1. Field of the Invention
The present invention relates to a machine for single sided or double sided application of a liquid or viscous coating medium by way of at least one applicator device onto the surface of a moving material web, especially a paper or cardboard web.
2. Description of the Related Art
With a view to guaranteeing good coating results that meet high quality standards, the various components of the referenced machinery, as well as the coating medium collecting device are subject to a multitude of requirements. Considering that the curtain or veil should not be too high, in other words, that the dispensing opening arrangement is not too high above the moving background, the medium collecting device should be constructed comparatively compactly, especially with regard to its height. On the other hand, a methodical removal of the collected medium through the collecting device must be ensured. This can be difficult, especially with highly viscous mediums and/or very wide machines and under conventional projections may only be possible with the acceptance of a high curtain height.
The addressed requirements are obviously competing with each other. The problem can be alleviated somewhat by making the coating application onto a material web segment that inclines or drops off in the direction of web travel and in that the coating medium is removed at least initially, in the direction of web travel, or in the direction opposite to web travel. In spite of this, the problem of accepting and releasing the curtain or veil through the medium collecting device as closely as possible above the moving background, especially the material web surface, remains in order to avoid or at least reduce contraction of the released or severed curtain, so that the background is not treated with undefined coating medium, especially coating medium drops. What is needed in the art is an improvement in this area.
In a narrower context of the previously cited problem an additional requirement arises in that, to pick up the curtain or veil in order to interrupt the application process, or to release it to start the application process through elements of a suitably formed edge so that an undefined treatment of the moving background, especially the moving material web with coating medium is avoided. With conventional coating medium collection devices that are in the embodiment of pans or troughs (so-called “starter troughs”) that extend across the material web, a situation may arise where the curtain may run off a wall of the starter trough due to adhesion and surface tension effects in the manner of the well known “tea pot effect” and drip from the wall in an undefined fashion onto the background. This type of coating medium run-off from surface segments of the medium collecting device should be avoided. What is needed in the art is an improvement in this area.
With machinery of the referenced type, clean-up of components and surfaces which are in contact with the coating medium is generally an issue. This also applies especially to the coating medium collecting device. Since this type of machinery is often subject to space restrictions in direction of web travel, as well as to height restrictions this denotes that only limited space is usually available for the provided “curtain nozzle” and the medium collecting device allocated to the nozzle. This frequently results in difficult access to the medium collecting device for clean-up purposes. In addition it is desirable if a quasi-automatic clean-up process without the direct intervention of the operating personnel upon the components that are to be cleaned is possible. What is needed in the art is to render possible an effective clean-up method for the medium collecting device.
The present invention relates to a machine for single sided or double sided application of a liquid or viscous coating medium by way of at least one applicator device onto the surface of a moving material web, especially a paper or cardboard web, whereby the applicator device delivers the coating medium through an arrangement of dispensing openings, especially a slotted nozzle either directly or via at least one guide surface, in the form of a curtain or veil which under the influence of gravitation or other forces moves toward a moving background. In the instance of direct application the moving background is the surface of the material web and in the instance of the indirect application the moving background is the surface of a transfer element, preferably a transfer roll which then transfers the coating medium to the surface of the material web. The machine includes a coating medium collecting device, possibly a catch pan or catch trough that is allocated to the applicator unit or to a dispensing section of the applicator unit which includes the dispensing opening arrangement. The collection device is intended to collect coating medium that is dispensed from the dispensing opening arrangement during startup and/or completion of the application process and/or during interruption of the operational phase.
The present invention provides, with regard to the machinery referenced at the beginning, that the medium collecting device be equipped with at least one receiving and release component which is allocated to it and which is or can be mounted detachably on the medium collecting device. During the start of the application process, the component releases the curtain or veil due to a common adjustment with the medium collecting device or of a section component of the same relative to the curtain or veil from a rim extending across the moving background or from an edge extending across the moving background; and/or the receiving and release component does, based on a common adjustment with the medium collecting device or a section component of same relative to the curtain or veil, at least initially engage with and pick up and hold the curtain or veil away from the moving background with the rim or edge extending across the moving background, during an interruption or at the completion of the coating process.
The method according to the present invention simply resolves two essentially competing conditions at the same time. It achieves on the one hand that the curtain is released as low as possible above the moving background for the start of the coating process, and is picked up during an interruption or at completion of the coating process. Local excessive application due to the curtain contracting because of surface tension can therefore be avoided, or at least reduced. On the other hand and in spite of this a large coating medium flow can still be captured, held and discharged based on appropriate construction of the medium collecting device or its section components, for example if a sufficiently high limiting wall is provided for the receiving and release component. It is entirely feasible that in the course of the interaction with the curtain, applied coating medium simply remains on the receiving and release component whose rim or edge may be located much lower above the moving background, especially the material web, than an upper rim of the limiting wall, and is not removed to the medium collecting device or its section component, or toward the web edge.
In accordance with the first aspect, the present invention in addition provides a method for operation of the machinery in accordance with the present invention. It is suggested that prior to the start of the coating application the receiving and release component or at least one receiving and release component of several allocated receiving and release components is mounted on the medium collecting device and/or that prior to the start of the coating application process or after the start of the coating application process during continuous coating operation, prior to completion or during interruption of the coating process the receiving and release component that contains coating medium or to which coating medium adheres is removed from the medium collecting device and that the, or at least one other, especially cleaned receiving and release component that is free from coating medium is again mounted to the medium collecting device. This method permits easy removal of residual coating medium from the receiving and release component.
The present invention provides with regard to the machinery referenced at the beginning or, in an advancement, with regard to the inventive machinery in accordance with the present invention that the medium collecting device or the receiving and release component assigned to the collecting device exhibits a tabular, especially knife-edge type edge that extends across the moving background. The edge progresses preferably ascending to a sharp edge extending in direction of travel of the background or in opposite direction to the direction of travel across the moving background. Through elements of an adjustment relative to the curtain or veil it serves to release the curtain or veil at the start of the coating application process to permit it to move toward the moving background, and/or it engages with the curtain or veil during interruption or at completion of the application process, through elements of an adjustment relative to the curtain or veil. This configuration of the edge extending across the moving background avoids that, during an interruption of the application process the curtains makes contact with a surface on which drops can form and run off, or that during release of the curtain it can run off a surface because to drops that formed under the so-called “tea pot effect”. An ideal embodiment of the edge is a knife-type sharp edge.
It has proven especially advantageous if the edge extends at an angle of 20° to 60°, preferably at an angle of 30° to 50° from a horizontal line, either in direction of web travel or in opposite direction. It has also proven advantageous if the edge extends over 5 to 50 mm, preferably over 10 to 30 mm in horizontal direction.
It is advantageous if the edge originates from an essentially vertically progressing wall section of the medium collecting device or a sectional component of same, or from the receiving and release component. In this context it has proven useful if the wall section extends in vertical direction over 0 to 50 mm, preferably over 0 to 30 mm, and most preferably over 10 to 20 mm.
The wall section or the edge can advantageously originate from a horizontally or inclined progressing floor section of the medium collecting device or a sectional component of same, or from the receiving and release component. In this context it has proven useful if the floor section slopes at an angle of 0° to 50°, preferably at an angle of 0° to 30°, and most preferably at an angle of 5° to 15° from horizontal.
The present invention provides that at least one supply line is allocated to the medium collecting device that is connected or can be connected to a cleaning liquid supply and through which the surface sections of the medium collecting device that come in contact with the collected coating medium can be supplied with cleaning liquid. The supply line may be an integral part of the medium collecting device. The supply line extends for example transversely to the direction of travel of the material web across the entire cross dimension of the medium collecting unit. Particularly advantageous is an embodiment of the supply line in the form of a spray pipe.
The present invention provides surprising results in that since it is known that, generally, recovery and, ordinarily after processing, reuse of the coating medium that was collected by the medium collecting unit is provided for. Such a recovery is made difficult, or impossible, if cleaning liquid, perhaps water, is admitted into the coating medium return.
In order to make recovery possible in spite of this, or to at least make it easier, a further advancement of the present invention is suggested that provides for a valve arrangement which is connected to the medium collecting unit via at least a first connection and is connected to a cleaning liquid supply or cleaning liquid disposal or cleaning liquid processing or recovery via at least a second connection, and that is connected via at least a third connection to a coating medium processing or recovery arrangement, whereby the valve arrangement is reversible between a first valve condition where the first connection is connected with the second connection, and a second valve condition where the first connection is connected with the third connection. In this arrangement collected coating medium and used cleaning liquid can be routed separately and supplied to respective additional use or disposal.
In accordance with another aspect the present invention further provides a method for the operation of the inventive machine. It is generally provided that the coating medium collecting unit is cleaned prior to, during or after an application process of the machine, by way of supplying cleaning liquid via the supply line. With reference to the further expanded machine according to the third aspect it is specifically suggested for the method that the valve arrangement is switched to the second valve condition for clean-up and that the valve arrangement is switched to the third valve condition for the collection of coating medium in the medium collecting device. An especially preferred design arrangement of the method emphasizes that the medium collecting unit is cleaned after start of the application process, during coating, through elements of supplying cleaning liquid via the supply line.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
a-2b are schematic views which illustrates in partial
a-3b are schematic views which shows an additional variation for the collection of the coating medium through elements of an adjustable medium collecting unit, relative to starting, interruption or completion of the curtain application according to the present invention;
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
During start-up of the coater or in the event of short operational interruptions, for example in the event of a web break, as well as during completion of the application process the coating medium curtain or veil is captured by a movable medium collecting device 26-1. This device is illustrated in
Medium collecting device 26-1 includes a catch plate 40-1 which extends across the entire curtain width in cross direction to the direction of web travel and which extends essentially parallel to slanted material section 12-1. It therefore also slopes from the horizontal; it further includes a receiving and discharge trough 42-1 that extends in cross direction to the direction of web travel and slopes in that direction in order to cross-directionally discharge the coating medium supplied to it by the catch plate. The captured coating medium is discharged on catch plate 40-1, first in direction of web travel and subsequently in trough 42-1 in cross direction to the direction of web travel. The receiving and discharge trough 42-1 is located next to a vertically progressing material web section 12-2, or in other words next to the web guide section including turning rollers 16 and 18, supporting the web section, essentially at the same height as turning roller 16, so that sufficient space is available in height direction. Therefore, large volumes of coating medium can be picked up and discharged, as may be necessary with very large web widths. In addition, a comparatively large discharge gradient in cross direction to the direction of web travel can be provided, as would be required, for example, for highly viscous coating mediums, especially coating inks. For reference purposes it can be stated that typical coating inks for curtain-type application have a viscosity of 50 to 500 mPS (=cP, Centipoise). In contrast, highly viscous coating inks have a viscosity of higher than 500 mPs (=cP, Centipoise), again for reference purposes. The construction of the medium collecting device according to medium collecting device 26-1 is especially suitable for highly viscous coating inks, or medium collecting device 26-1 can be designed to be optimally suitable for highly viscous coating inks with regard to holding capacity of the receiving and discharge trough 42-1, with regard to the gradient of this trough in cross direction to the direction of web travel, as well as with regard to the gradient of catch plate 40-1 in direction of web travel.
Due to the web routing through the turn roller assembly, including turn rollers 16, 18, the other (second) side of the material web is now accessible for medium application, as described above. The second curtain applicator unit 10-2 accordingly includes a curtain applicator head 18-2 that dispenses a curtain 24-2 onto a further material section designated 12-3, which, again is sloped from the horizontal in the direction of web travel. A medium collection device 26-2 is again provided which is adjustable between one collection position in which curtain 24-2 impacts a catch plate 40-2 and is discharged via the catch plate and a catch and discharge trough 42-2 and one application position where the curtain impacts the material web section 12-3. The explanations and details given for collecting device 26-1 with reference to
Since no intermediate drying is provided between the curtain coaters, only the web turning roll assembly which makes contact with the second web surface that has not been coated by the first curtain applicator unit 18-1, material web section 12-3 is held under contact prior to applicator head 18-2 by turn roller 18 and contact free by an air-turn 44 after curtain applicator head 18-2. The air-turn is part of the web guide arrangement and interacts with an additional air-turn 46, in order to carry the web first through a contact-free dryer 48 and then through a contact-free dryer 50. Drying devices 48 and 50 may, for example be infrared dryers or hot air dryers.
Prior to applicator head 18-1 or 18-2 a device 19-1 or 19-2 may advantageously be provided for the removal or weakening of an air boundary layer that is carried along with the material web. This device may for example be in the form of a boundary layer suction device or boundary layer doctor blade.
It must be pointed out that it is not imperative that medium collecting device 40-1 or 40-2 is adjustable and applicator head 18-1 or 18-2 is stationary.
It must also be pointed out that the depictions in
Instead of adjusting the entire medium collection device, an adjustment could advantageously be made of only one receiving plate 41-1′″ of the medium collecting device, as depicted in
Other embodiments of the medium collecting device are also feasible.
a-6b shows in detail 6a the possibility that receiving plate 40-1′″ that is adjustable relative to medium collecting device 26-1′″ does not release or sever the curtain by itself, but that it is equipped with a separate receiving and release component 120 which is or will be mounted detachably on the receiving plate. The receiving and release component 120 which may be viewed as part of the medium collecting device is suspended, for example on a free edge of the receiving plate. The receiving and release component is optimized with regard to releasing the curtain at the start of the application, or with regard to severing the curtain at completion or during interruption of the application process, so that an undefined application of coating medium onto the material web is avoided or at least held to a minimum. It can be ensured that the edge that severs or releases the curtain is located as low as possible above the material web surface and that the curtain does not run off, or moisten surface sections of the medium collecting device while being severed or released, thereby risking an undefined application of coating medium onto the material web surface, for example due to dripping coating medium. The design of the receiving and release component is such that the coating medium separates itself flawlessly from an edge of the receiving and release component upon release, without running off the surface of the receiving and release component, due to surface tension and adhesion effects (“tea pot effect”) and that the curtain when it is severed, does not impact tabular surface sections of the receiving and release component.
In order to achieve this function one can accept that the receiving and release component accepts coating medium that cannot be discharged by the receiving and release component, but will remain on the receiving and release component until a change-out or clean-up. As indicated with a broken line in
Such a receiving and release component can also be located directly on catch plate 40-1 of the adjustable medium collecting device 26-1 (
Again referring to the design variations in
During start-up of the coater, or in the event of a momentary interruption of operation, for example in the event of a web break, the coating medium curtain or veil is captured by a movable catch trough 26 which is illustrated in
A so-called Aircut, air boundary layer doctor blade or an air boundary layer suction device that is identified with 19 and acts upon material web 12 in the area of turn roller 14 may be installed upstream from the applicator unit.
In the embodiment according to
If the receiving and release component 120 is not suspended on the medium collecting device 26 or 26a, then the coating medium runs off on the outside wall of the medium collecting device and drip uncontrolled unto the material surface in the course of coating start-up and when severing the curtain for the purpose of ending the curtain coating application. This is prevented by the special design form of the receiving and release component where, in the application position, a release and severing edge protrudes at an angle in the direction of the curtain. In addition, this severing and release edge is positioned clearly lower above the material web surface than the upper edge of the medium collecting device, so that in addition a contracting of the released curtain due to surface tension, dripping, etc is avoided, or at least brought to a minimum.
The coaters in the above cited examples each include a control unit (control unit 100 in
It is preferred that, at the beginning of the application process a stable curtain is adjusted initially while the curtain drops onto the collecting device. Once a stable curtain is achieved and the coater is generally operating in its desired state (desired running speed of material web, operating temperature of dryers), then the control unit adjusts the medium collecting device, or its receiving plate and/or the applicator head, so that the curtain subsequently drops onto the material web surface.
The control unit accordingly interrupts or ends the application process through adjustment of the medium collecting device or its receiving plate, and of the respective applicator head relative to each other, so that the curtain is again captured by the collecting device.
The catch plates of the medium collecting device according to the examples in
The curtain severing and release edge includes at least one cutting edge section 132 that, in the application position, progresses in the direction toward the curtain at an incline and terminates preferably in a sharp cutting edge 134. An even, tabular configuration of cutting edge 132 is preferred whereby this progresses preferably at an angle β of 30° to 50° from the horizontal in the direction of toward curtain (in the application position) or in the direction of travel, or opposite to the direction of travel.
Cutting edge 132 originates preferably from an essentially vertical wall section 136 of curtain severing and release edge 130, which extends preferably vertically over a height of 0 to 30 mm, and most preferably over a height of 10 to 20 mm (dimension y). Originating from wall section 136, or alternatively immediately from main section 138 of catch plate 40-1, cutting edge 132 extends preferably over 10 to 30 mm in horizontal direction (dimension x).
Main section 138 of catch plate 40-1 is preferably level and can extend advantageously at an angle α of 0° to 30°, preferably at an angle α of 5° to 15° from the horizontal, possibly parallel to the possibly inclining or sloping material web.
The gradient of cutting edge 132 and the distance between cutting edge 134 and wall section 136 in horizontal direction is such that the severed or released curtain does not run off or come in contact with the underside of cutting edge 132 or the outside surface of wall section 136. The curtain is severed at the completion of the application process and is released cleanly at the start of the application process without coating medium drops forming on the curtain cut-off and release edge, that could drop onto the material web. Drop formation resulting from a contraction of the released or severed curtain is thereby avoided, or at least reduced, so that cutting edge 134 can be positioned comparatively low above the material web surface, in any event lower than an upper edge of a pan-type medium collecting device that is designed for a large holding volume and discharge volume, as clearly indicated in
In accordance with another aspect of the present invention, medium collecting device 26, or a respective medium collecting device 26 in a coating machine can be equipped with a clean-up arrangement for quasi-automatic clean-up of the medium collecting device.
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 59 676 | Dec 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4841862 | Seefried | Jun 1989 | A |
4851268 | Kozak | Jul 1989 | A |
4879968 | Denz et al. | Nov 1989 | A |
5017408 | Kozak | May 1991 | A |
5105758 | Kozak | Apr 1992 | A |
5733376 | Costello | Mar 1998 | A |
5773093 | Mitani et al. | Jun 1998 | A |
5885659 | Takahashi et al. | Mar 1999 | A |
6464784 | Piccinino et al. | Oct 2002 | B1 |
6468592 | Becker et al. | Oct 2002 | B1 |
6610148 | Ruschak et al. | Aug 2003 | B2 |
6709517 | Holtmann et al. | Mar 2004 | B1 |
6729236 | Knabe et al. | May 2004 | B2 |
20030039761 | Shiraishi et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
195 00 402 | Jul 1996 | DE |
198 23 686 | Jan 1999 | DE |
199 03 559 | Oct 1999 | DE |
10-323604 | Dec 1998 | JP |
112 00 299 | Jul 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050132956 A1 | Jun 2005 | US |