cam 21, chambers 34 normally communicate with a known compressed-air pneumatic device (not shown) via a pneumatic circuit 35 comprising an annular header 36 fixed to frame 4 and coaxial with axis 3, and, for each chamber 34, a respective radial conduit 37 formed through drum 28 and connected in fluidtight manner to header 36.
At portions 25 of cam 21, chambers 33 communicate selectively with said pneumatic compressed-air device (not shown) via a pneumatic circuit 38 formed partly in distributor disk 31 and partly in a feed disk 39 fixed to frame 4 underneath and facing disk 31.
As shown in
In connection with the above, it should be pointed out that, in the example shown:
the thirty-two slits 41 are divided into eight groups 42 of slits 41, each comprising four circumferentially aligned slits 41 equally spaced about axis 3;
slits 41 in each group 42 of slits 41 alternate with slits 41 in the other groups 42 of slits 41; and
slits 41 in each group 42 of slits 41 are offset both radially and circumferentially with respect to slits 41 in the other groups 42 of slits 41.
With reference to
Channels 45 in each group 44 of channels 45 are aligned radially, open outwards at surface 43, and extend less than 180° about axis 3. As disk 31 rotates about axis 3, each channel 45 is engaged by slits 41 in a group 42 of slits 41 (
Each channel 45 comprises two circumferentially aligned portions 46a, 46b separated by a portion 47 of surface 43, which cooperates with disk 31 to separate portions 46a, 46b in fluidtight manner, and is of a circumferential width smaller than the circumferential width of slits 41 associated with channel 45.
Each portion 46a, 46b has a conduit 48, which extends through disk 39, parallel to direction 20, opens outwards at a bottom surface 49 of disk 39, parallel to and opposite surface 43, is offset both radially and circumferentially with respect to conduits 48 of the other portions 46a, 46b, and is connected to said pneumatic compressed-air device with the interposition of a solenoid valve 50.
Operation of machine 1 will now be described with reference to
the bottom shell F considered and the relative metering device 13 have been moved, in time with each other, into position beneath container 12a;
the relative cam follower roller 24 engages the portion 25 of cam 21 associated with container 12a, so that the compressed air fed into top chamber 34 by pneumatic circuit 35 moves piston 17 downwards, so that roller 24 engages bottom track 23;
the pharmaceutical product in container 12a is fed by force of gravity into relative metering cylinder 14; and
relative channel 45 is disconnected from said pneumatic compressed-air device (not shown) by relative solenoid valve 50.
As it rotates about axis 3, device 13 disengages container 12a with a given quantity of pharmaceutical product inside cylinder 14 (
An advantage of machine 1 lies in pneumatic push device 27 selectively controlling operation of each metering device 13, and preventing supply of the pharmaceutical product from either both containers 12a, 12b, in the event metering cylinders 14 are advanced in time with relative pockets 11 having no bottom shells F, or from one of containers 12a, 12b, in the event metering cylinders 14 are advanced in time with relative bottom shells F to be filled with the pharmaceutical product from the other container 12a, 12b.
A supply-cutoff operating mode will now be described with reference to
As wheel 2 rotates about axis 3 (clockwise in
Chamber 33 having a larger cross section than chamber 34, the upward thrust exerted on piston 17 by the compressed air fed into chamber 33 is greater than the downward thrust exerted on piston 17 by the compressed air fed into chamber 34, so that cam follower roller 24 is moved onto top track 22 of cam 21, and piston 17 into a raised position (
As a result, metering cylinder 14 disengages container 12a with a relatively small quantity of pharmaceutical product defined by the slope of top surface 18 of piston 17 with respect to relative axis 15 (
Upon slit 41 engaging portions 46a and/or 46b, and given the shape of portion 25 of cam 21, piston 17 is raised further and projects from cylinder 14 to expel the pharmaceutical product withdrawn from container 12a out of cylinder 14 and connect chamber 33 to conduit 37 (
At this point, slit 41 disengages portion 46b of relative channel 45, solenoid valve 50 is deactivated, and the pharmaceutical product expelled from cylinder 14 is sucked into a suction conduit 51 of a collecting bin 52 mounted along path P (
Finally, by combining engagement of portion 26 of cam 21 by cam follower roller 24 (
In connection with the above, it should be pointed out that portion 47, which is circumferentially narrower than the corresponding slits 41, allows each slit 41 to communicate simultaneously with portions 46a, 46b of relative channel 45. Given two consecutive slits 41 in the same group 42 of slits 41, it is therefore possible to activate solenoid valve 50 of portion 46b of relative channel 45 to feed compressed air to the downstream slit 41 in the rotation direction of wheel 2 about axis 3, and at the same time deactivate solenoid valve 50 of portion 46a of relative channel 45 to cut off compressed-air supply to the upstream slit 41 in the rotation direction of wheel 2 about axis 3.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
06425331 | May 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3565132 | Lefort | Feb 1971 | A |
4163354 | Austin | Aug 1979 | A |
5320146 | Stevie | Jun 1994 | A |
5855233 | Bolelli | Jan 1999 | A |
6390330 | Runft | May 2002 | B2 |
6425422 | Trebbi | Jul 2002 | B1 |
7210507 | Facchini | May 2007 | B2 |
Number | Date | Country |
---|---|---|
0 186 502 | Jul 1986 | EP |
WO 03094824 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20070284015 A1 | Dec 2007 | US |