1. Field of the Invention
The invention generally relates to machines for making a sheath for use with medical or dental instruments.
2. Discussion of the Related Art
Machines for making sheaths for use with, e.g., medical or dental instruments are well known. Some of these machines make a single type of sheath and typically require multiple passes through the machine to produce sheaths on substrate sheets that have webs of intermediate material between adjacent sheaths on each substrate sheet.
The present invention provides a machine configured for rapidly changing machine configuration to produce different sheaths for medical or dental instruments with different pocket shapes and/or other differences in configuration during different production runs. Each production run makes the respective sheaths in a single pass through the machine. This may facilitate making sheaths to fit different types of medical or dental instruments in an efficient manner, without requiring separate machines and while minimizing machine down-time between the production runs. In accordance with a first aspect of the invention, the machine has sheath-specific dies that are installed in a toolless manner at the machine. The dies may be incorporated as die assemblies that are pre-assembled as this or die bodies mounted to mounting plates that are together toollessly installed into the machine during the product line switchover reconfiguration of the machine. The die assemblies may be held in the machine by electromagnetically retaining the die assemblies in presses and/or by way of toolless hardware such as pins for positional locking the die assemblies in retaining channels of presses at various stations of the machine.
In accordance with another aspect of the invention, the machine includes a burn barrier drive system that automatically and incrementally advances a sheet of burn barrier material with respect to a configuration die at a configuration sealing station. The burn barrier drive system may automatically and incrementally drive the burn barrier material by rotating to unwind or pay out material of a first storage roll that crosses under the configuration die as a sheet in a first travel direction and rotating to wind or receive the material, on a second storage roll. This burn barrier driving may be bi-directional so that when the second storage roll collects a sufficient amount of the burn barrier material, the burn barrier drive system rotates the first and second rolls in the opposite rotational directions. This drives burn barrier material under the configuration die in the opposite travel direction to wind the material back on to the first roll. Incremental advancing and/or bi-directional burn barrier material movement allows for heating elements of the configuration die to engage different portions of the burn barrier material without requiring manual feeding or repetitive contacting of the same location of the material by the heating elements. This reduces a likelihood of burn-through or other over-heating of the burn barrier material.
In accordance with another aspect of the invention, a single-pass machine for making sheaths for medical or dental instruments includes a web attachment station. The web attachment station is configured to form a multiplayer material by arranging multiple webs of material with respect to one another. A configuration sealing station is provided and receives the multilayer material from the web attachment station. The configuration sealing station is configured to seal at least two of the multiple webs of material with respect to one another at multiple locations. In this manner, a number of sealed pockets may be defined by the sealed multilayer material. Each, of the sealed pockets defines a sealed periphery that corresponds to the shape of a medical or dental instrument. A material removal station is provided and receives the sealed multilayer material from the configuration sealing station. The material removing station is configured to remove an intermediate material defined between adjacent sealed pockets of the sealed multilayer material and to thereby define an uncovered pocketed material. Finally, a recycling station receives the intermediate material and is configured to incorporate the intermediate material into a recycled material. The recycling station may provide an on-site collection point for the intermediate material for sending to an off-site recycler.
In at least one embodiment of the invention, the multiple webs of material are incrementally advanced through at least some stations of the machine. In another embodiment of the invention, the multiple webs of material are continuously advanced through at least some of the stations of the machine.
In yet another embodiment of the invention, the material removal station includes a blower arranged to pneumatically remove the intermediate material.
In still another embodiment of the invention, the machine further includes a covering web station configured to receive the uncovered pocketed material. The covering web station is configured to cover the uncovered pocketed material with material to define a cover to pocketed material.
In another embodiment of the invention, the machine further includes an indexing station that receives the covered pocketed material and advances the cover pocketed material away from the covering web station.
In yet another embodiment of the invention, the machine further includes a cutting station configured to receive the covered pocketed material from the indexing station. The cutting station is configured to cut the covered pocketed material into sheets of sheaths so that each sheet includes multiple sheaths that can be separated from the remainder of the sheaths of the sheet.
According to another aspect of the invention, multiple dies may be used at the configuration sealing station at different times for making different sheaths. The dies have different patterns that correspond to different pocket shapes of different sets of sheaths to be made during different sessions of the machine. A first die may be arranged at the configuration sealing station for moving toward the multilayer material to create the sealed pockets. The first die may define a first pattern that corresponds to a first pocket shape of a first set of sheaths made during a first session of the machine. A second die may define a second pattern that corresponds to a second pocket shape of a second set of sheaths made during a second session of the machine. The machine may include a controller configured to control the configuration sealing station by adjusting at least one of a heat setting and an engagement time setting to a first setting value when the first die is arranged at the configuration sealing station during a first production run and to a second setting value when the second die is arranged at the configuration sealing station during a second production run.
According to another aspect of the invention, each of the dies includes an electrical connector that allows for toolless connections of the dies to a power source. This may allow for quick changeover between different dies at the configuration sealing station. Each of the dies may include heating wires that are indented with a punch having a lower end with an annular sidewall that includes a slot at one side to align over the heating wire(s) so that the opposite side of the lower end of the punch forms the indentation into the wire. This may allow for dies that are wired in a manner in which the wire fits into the die pattern the same each time, even when built by different individual die builders.
According to another aspect of the invention, the machine has a web attachment station for forming a multilayer material, by arranging multiple webs of material with respect to each other. A configuration sealing station receives the multilayer material from the web attachment station and seals at least two of the multiple webs of material with respect to each other at multiple locations to define a sealed multilayer material having multiple sealed pockets. Each of the sealed pockets defines a sealed periphery corresponding to a shape of a medical or dental instrument. A first configuration die is selectively arranged at the configuration sealing station for moving toward the multilayer material to create the sealed pockets and defining a first pattern, that corresponds to a first pocket shape of a first set of sheaths made during a first session of the machine. A second configuration die is selectively arranged at the configuration sealing station for moving toward the multilayer material to create the sealed pockets and defining a second pattern that corresponds to a second pocket shape of a second set of sheaths made during a second session of the machine. A controller is configured to control the configuration sealing station by adjusting at least one of a heat setting and an engagement time setting to a first setting value when the first configuration die is arranged at the configuration sealing station and to a second setting value when the second configuration die is arranged at the configuration sealing station.
According to another aspect of the invention, a configuration press may be arranged at the configuration sealing station. The configuration press is actuatable to apply pressure between multilayer material and the respective one of the first and second configuration dies. This creates the multiple sealed pockets. Each of the first and second configuration dies is removably mounted to the configuration press with a toolless mounting system.
According to another aspect of the invention, the toolless mounting system may include an electromagnetic retainer arranged at the configuration press. The electromagnetic retainer is configured to selectively secure the configuration die(s) to the configuration press. An electromagnet of the electromagnetic retainer may receive its power from an electrical circuit that is separate from an electrical circuit delivering machine power for operating other components of the machine.
According to another aspect of the invention, the configuration press may include a fixed base block and a moveable press block overlying the fixed base block. The electromagnetic retainer may be arranged to magnetically secure the configuration die(s) to the moveable press block, such as from above to electromagnetically pull and hold the configuration die(s) upwardly against the movable press block in a fixed position.
According to another aspect of the invention, the configuration die may be of multiple component construction that can be preassembled to facilitate relatively quick die changeover events. The configuration die may include a die body with a heating element for creating the multiple sealed pockets and a mounting plate to which the die body attaches, allowing the mounting plate and the body to be mounted as a preassembled unit to the configuration press.
According to another aspect of the invention, the toolless mounting system includes alignment pins and alignment holes defining an alignment interface between the configuration press of the configuration sealing station and each configuration die. The alignment holes receive the alignment pins to locate the configuration die(s) when the die(s) achieves a predetermined aligned position relative to the configuration press. The alignment pins and alignment holes may be arranged at respective upwardly and downwardly facing surfaces of the configuration die(s) and movable press block.
According to another aspect of the invention, the machine includes a die cutting station downstream of and receiving a web of interconnected sheaths defined by the multilayer material with the multiple sealed pockets from the configuration sealing station. The die cutting station may include a cutting press actuatable to apply pressure to the web of interconnected sheaths to separate into relatively smaller segments with relatively fewer interconnected sheaths. A first cutting die may be selectively arranged at the die cutting station for moving toward the interconnected sheaths during actuation of the cutting press. The first cutting die is configured to separate the interconnected sheaths into relatively smaller segments according to a first pattern of separation, such as during a first production run. A second cutting die may be selectively arranged at the die cutting station for moving toward the interconnected sheaths during actuation of the cutting press. The second cutting die is configured to separate the interconnected sheaths into relatively smaller segments according to a second pattern of separation, such as during a second production run. Each of the first and second cutting dies may be removably mounted to the cutting press with a toolless mounting system.
According to another aspect of the invention, the toolless mounting system may include at least one channel in the cutting press that slidingly receives the cutting die(s). The toolless mounting system may include a locking pin configured to extend and retract relative to the cutting press to selectively engage and lock into a locking hole of each of the cutting dies. The locking pin includes a pin body, and a spring that biases the pin body to extend from the cutting press into the locking hole of respective cutting die(s).
According to another aspect of the invention, the cutting die may include a die body with a cutting element for separating the interconnected sheaths and a mounting plate to which the die body attaches, allowing the mounting plate and die body to be mounted as a preassembled unit to the cutting press.
According to another aspect of the invention, a burn barrier defined by a web of heat-resistant material is arranged between the first or second configuration die and the multilayer material to prevent contact of the first or second configuration die and the multilayer material. The burn barrier incrementally advances between cycles during which the pockets are formed, such as between pressing cycles of the configuration die. At least one stepper motor may incrementally advance the burn barrier heat-resistant material with respect to the configuration die(s). A pair of electronic sensors may be arranged to detect a full roll of a pair of rolls of the burn bather heat-resistant material. The stepper motor(s) is reversed and the roll of heat-resistant material is advanced in the opposite direction upon detection of the full roll of the burn barrier heat-resistant material. A one-way clutch may be arranged at a roll of the web of heat-resistant material of the burn barrier to incrementally rotate the roll for advancing the web of heat-resistant material with respect to the configuration sealing station.
According to another aspect of the invention, the machine has a web attachment station for forming a multilayer material by arranging multiple webs of material with respect to each other. A configuration sealing station receives the multilayer material from the web attachment station. The configuration sealing station includes a configuration die that seals at least two of the multiple webs of material with respect to each other at multiple locations to define a sealed multilayer material having multiple sealed pockets during sealing events. Each of the sealed pockets defines a sealed periphery corresponding to a shape of a medical or dental instrument. The configuration sealing station may include a burn barrier arranged between the multilayer material and the configuration die preventing direct contact between the multilayer material and the configuration die. The burn barrier may include a web of heat-resistant material and a burn bather drive. The burn barrier drive may incrementally advance the web of heat-resistant material with respect to the configuration die during time periods between the sealing events. The machine may include an indexing station configured to receive a web of interconnected sheaths defined by the sealed multilayer material with its formed pockets either directly from the configuration sealing station or from an intermediary station such as a covering web station that adds a covering material such as packaging over the sealed and pocketed multilayer material. The indexing station is configured to move a predetermined length of the interconnected sheaths a predetermined distance through the indexing station based on final dimensions of the particular sheaths being made during a production run and/or dimensions of an array of cutting elements of a cutting die. This may be done by way of reciprocating clamps, movable tracks, linear or other motors, or other actuators to advance the interconnected sheaths through the indexing station. The indexing station may receive the interconnected sheaths from a covering web station that applies a covering material which may be packaging-type material over the interconnected sheaths. A die cutting station may receive the covered pocketed material from the indexing station and cut the covered pocketed material into sheets of sheaths so that each sheet includes multiple sheaths that can be separated from the remainder of the sheaths of the sheet.
According to another aspect of the invention, a burn barrier system arranged at the configuration sealing station includes a pair of rolls storing the burn barrier heat-resistant material with the web extending between the pair of rolls. When the burn barrier heat-resistant material advances with respect to the configuration die, burn barrier heat-resistant material is unrolled from one of the rolls and received and rolled onto the other roll. The burn barrier system may include a pair of electronic sensors configured to detect a full roll of the heat-resistant material and a stepper motor. The stepper motor is controlled by a control system to advance the roll of heat resistant material, such as by incremental advancement. When the electronic sensors detect a full roll of the heat resistant material, a direction of the motor is reversed and the roll of heat-resistant material is advanced in the opposite direction.
Another aspect of the invention comprehends a method of making sheaths for use with a medical or dental instrument in a single pass through a machine. The method includes beginning a first production run. During the first production run, multiple webs of material are directed to a web attachment station and a first multilayer material is formed by converging the multiple webs of material onto one another in a first stacked web defining the multilayer material. The first multilayer material is directed to a configuration sealing station. At the configuration sealing station, the first multilayer material is sequentially pressed with a first configuration die sealing the multiple webs of material of the first multilayer material with respect to each other at multiple locations to define a first sealed multilayer material having multiple sealed pockets. This happens during sequential sealing events. Each of the sealed pockets defines a sealed periphery of a first shape corresponding to a shape of a first medical or dental instrument. A burn harrier defined by a web of heat-resistant material is advanced between the first configuration die and the first multilayer material by incrementally moving the heat-resistant material between the sequential sealing events. A second configuration die is prepared by attaching a die body of the second configuration die to a mounting plate. This can be done as a preliminary preparation while the first production run is underway. The first production run can be stopped and the first configuration die may be removed from the configuration sealing station, such as by removing from a press, in a toolless manner. The second configuration die may be toollessly mounted at the configuration sealing station of the machine, such as by mounting to a press in a toolless manner. A second production run begins. During the second production run, multiple webs of material are directed to the web attachment. A second multilayer material is formed by converging the multiple webs of material onto one another in a second stacked web defining the multilayer material. The second multilayer material is directed to the configuration sealing station. At the configuration sealing station, the second multilayer material is sequentially pressed with the second configuration die. This seals the multiple webs of material of the second multilayer material with respect to each other at multiple locations to define a second sealed multilayer material having multiple sealed pockets during sequential sealing events. Each of the sealed pockets defines a sealed periphery of a second shape corresponding to a shape of a second medical or dental instrument. The burn barrier heat-resistant material is advanced between the second configuration die and the second multilayer material by incrementally moving the heat-resistant material between the sequential sealing events.
Various other features, embodiments, and alternatives of the present invention will be made apparent from the following detailed description taken together with the drawings. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration and not limitation. Many changes and modifications could be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout and in which:
A machine for making sheaths for dental or medical instruments in a single pass utilizes webs of material such as, e.g., polyethylene and/or other polymeric materials. The sheaths are used as cross-contamination barriers and generally consist of a polyethylene sheath packaged between a paper backing web and a plastic or paper-covering web. Additional components may be incorporated into the sheath design as necessary.
The raw materials for forming the sheaths are loaded on one end of the machine and are automatically fed through the machine in a start/stop manner to carry out the necessary operations for forming the sheaths. Understandably, the raw materials may alternatively be fed through in a continuous manner to form the sheaths. The machine operates on a fixed start/stop cycle, and a width of the sheath runs along the length of the machine while the length of the sheath runs along the width. The size and number of sheaths produced may be adjusted by varying the cutting of the web material.
The machine includes a series of stations, such as a web attachment station, a configuration sealing station, a material removal station, an indexing station, a die cutting station, and a recycling station. The web attachment station is configured to form a multilayer material arranged from multiple webs of material with respect to one another. After the material passes through the web attachment station, it is advanced to the configuration sealing station wherein at least two of the multiple webs of material are sealed with respect to each other at any number of locations to thereby define a sealed multilayer material including multiple sealed pockets. Each of the sealed pockets define a sealed periphery that corresponds to a shape of a medical or dental instrument for which the sheath will be used. After passing through the configuration sealing station, the material is advanced to a material removal station wherein the sealed multilayer material has an intermediate material removed therefrom. Intermediate material defined between adjacent sealed pockets of the sealed multilayer material may be removed to define an uncovered pocketed material as a web of interconnected sheaths. After passing to the material removal station, the intermediate material is passed to a recycling station whereby it is incorporated into a recycled material. The web of interconnected sheaths advances to the die cutting station.
Referring now to
Referring now to
Referring now to
Referring again to
Referring again to
Referring now to FIGS. 1 and 10-11, at the configuration sealing station 48, a burn barrier 74 may be defined by a web of heat-resistant material 76 and arranged between the die 54 and the multilayer material 46 (
Turning now to
Regardless of the particular configuration of the burn barrier drive system 79, it can be configured to automatically and incrementally drive the burn barrier material or heat-resistant material 76 by rotating to unwind or pay out material of a first storage roll 78 that crosses under the configuration die 54 (
Referring now to
Still referring to FIGS. 1 and 2A-D, after the removal of the intermediate material 98, the uncovered pocketed material 100 is advanced to a covering web station 104 (
Referring now to
Referring now to FIGS. 1 and 14-15, a static string 110 may be employed to remove static from the product at various locations of the machine 20, for example, after the indexing station 108. The static string 110 may include a non-elastic or elastic cord that extends transversely across the machine 20 and engages the sheaths or material components traveling through the machine 20 to remove static from the product during a session. The static string 110 may be grounded to the machine 20 by a support 112 having a magnetic base 114 removably attached to the machine 20 at each end of the static string 110.
Referring again to
Referring again to
Referring now to the schematic representation of
Referring to
Still referring to
Referring now to
Referring now to
Although the toolless mounting system 136 was described as electromagnetic in the configuration press 130 and mechanical in the cutting press 160, it is understood that the toolless mounting system 136 may instead be mechanical in the configuration press 130 and electromagnetic in the cutting press 160, both may be electromagnetic, or both may be mechanical.
Although the best mode contemplated by the inventors of carrying out the present invention is disclosed above, practice of the present invention is not limited thereto. It will be manifest that various additions, modifications, and rearrangements of the aspects and features of the present invention may be made in addition to those described above without deviating from the spirit and scope of the underlying inventive concept. The scope of some of these changes is discussed above. The scope of other changes to the described embodiments that fall within the present invention but that are not specifically discussed above will become apparent from the appended claims and other attachments.
The present application claims the benefit of U.S. App. No. 61/929,876 filed Jan. 21, 2014, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61929876 | Jan 2014 | US |