This application is the National Stage of PCT/EP2012/001377 filed on Mar. 29, 2012, which claims priority under 35 U.S.C. §119 of Italian Application No. VI2011A000076 filed on Apr. 1, 2011, the disclosure of which is incorporated herein by reference. The international application under PCT article 21(2) was published in English.
The present invention relates to a machine for forming metal bars in particular suitable for melting and the subsequent continuous solidification of precious metal such as gold, silver, precious alloys, as well as other pure metals or different alloys, for producing ingots.
As known, producing ingots, in particular made of gold, silver, precious alloys, other pure metals and different alloys, is usually obtained by means of two different methods.
When producing light ingots, from 5 g up to 50 g, there is used a cold moulding and coining process, starting from semi-finished products, such as cylindrical-shaped preformed pads or billets.
When producing ingots with weight varying between 50 g and 50 Kg there is instead used the melting method and subsequent solidification of the metal in the special moulds.
In practice, the metal to be melted is placed within ladles, in form of powders, granules or loose raw materials of various sizes, wherein it is brought to melting.
Then the molten metal is poured in single ingot moulds, generally shaped to form a truncated-trapezoid wherein, solidifying, it takes the form of an ingot.
Such two operations, the melting one and the subsequent one for solidifying the material, must be carried out with special care, given that the obtained end-product must meet strict and specific standard requirements.
Actually the ingots available in the market, besides having an exact purity if made of pure metal, or an exact percentage of pure metal if made of an alloy (the so-called “count”), must have extremely precise dimensions and weight, an external configuration with regular surfaces, without depressions or cracks, a uniform coloration and, above all, they must have a perfect internal metal-graphic structure, without blowholes, microporosities and structural tensions.
In order to avoid obtaining faulty ingots not capable of allowing obtaining the “punching”, which would thus be considered as waste material, it is necessary that the entire production cycle be carried out with a lot of care, in particular during the steps of melting, solidifying and cooling the metal.
According to the current state of the art, production of ingots occurs, besides manually, by using melting furnaces provided with a crucible from which the molten metal is poured into the ingot moulds, also using plants of considerable dimensions, wherein the main work steps are performed through a continuous automatic cycle.
The most important documents of the prior art are: JP 4 305359 A, US 2001/050157 A1, DE 200 12 066 U1 and US 2007/289715 A1.
An object of the present invention is to provide a machine for forming metal bars, in particular for producing ingots, made of precious and non-precious material and, which, though including the steps of melting and solidifying the material, does not have the drawbacks revealed by the plants of the known type.
Such object is attained by providing a machine, in which there are present six operating stations, arranged in succession wherein:
The characteristics of the invention will be made clearer through the description of a possible embodiment thereof, provided by way of non-limiting example, with reference to the attached drawings, wherein:
As observable from the figures, the machine according to the invention, generally indicated with reference 100, comprises:
As can be seen in
From an operational point of view, in each single ingot mould 1 there is poured an exact weight of metal, in form of powder, grits or swarf of various sizes (pouring element “A”) and there is added a chemical additive (dosing element “B”), which creates a chemical reaction with the impurities contained in the metal and which is made up of Boric acid, Borax, Potassium Nitrates, Ammonium, Sodium, lithium and Potassium and Sodium Chlorides, used separately or mixed.
Lastly, in said first station 101 there occurs the positioning of the cover 4 for closing the filled ingot mould.
From a constructional point of view, as can be seen in the detailed
Furthermore, the interior space of the ingot mould 1 is made up of two distinct volumes; the lower volume 1.1 constitutes the actual “mould”, wherein there are determined the form and the dimensions of the ingot, according to the international standards, such as for example the LMBA standards, or with the other specific requirements of the client and a second upper volume 1.2, which can be differently configured, with the aim of facilitating the deposit of the metal during the loading step.
Then, the pushing device 3 pushes the “train” from the station 101 for supplying the ingot moulds to the melting station 102, wherein there may be a heating furnace 5, in which the ingot moulds and the spacers slide on a refractory surface in absence of controlled atmosphere, or a tunnel 6, in which the ingot moulds and the spacers slide on the surface of the tunnel or on guides, variously heated, through electrical resistors, by electromagnetic induction, through burners of the gas type or of any other type, up to the operating temperature; by way of example, regarding the ingots made of silver (Ag) such temperature is of about 1150° C. While for the ingots made of gold (Au) it is of about 1250° C. and in the tunnel or in the guides there is insufflated inert gas, such as nitrogen, nitrogen-hydrogen mixture with max. 4.5% of hydrogen (H), to create an “inert” environment, which prevents the ingot moulds and the covers from being subjected to oxidation and thus prevents a quick wear and keeps the molten metal protected from oxygen.
Practically, the difficulty of repetitively and constantly adjusting the melting temperature of the ingots within the tunnel is partly overcome by using the “induction” heating, wherein the increase of the heating temperature (thermal gradient) occurs with at least two ramps (
Furthermore, with the aim of reducing the heat and the atmosphere of the inert gas, within the tunnel 6 there is provided for, at the lateral openings for the inlet and outlet of the “train”, the application of mobile partitions 7 obtained, for example, with the guillotine technique, which create a mobile or flexible insulating refractory barrier, the movement thereof being manual or automatic.
Then, still from an operational point of view, once the melting time elapses there is activated the pushing device 3, which provides for moving the “train” forward; the ingot moulds present on the loading surface are pushed into the furnace/tunnel 5/6 and the same, in turn, push the ingot moulds present in the tunnel/furnace 5/6 to exit, with the aim of allowing the latter, containing the molten metal, then pass in the station of “secondary addition” 103 and, subsequently, in the solidification station 104.
From an operational point of view, in the station 103 there occurs the raising of the cover of the ingot mould, by means of grippers of the mechanical type, pneumatic type or any other type, while dosing systems of the mechanical type, pneumatic type or any other type, add in each single ingot mould 1, on the molten metal, an accurate amount of chemical additive (dosing element “C”), which creates a chemical reaction with the impurities contained in the molten metal, the additive being made up of Boric acid, Borax, Potassium Nitrates, Ammonium, Sodium, Lithium and Potassium and Sodium Chlorides, used separately or mixed; subsequently the cover is repositioned on the ingot mould.
Also in the process of “secondary addition” there should be created an “inert” environment, regarding which there is introduced a flow of inert gas such as Nitrogen, Argon or Nitrogen-Hydrogen mixture, which prevents the oxidation of the ingot moulds and the covers and protects the metal still in liquid form against oxygen. Then, in the solidification station 104 the incandescent temperature ingot moulds, containing the molten metal and closed by the cover, slide until they stop on a cooling surface 10, cooled with water by means of passage holes present therewithin and made using copper, aluminium or alloys thereof or other materials suitable for the controlled dispersion of heat, in which they remain for a predefined period of time, averagely 1 to 5 minutes, as a function of the amount of material to be solidified, up to the complete solidification of the entire mass.
Also in the solidification process there should be created an “inert” environment, hence there is introduced a flow of inert gas such as Nitrogen, Argon or Nitrogen-Hydrogen mixture, which prevents the oxidation of the ingot moulds and the covers and protects the metal being solidified against oxygen.
Specifically, depending on the internal metal structure the ingot is required to obtain, which should have large, medium or small crystals and a more or less marked solidification shrinkage, the solidification station 104 may be provided with further insulating or refractory cooling plates for slowing the thermal dispersion 11; such plates may be possibly provided with notches for defining the localised heat areas, which are placed near or in contact with one or more sides of the ingot mould and of the cover (see
Alternatively, when there is required an accurate control of the thermodynamic solidification gradients, with the aim of obtaining an ingot with the most suitable solidified metal structure the solidification station 104 may be provided with heating panels 12 for example heated using electrical resistors, gas or using any other means, also positioned around the ingot mould and on the cover.
Furthermore, with the aim of having a further possibility of accurately determining the thermodynamic gradients, depending on the internal metal structure the ingot is required to take, the cooling plate 10 may have the sliding surface—on which the ingot moulds stop in the solidification step—having a flat and smooth surface, or provided with millings in relief or recessed; furthermore the passage of the cooling fluid may be executed longitudinally and/or transversely to the direction of movement of the “trains” of ingot moulds (see
Due to construction reasons, in some cases the “secondary addition” station 103 and the solidification station 104 may be incorporated in a single station 103/104, where there the addition and solidification steps are performed sequentially.
Subsequently, the ingot mould passes in the cooling station 105 and such operation may occur through two different operating modes, according to the set production times and as a function of the type of material and the “size” of the produced ingots. Specifically, the two cooling methods are:
From an operational point of view, the quick cooling provides for the raising of the cover of the ingot mould, by means of grippers of the mechanical type, pneumatic type or any other type, while actuators of the mechanical type, pneumatic type or any other type lock the ingot mould at the base.
Then, the aforementioned actuators rotate and tilt the ingot mould and, by gravity, the hot ingot falls into a basket 14, submerged in the cooling vat 13 which after a suitable cooling time, through a translation movement, exits from the aforementioned vat to allow the collection of the cooled ingot 20.
Still subsequently, on the contrary, after the empty basket 14 returns, the repositioning of the empty ingot moulds and the lowering of the covers, the head pushing device 3 moves the “train” forward, so that the empty ingot mould, sliding, ends up positioned in the unloading station 106, from which it is collected together with the ingot 20.
In particular said unloading station 106 may be suitably extended, so as to allow the “train” of ingot moulds to remain exposed on the cooling surface over a long period of time, so as to be able to gradually reach a temperature suitable to allow an easy handling by the operator who should collect them empty (in case of quick cooling), or should remove the covers and collect the cooled ingots from the ingot moulds (in case of normal cooling).
The invention thus conceived can be subjected to numerous variants and modifications and the construction details thereof can be replaced by technically equivalent elements, all falling within the inventive concept defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
VI2011A0076 | Apr 2011 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/001377 | 3/29/2012 | WO | 00 | 10/17/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/130451 | 10/4/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20010050157 | Drowd | Dec 2001 | A1 |
20070289715 | Crafton et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
20012066 | Sep 2000 | DE |
4 305359 | Oct 1992 | JP |
Entry |
---|
International Search Report in PCT/IT2010/000452 mailed Jul. 10, 2012. |
Written Opinion of the International Searching Authority mailed Jul. 10, 2012. |
Number | Date | Country | |
---|---|---|---|
20140041825 A1 | Feb 2014 | US |