Machine gun suppressor

Information

  • Patent Grant
  • 11859932
  • Patent Number
    11,859,932
  • Date Filed
    Tuesday, June 28, 2022
    2 years ago
  • Date Issued
    Tuesday, January 2, 2024
    11 months ago
  • CPC
  • Field of Search
    • US
    • 089 0142-0144
    • 181 223000
    • CPC
    • F41A21/30-38
  • International Classifications
    • F41A21/30
Abstract
A suppressor for a firearm includes a baffle stack having an outer surface, the baffle stack comprising a plurality of baffles that define an inner chamber extending along a central axis of the baffle stack and a projectile pathway through the baffle stack along the central axis. An outer housing is around the baffle stack and defines an outer volume between the outer housing and the baffle stack. Structures and openings in the suppressor promote a sinuous gas flow path through the inner chamber that enhances turbulent flow within the suppressor and reduces backpressure as desirable when used with a machine gun.
Description
FIELD OF THE DISCLOSURE

This disclosure relates generally to muzzle accessories for use with firearms and more particularly to a suppressor particularly suited for use with a machine gun.


BACKGROUND

Firearm design involves many non-trivial challenges. For example, rifles, machine guns, and other firearms have faced particular complications with reducing the audible and visible signature produced upon firing a round, while also maintaining the desired shooting performance. A suppressor is a muzzle accessory that reduces the audible report of the firearm by slowing the expansion and release of pressurized gases from the barrel. Visible flash can also be reduced by controlling the expansion of gases leaving the barrel as well as by controlling how muzzle gasses mix with ambient air.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a front perspective view of a suppressor, in accordance with an embodiment of the present disclosure.



FIG. 2 illustrates a rear perspective view of the suppressor of FIG. 1 and shows a blast chamber in the proximal end portion of the suppressor, in accordance with an embodiment of the present disclosure.



FIG. 3 illustrates a front perspective view of a suppressor shown without the outer housing to expose the baffle stack, flash hider, and diffusor baffle, in accordance with an embodiment of the present disclosure.



FIG. 4 illustrates a rear perspective view of the baffle stack of FIG. 3.



FIG. 5 illustrates a side and rear sectional view of a baffle stack with a flash hider on the distal end, in accordance with an embodiment of the present disclosure



FIG. 6 illustrates an exploded rear perspective view of the baffle stack and flash hider of FIG. 5, in accordance with another embodiment of the present disclosure.



FIGS. 7A-7D illustrate a side view, a bottom view, a top and rear perspective view, and a front perspective view, respectively, of a suppressor baffle, in accordance with an embodiment of the present disclosure.



FIG. 8 illustrates a front perspective view showing a longitudinal section of a suppressor, in accordance with an embodiment of the present disclosure.



FIG. 9 illustrates a rear perspective view showing a longitudinal section of a suppressor, in accordance with an embodiment of the present disclosure.



FIG. 10A illustrates a top sectional view of a suppressor, in accordance with an embodiment of the present disclosure.



FIG. 10B illustrates a front perspective view of the suppressor section of FIG. 10A, in accordance with an embodiment of the present disclosure.



FIGS. 11A-11D illustrate a front perspective view, a front view, a rear perspective view, and a side cross-sectional view, respectively, of an end cap configured as a flash hider, in accordance with an embodiment of the present disclosure.



FIG. 12A illustrates a distal end portion of a suppressor with an endcap configured as a flash hider, in accordance with another embodiment of the present disclosure.



FIGS. 12B and 12C illustrate a side view and a front perspective view, respectively, and show a longitudinal section as viewed along line BC-BC of FIG. 12A, in accordance with an embodiment of the present disclosure.



FIG. 13A is a front perspective view of a distal end portion of a suppressor with an endcap configured as a flash hider, in accordance with another embodiment of the present disclosure.



FIG. 13B is a side, sectional view of the distal end portion of the suppressor as viewed along line B-B of FIG. 13A, in accordance with an embodiment of the present disclosure.





The figures depict various embodiments of the present disclosure for purposes of illustration only. Numerous variations, configurations, and other embodiments will be apparent from the following detailed discussion.


DETAILED DESCRIPTION

Disclosed herein is a suppressor assembly having reduced gas back flow and a suppressor baffle for use in a suppressor assembly, in accordance with some embodiments of the present disclosure. In one example, a suppressor includes a baffle stack coaxially arranged within an outer housing, which can be cylindrical. The baffle stack has a plurality of generally conical or cone-like baffle structures connected to a baffle stack wall, which can also be cylindrical. The region within the baffle stack wall defines an inner volume that includes the path of the projectile through central openings of each baffle structure. An outer volume is defined between the baffle stack wall and the outer housing, such that the outer volume is concentric with and positioned radially outside of the inner chamber.


Individual baffle structures taper proximally from the baffle stack wall to a central opening on the bore axis. At least some of the baffle structures define a through-opening located between the central opening and the baffle stack wall, providing an alternate flow path from baffle to baffle for gases in a radially outer region of the inner chamber. A conduit wall extends between and connects adjacent baffle structures so as to define a gas flow pathway in a radially outer portion of the inner volume. For example, the gas flow pathway passes around a proximal one of the adjacent baffle structures and through the opening defined in a distal one of the adjacent baffle structures. Conduits between adjacent baffle structures can be arranged in alternating sides of the inner chamber to promote a sinuous gas flow path.


Flow-directing structures in the outer volume may include pairs of diverging vanes and pairs of converging vanes with respect to gases flowing distally through the suppressor. These flow-directing structures can promote gas flow between the inner chamber and outer volumes by creating localized regions of reduced or increased pressure. For example, converging vanes adjacent the proximal end of the baffle stack can direct gases from the outer volume into the inner chamber with a flow direction that crosses the bore axis. Pairs of diverging vanes can promote gas flow from the inner volume to the outer volume via ports defined in the baffle stack wall.


In some embodiments, the suppressor can include an integrated flash hider in the distal end of the suppressor assembly to reduce the visible signature. In one example, the flash hider includes a first flash hider portion and a second flash hider portion. The first flash hider portion vents gases directly from the inner volume, such as gases flowing along the bore axis. The second flash hider portion is located radially outside of the first flash hider portion and can be configured to vent gases directly from the outer volume, from the inner volume, or both. In some embodiments, the flash hider includes a third flash hider portion arranged to vent gases directly from the outer volume in parallel with gases venting from the inner volume. In one example, the third flash hider portion includes ports distributed around a radially outer portion of the endcap that vent gases directly from the outer volume.


When the firearm is discharged, the projectile travels through the suppressor along the bore axis, followed by combustion gases. Gases initially expand in a blast chamber in the proximal end portion of the suppressor. A first portion of combustion gases continues along the bore axis and enters the baffle stack through a central opening in the first baffle, sometimes referred to as the blast baffle. A second portion of combustion gases flows into the outer chamber between the baffle stack and outer housing. The second portion of gases may include gases deflected outward from the central axis in the blast chamber, for example. Gases in the outer chamber are largely isolated from and can vent semi-independently of gases flowing through the inner chamber.


To more evenly fill the suppressor and to promote gas flow through most of the suppressor volume, some gases can be directed across the bore axis to create a sinuous flow. This elongated flow path delays the exit of gases from the inner chamber, which effectively reduces sound signature. In one embodiment, combustion gases are generally directed in an off-axis direction through the baffle stack as a result of one or more features. A baffle structure can have a central opening that is shaped to promote off-axis flow through the central opening. The central opening to the generally-conical baffle structure can have a step, an offset, a notch, or otherwise can define a non-circular opening, for example, to promote gas flow through the opening in a direction transverse to the central axis. In one such embodiment, the central opening is circular as viewed along the central axis, and has a first half of the opening that is axially offset from an opposite second half of the opening so as to provide an enlarged area as viewed transversely through the opening.


Ports along the baffle stack wall direct gases from the inner chamber to the outer chamber, or vice versa. For example, the baffle stack can define ports so that gases near the radially outer portion of a baffle structure can pass into the outer chamber rather than stalling at a dead end between the cone and the outer wall of the baffle stack. Also, gases in a radially outer portion of the inner chamber can pass from one baffle to the next baffle via a conduit that extends between openings in the cone-like baffle structures. When used alone or in combination with other flow-directing features, the baffle stack promotes and/or amplifies a sinuous flow through the inner chamber.


Features of the suppressor can be employed to amplify a sinuous or otherwise off-axis gas flow through the suppressor's inner chamber, a tortuous flow path through the outer chamber, and multiple gas flow paths through the flash hider. Various features can be used individually or in combination to provide suitable attenuation of the audible signature, attenuation of the visible signature, and reduction in back flow of pressurized gases into the firearm's receiver, particularly with some suppressors having an overall diameter of greater than two inches. Numerous variations and embodiments will be apparent in light of the present disclosure.


General Overview


As noted above, non-trivial issues may arise that complicate weapons design and performance of firearms. For instance, one non-trivial issue pertains to the fact that the discharge of a firearm normally produces an audible and visible signature resulting from rapidly expanding propellant gases and from the projectile leaving the muzzle at a velocity greater than the speed of sound. It is generally understood that attenuating the audible report may be accomplished by slowing the rate of expansion of the propellant gases. Reducing the visible signature or visible flash also can be accomplished by controlling the expansion of gases exiting the muzzle. Reducing flash is a function of temperature, pressure, barrel length, and the type of ammunition being fired, among other factors. However, attenuating muzzle flash can adversely affect the performance of sound attenuation and vice versa.


Suppressors can have additional challenges associated with reducing visible flash and attenuating sound. In some suppressor designs, for example, slowing down the expansion and release of combustion gases from the muzzle can undesirably result in trapping and delayed release of pressurized gas from the suppressor, which results in a localized volume of high-pressure gases. As a natural consequence, the pressurized gases within the barrel take the path of least resistance to regions of lower pressure. Such condition is generally not problematic in the case of a bolt-action rifle because the operator opens the bolt to eject the spent casing in a time frame that is much greater than the time required for the gases in the suppressor to disperse through the distal (forward) end of the suppressor. However, in the case of a semi-automatic rifle, automatic rifle, or a machine gun, the bolt opens very quickly after firing (e.g., within 1-10 milliseconds) to reload the firearm for the next shot. In this short time, pressurized gases remain in the suppressor and the barrel. Some of the gases remaining in the barrel and the suppressor therefore follow the path of least resistance through the barrel and out through the chamber towards the operator's face rather than following the tortuous path through the suppressor. To avoid introducing particulates and combustion residue to the chamber, and to avoid combustion gases being directed towards the operator's face, it would be desirable to reduce the pressure build up within the suppressor and therefore reduce or eliminate back flow into the receiver of autoloading firearms.


Thus, reducing the visible signature while also reducing the audible signature of a firearm presents non-trivial challenges. To address these challenges and others, and in accordance with some embodiments, the present disclosure relates to a suppressor having reduced gas back flow, a suppressor baffle for use in a suppressor assembly, and a suppressor with an integrated flash hider.


Compared to traditional baffle-type suppressors, a suppressor of the present disclosure can reduce localized volumes of high-pressure gas and the resulting flow of combustion gases backward through the barrel and into the rifle's receiver after firing, such as may occur in semiautomatic and automatic rifles. The inner and outer chambers divide the gases into inner and outer volumes that can, in some embodiments, better expand to fill and flow through the entire suppressor volume.


A suppressor (or a portion thereof) according to the present disclosure can be manufactured by molding, casting, machining, 3-D printing, or other suitable techniques. For example, additive manufacturing—also referred to as 3-D printing—can facilitate manufacture of complex geometries that would be difficult or impossible to make using conventional machining techniques. One additive manufacturing method is direct metal laser sintering (DMLS).


As will be appreciated in light of this disclosure, and in accordance with some embodiments, a suppressor assembly configured as described herein can be utilized with any of a wide range of firearms, such as, but not limited to, machine guns, semi-automatic rifles, automatic rifles, short-barreled rifles, and submachine guns. Some embodiments of the present disclosure are particularly well suited for use with a belt-fed machine gun. Suitable host firearms and projectile calibers will be apparent in light of this disclosure.


Although generally referred to a suppressor herein for consistency and ease of understanding the present disclosure, the disclosed suppressor is not limited to that specific terminology and alternatively can be referred to as a silencer, sound attenuator, a sound moderator, a signature attenuator, or other terms. Also, although generally referred to herein as a baffle structure, the disclosed baffles are not limited to that specific terminology and alternately can be referred to, for example, as a baffle cone, a tapered wall, or other terminology, even if such structure follows or does not follow a true conical geometry. Further, although generally referred to herein as a flash hider for consistency and ease of understanding the present disclosure, the disclosed flash hider is not limited to that specific terminology and alternatively can be referred to, for example, as a flash suppressor, a flash guard, a suppressor end cap, or other terms. Numerous configurations will be apparent in light of this disclosure.


Example Suppressor Configurations



FIGS. 1 and 2 illustrate front and rear perspective views, respectively, of a suppressor assembly 100 (or simply “suppressor” 100), in accordance with an embodiment of the present disclosure. In this example, the suppressor 100 has a cylindrical shape that extends along a bore axis 10 from a proximal end portion 12 to a distal end portion 14. The diameter of the outer housing 102 can be 1.5-3.0 inches in some embodiments, including 1.5-2.0 inches, 2.0-2.5 inches, and 2.5-3.0 inches. The cylindrical shape is not required, and other geometries are acceptable, including a cross-sectional shape that is hexagonal, octagonal, rectangular, oval, or elliptical, for example. An outer housing 102 extends between a distal housing end portion 104 and a proximal housing end portion 106. The proximal housing end portion 106 optionally includes a threaded portion 111 that can be used to connect the suppressor 100 to an adapter or quick-disconnect assembly (not shown) suitable for attachment to a firearm barrel, for example.


A flash hider 200 is retained in the distal end portion 14. The proximal end portion 12 defines a blast chamber 112. As can be seen in FIG. 2, for example, the blast chamber 112 includes a diffusor cone 114 that tapers radially inward as it extends distally to meet the baffle structure 126 of a baffle 122. The diffusor cone 114 defines a plurality of openings. In some embodiments, the blast chamber 112 is sized to accommodate a muzzle brake, flash hider, or similar muzzle attachment on the barrel of the firearm. For example, the suppressor 100 is constructed to be installed over a muzzle attachment on the firearm barrel, where the muzzle attachment is received in the blast chamber 112; however, no such muzzle attachment is required for effective operation of suppressor 100. In one example embodiment, the blast chamber 112 has an axial length from 0.5 inch to about 3 inches. Numerous variations and embodiments will be apparent in light of the present disclosure.


Referring now to FIGS. 3-6, various perspective views show a baffle stack 120 in accordance with the present disclosure. FIG. 3 is a front and side perspective view of a baffle stack 120 with a diffusor cone 114 and flash hider 200. FIG. 4 is a rear and side perspective view of a baffle stack 120 with the diffusor cone 114 and flash hider 200. FIG. 5 is a rear and side perspective view of baffle stack 120 with the flash hider 200. FIG. 6 is an exploded, top and rear perspective view of a baffle stack 120 with flash hider 200.


In some embodiments, the baffle stack 120 has three or more baffles 122 between a flash hider 200 and diffusor cone 114. In the example shown, the baffle stack 120 has six baffles 122a-122f, where the baffles 122 are arranged sequentially and with the central openings 136 on the central axis or bore axis 10 to define a projectile flow path therethrough. As shown in FIGS. 3-4, a mounting portion 116 with diffusor cone 114 is positioned proximally of the first baffle 122a. Note that the mounting portion 116 has a cylindrical portion 116a that is generally the same size as the outer housing 102 (shown in FIG. 1). The diffusor cone 114 tapers in size from the inside of the cylindrical portion 116a to join the baffle wall segment 124 of the first baffle 122a. The diffusor cone 114 defines openings to direct a portion of gases to the outer chamber of the suppressor 100.


In some embodiments, the baffle stack 120 includes a plurality of individual baffles 122, each of which includes an annular (e.g., cylindrical) baffle wall segment 124 and one or more baffle structures 126 of generally conical shape that are connected to the baffle wall segment 124 and taper to a central opening. Other shapes of the baffle wall are acceptable including a rectangular, hexagonal, octagonal, oval, or other cross-sectional geometry. In other embodiments, the baffle stack 120 can be made as a single component, such as using additive manufacturing.


In embodiments having individual baffles, the baffle wall segments 124 abut or connect to one another to define a tubular baffle stack wall 125. The baffle wall segments 124 can be connected to one another by welding, a threaded interface, or an interference fit, for example. In other embodiments, the entire baffle stack 120, or portions thereof, can be formed as a single monolithic structure. For example, the baffle stack 120 can be made using additive manufacturing techniques such as direct metal laser sintering (DMLS). In embodiments where the baffle stack 120 is a monolithic structure, the baffle stack wall 125 may not distinctly define individual baffle wall segments 124, but the baffle stack 120 can be considered as having baffle portions corresponding to the equivalent structure formed as distinct baffles 122. Principles discussed herein for a baffle stack 120 having distinct baffles 122 apply to a baffle stack 120 formed as a unitary structure and vice versa. The structure of individual baffles 122 is discussed in more detail below.


The baffle stack 120 includes flow-directing structures 130 on the outside of the baffle stack wall 125. In various examples, the flow-directing structures 130 can be connected to one or both of an outer surface of the baffle stack wall 125 and an inner surface of the outer housing 102. The flow-directing structures 130 can be vanes, walls, ridges, partitions, or other obstructions that cause collisions with flowing gases and result in a non-linear gas flow through the outer chamber 109. In some examples, flow-directing structures 130 can include alternating vanes 130′ that extend part way the outer housing 102 and the baffle stack wall 125, where the alternating position of the flow-directing structures 130 can define an oscillating flow path for the gases as they flow towards exit at the distal end of the suppressor 100.


In the examples of FIGS. 3-6, the flow-directing structures 130 are configured as vanes 130′ having a planar or helical shape. The vanes 130′ are on the outside of the baffle stack wall 125 and arranged in a zig-zag or herringbone-type pattern. For example, each baffle wall segment 124 has vanes 130′, each of which extends transversely to the bore axis 10 and has an axial length roughly equal to the axial length of the baffle wall segment 124. In some instances, part of a vane 130′ may extend beyond the end of the baffle wall segment 124, such as illustrated. Ends of adjacent vanes 130′ can be directed towards each another to make a V shape or vertex 132, even though the ends of vanes 130′ may or may not close the vertex 132. As shown in this example, vanes 130′ define a gap or opening 137 (also shown in FIGS. 7A-7D) at the vertex 132 for gas flow therethrough. Each vertex 132 is positioned to point generally along the bore axis 10 either distally or proximally. In some embodiments, vanes 130′ are generally arranged in a circumferential grid with vertices 132 arranged along lines that are parallel to the bore axis 10, and in rows arranged circumferentially around the baffle stack 120. Vanes 130′ defining a vertex 132 pointing proximally can be referred to as diverging vanes 130′ and vanes 130′ defining a vertex 132 pointing distally can be referred to as converging vanes.


In this example, the first baffle 122a defines an initial gas port 127 located adjacent the vertex of converging vanes 130′ on the first baffle 122a. This initial gas port 127 is positioned to amplify the initial phase of a sinuous flow of gases within the inner chamber 108 by directing gases into the inner chamber 108 in a direction that crosses the bore axis 10 (e.g., downward as oriented in FIG. 6). In the examples of FIGS. 3-6, the initial gas port 127 is shown as being on the top side of the baffle stack 120 for ease of discussion. Note, however, that the baffle stack 120 and suppressor 100 are not constrained to any particular rotational orientation and the initial gas port 127 can be on the side, bottom, or other location. When the initial gas port 127 is positioned along the top of the baffle stack 120, for example, it directs gases downward across the bore axis 10 to reinforce or accentuate a sinuous flow pattern that is oriented in a vertical plane; in other rotational orientations of initial gas port 127, the sinuous flow of gases may be similarly rotated about the bore axis 10. Flow of gases through the suppressor 100 is discussed in more detail below.


The baffle stack 120 in the examples of FIGS. 3-6 defines a plurality of additional gas ports 128 each of which is positioned between diverging vanes 130′. The additional gas ports 128 are distributed about the baffle stack wall 125 with at least some of the gas ports 128 being formed at the joint between adjacent baffle wall segments 124. In some embodiments, when the gas port 127 is along the top of the baffle stack 120, additional gas ports 128 are positioned along sides of the baffle stack 120.


The gas ports 128 can be positioned to permit gases to pass between the outer chamber 109 rather than stall in a corner or similar region within the inner chamber 108. In some embodiments, the pressure is greater in the outer chamber 109, resulting in gas ports 128 functioning as inlet ports for gas flow from the outer chamber 109 to the inner chamber 108. Note, however, that gas dynamics within the suppressor 100 depend on many factors and the gas flow through various ports could reverse directions during the firing cycle. For example, gases may flow in either direction between the inner chamber 108 and the outer chamber 109.


The flash hider 200 is installed adjacent the final baffle 122 (baffle 122f in this example) with portions of the flash hider 200 received within the baffle wall segment 124. The flash hider 200 can be secured to the baffle stack 120 by welding, threaded engagement, a frictional fit, or other by engagement with the outer housing 102. Optionally, the flash hider 200 defines recesses 221 in the distal end portion to facilitate engagement with a spanner or other tool used to assemble the suppressor 100 with the mount 110, or to screw the suppressor 100 onto the barrel or barrel attachment. Example embodiments of a flash hider 200 are discussed in more detail below.


Referring now to FIGS. 7A-7D, a baffle 122 is illustrated in a side view, a bottom view, a top and rear perspective view, and a front perspective view, respectively, in accordance with an embodiment of the present disclosure. Baffle 122 in this example is also shown as baffle 122d in the exploded view of FIG. 6. Baffle 122 has a cylindrical baffle wall segment 124 connected to a generally conical baffle structure 126 that extends rearwardly as it tapers in size from the baffle wall segment 124 to the central opening 136 aligned with the bore axis 10. As noted above, the central opening 136 provides a pathway for a projectile along the bore axis 10. In this example, the baffle structure 126 generally has a frustoconical geometry with a linear taper. In other embodiments, the baffle structure 126 can have a stepped profile or other non-linear taper, as will be appreciated. In other embodiments, the baffle structure 126 can have a polygonal cross-sectional shape, such as a rectangle, hexagon, or star.


In this example, the central opening 136 has a stepped shape (as viewed from the side) such that a step 134 extends horizontally through the center of the central opening 136, dividing the central opening 136 into a first portion 136a (e.g., an upper half) and a second portion 136b (e.g., a lower half), where the first portion 136a is axially offset from the second portion 136b. As a result of the step 134, the cross-sectional area of the central opening 136 in the direction of the bore axis is circular, and it is smaller than the cross-sectional area of the opening in an oblique, transverse (e.g., downward) direction. This larger opening allows for less restrictive gas flow in somewhat oblique, transverse direction to the bore axis, thus promoting a sinuous flow path. The cross sectional area of the central opening 136 in the axial direction is circular and smaller than the cross-sectional area in the transverse direction. In one embodiment, gases flow through the central opening 136 in a direction approximately parallel to the wall of the baffle structure 126, such as an angle with the bore axis 10 from 15-60 degrees, including 30-50 degrees, 20-40 degrees, 25-35 degrees, about 30 degrees, about 35 degrees, about 40 degrees, or about 45 degrees.


The step 134 can be formed, for example, by machining away the upper or lower part of the baffle structure 126 at the central opening 136. In other embodiments, the central opening 136 can be bored at an angle with respect to the bore axis 10, such as an angle of 30-60° to result in the central opening 136 having an oval shape. In yet other embodiments, the larger portion 136a can have an enlarged cross-sectional area as a result of a crescent-shaped recess added to the bore area, a second bore formed at a downward angle and intersecting the central opening 136 to increase the size of part of the central opening 136, a notch added to the area of the opening, or other approach.


Between the first portion 136a of the central opening 136 and the baffle wall segment 124, the baffle structure 126 defines a first through opening 142. Between the second portion 136b of the central opening 136 and the baffle wall segment 124, a radially outer portion of the baffle structure 126 defines a second through opening 146. In the example shown, the first through opening 142 and second through opening 146 are oriented 180° from each other on opposite sides of the central opening 136. A conduit 144 or chute extends between adjacent baffle structures 126 and directs a portion of gases through the inner chamber 108 using through openings 142, 146. For example, the conduit 144 extends rearwardly from the outside of one baffle structure 126 to the inside of an adjacent baffle structure 126 while also connecting to the baffle wall segment 124. The second through opening 146 can direct gases into the conduit 144 that leads to the first through opening 142 of a distally located baffle 122. In some embodiments, the second through opening 146 is bounded in part by the baffle wall segment 124.


When baffles 122 configured as shown in the example of FIGS. 7A-7D are assembled sequentially with each baffle being 180° out of phase with the preceding baffle, the conduit 144 of one baffle 122 receives gases from the second through opening 146 of a preceding baffle and delivers those gases to the next baffle via the first through opening 142 of the subsequent baffle. The result is a sinuous gas flow within the inner chamber that crosses the bore axis 10. This sinuous flow pattern can occur along a vertical plane or other plane as desired. Gas ports 128 along the sides of the baffle wall segment 124 direct gases into the outer chamber 109 from radially outer regions along the sides of the inner chamber 108. Sample gas flow paths are discussed in more detail below.


Flow-directing structures 130 configured as vanes 130′ are on the outside of the baffle wall segment 124. Vanes 130′ are arranged in a zig-zag pattern moving circumferentially around the baffle wall segment 124. As a result, circumferentially adjacent vanes 130′ have either a diverging or converging arrangement, where the vertex 132 of each pair of vanes 130′ is directed along the bore axis 10. In this example, the vanes 130′ defining each vertex 132 do not make contact (or do not make complete contact) so as to define an opening 137 between ends of the converging vanes 130′ and to permit gases to flow through the vertex 132. In some embodiments, the distal ends of each vane 130′ has a V-shaped notch while the proximal end of the vane 130′ is substantially straight. In some embodiments, each vertex 132 can have an opening 137 of the same or different size compared to other vertices 132. Also, openings between diverging vanes 130′ or converging vanes 130′ can be of the same or different size and geometry. Numerous variations and embodiments will be apparent in light of the present disclosure.


The baffle wall segment 124 can define one or more gas ports 128 positioned between diverging vanes 130′. When the gas port 127 is along the top of the baffle stack 120, such as shown in FIG. 5, gas ports 128 are positioned along the sides of the baffle wall segment 124. Gas ports 128 in this example have a semicircular shape, but other shapes are acceptable. Optionally, the baffle wall segment 124 can define gas ports in various other locations. Further, a radially outer portion of a given baffle structure 126 may define one or more through openings 142, 146 that permit passage of gases within the inner chamber 108, such as gases moving between adjacent baffle structures 126.


Referring now to FIGS. 8 and 9, a front perspective view and a front perspective view, respectively, illustrate longitudinal sections of a suppressor 100, in accordance with an embodiment of the present disclosure. Broken lines and arrows in these figures represent example gas flow paths. Note, however, that the arrows are for illustration only and may not represent all gas flows and may not accurately represent changes in gas flow patterns that may occur throughout the firing cycle, as will be appreciated.


The suppressor 100 defines an inner chamber 108 radially inside of the baffle stack wall 125 and an outer chamber 109 between the baffle stack wall 125 and the outer housing 102. As high pressure gases enter the suppressor 100, the gases expand initially into the blast chamber 112. A first portion of gases flows into the inner chamber 108 via the central opening 136 of the first baffle 122a. A second portion of gases passes into the outer chamber 109 by flowing around the baffle structure 126 of the first baffle 122a and through openings in the diffusor cone 114. After entering the outer chamber 109, gases generally continue to flow towards the distal end portion 14 where these gases vent through the flash hider 200.


A gas port 127 in the baffle wall segment 124 of the first baffle 122a (or blast baffle) is positioned to direct gases into the inner chamber 108 in a direction crossing the bore axis 10. The central opening 136 of the second baffle structure 126b is stepped to direct gases across the bore axis 10 in the same general direction as the gas port 127, which is downward in this example. Similarly, conduits 144 around baffle structures 126 direct gases in the radially outer portion of the inner chamber 108 to flow across the bore axis 10 through first through openings 142. Some of the gases in the inner chamber 108 pass through gas ports 128 to the outer chamber 109.


For gases flowing through the inner chamber 108, individual features of the baffle 122 can be included to promote flow in a direction across the bore axis 10 and disrupt gas flow along the bore axis 10. In combination, these features promote one or more sinuous or non-linear gas flow paths through the inner chamber 108. These features include the gas port 127 in the first baffle 122a that directs gases across the bore axis 10, the stepped profile of the central opening 136 that causes gases to flow through the central opening 136 in a direction transverse to the bore axis 10, and a conduit 144 and first through opening 142 in the baffle cone 126.


The suppressor 100 can also include features that result in low backpressure, which reduces the flow of gases back through the barrel and receiver during the firing cycle. One such feature is a second through opening 146 in the baffle structure 126 that allows gases to pass from one baffle to the next via conduit 144. Another feature is a gas port 128 positioned to draw gases into the outer chamber 109 from the radially outer portion of the inner chamber 108, rather than stalling in the corner between the baffle structure 126 and the baffle stack wall 125. Yet another feature is the outer chamber 109, in which a large portion of total combustion gases volume flows with generally less resistance than the more tortuous flow path through the inner chamber 108. Further, a flash hider 200 is configured to vent gases from the outer chamber 109 either directly or after first entering the inner chamber 108 with less flow restriction than traditional baffle suppressors featuring a central opening only. Examples of a flash hider 200 are discussed below.


For gases in the outer chamber 109, vanes 130′ in diverging and converging pairs increase turbulence and force a tortuous flow path to the distal end portion 14. Collisions with the vanes 130′ and other flow-directing structures 130 result in energy loss and transfer of heat from the gases. As noted above, diverging vanes 130′ create a localized region of lower pressure that draws gases out of the inner chamber 108 via gas ports 128. Conduits 144 on opposite sides of the inner chamber 108 are positioned sequentially to amplify a sinuous or alternating gas flow path through the inner chamber 108. The conduits 144 direct gases through the crossflow opening 142 in the baffle structure 126 and across the bore axis 10.


Baffles 122 in the baffle stack 120 need not have the same features in all embodiments. For example, only the first baffle 122a defines a gas port 127 and gas ports 128 may be present in alternating baffles 122. Additionally, adjacent baffles can be rotated 180° or some other amount to promote a sinuous and/or swirling gas flow. Numerous variations and embodiments will be apparent in light of the present disclosure.



FIG. 10A illustrates a top sectional view of the suppressor 100 of FIG. 8 and FIG. 10B shows a front perspective view of the section shown in FIG. 10A, where the section is taken 90° to that of FIGS. 8-9, in accordance with an embodiment of the present disclosure. Gases flowing through the inner chamber 108 can pass through gas ports 128 to the outer chamber 109. In this example each gas port 128 is positioned in the corner between a baffle structure 126 and baffle stack wall 125. Such placement avoids or reduces stalled gas flow in these areas. To facilitate gas flow from the inner chamber 108 to the outer chamber 109, rather than in the reverse direction, gas ports 128 can be positioned between diverging vanes 130′ which create a localized region of low pressure. First through openings 142 and second through openings 146 in baffle structures 126 are also shown along with conduits 144. In this example, gases in the inner chamber 108 can exit the suppressor through additional second outer volumes 236 of the flash hider 200, and gases in the outer chamber 109 can exit the suppressor through radially outer volumes 222.


Referring now to FIGS. 11A-11D, a flash hider 200 is shown in a top and front perspective view, a front view, a rear perspective view, and a side cross-sectional view as viewed along line D-D of FIG. 11B, respectively, in accordance with an embodiment of the present disclosure. In FIG. 10D, part of the outer housing 102 is shown.


The flash hider 200 extends along the bore axis 10 from a proximal end 202 to a distal end 203. An outer wall 224 extends between and connects the proximal end 202 and distal end 203. The proximal end 202 defines a central opening 208 for passage of a projectile and gases. Ports 230 in the outer wall 224 adjacent the proximal end 202 provide an alternate entry point for gases to enter the flash hider 200. In this example, the flash hider 200 includes a flange or distal wall 204 extending radially outward from the distal end 203 of the outer wall 224, in effect providing an endcap as part of the flash hider 200. In some embodiments, the rim 206 of the endcap or distal wall 204 can be connected to the outer housing 102, such as by welding, a frictional fit, or a threaded connection.


The outer wall 224 defines an expanding volume as it extends distally. The outer wall 224 directs propellant gases away from the bore axis 10 and limits the expansion of the propellant gases. In some embodiments, the outer wall 224 has a frustoconical shape that defines an outer wall angle A with respect to the bore axis 10. Examples of acceptable values for the outer wall angle A include 10-45°, including 15°-20°, and 16-18°. In other embodiments, the outer wall 224 can have other cross-sectional shapes, such as a square, rectangle, hexagon, or other polygonal or elliptical shape. The outer wall 224 (or portions thereof) can have a linear or non-linear taper from the distal end 203 to the proximal end 202. Examples of a non-linear taper include a curved (e.g., elliptical or parabolic) or a stepped profile.


The volume of the flash hider 200 within the outer wall 224 includes a first flash hider portion 216 and a second flash hider portion 220. The first flash hider portion 216 vents a first portion of gases that enter the flash hider 200 through the central opening 208. For example, the first flash hider portion 216 vents gases flowing through the inner chamber 108 along the bore axis 10. The second flash hider portion 220 vents a second portion of gases that enter the flash hider 200 through one or more ports 230 in the outer wall 224 of the flash hider 200. For example, the second flash hider portion 220 vents gases from the outer chamber 109 and/or gases in the radially outer portion of the inner chamber 108. In this example, the second flash hider portion 220 vents gases from both the outer chamber 109 and the inner chamber 108 via radially outer volumes 222.


In some embodiments, the first flash hider portion 216 includes an inner volume 216a with a conical shape that expands distally from the central opening 208. As shown in FIG. 11B, for example, the inner volume 216a includes the frustoconical volume circumscribed by and defined in part by the radially inner faces 242 of the flow partitions 240. The first flash hider portion 216 also includes first outer volumes 216b positioned radially outside of and continuous with the inner volume 216a. In this example, each first outer volume 216b is positioned radially between the inner volume 216a and the circumferential wall 244, where each first outer volume 216b is also located circumferentially between adjacent flow partitions 240 of the second flash hider portion 220. The first portion of gases entering through the central opening 208 can expand along the inner volume 216a and can further expand into the first outer volumes 216b.


In one example, the inner volume 216a has a frustoconical geometry extending along the bore axis 10. In some such embodiments, the inner faces 242 of the flow partitions 240 have an inner wall angle B (shown in FIG. 11D) with the bore axis 10 from 4-15°, including 5-8°, or 6-7°, for example. Such a value for the inner wall angle B has been found to slow down propellant gases exiting to the environment as well as to reduce the amount of hot propellant gases that mix with ambient air/oxygen. Accordingly, and without being constrained to any particular theory, it is believed that such an inner wall angle B permits adequate gas expansion yet also desirably reduces the size of a “Mach disk” or “flow diamond”—appearing as an orange or red flash—as propellant gases transition from supersonic to subsonic flow.


The second flash hider portion 220 includes a plurality of radially outer volumes 222 that are interspersed circumferentially with the first outer volumes 216b of the first flash hider portion 216. The radially outer volumes 222 are defined within flow partitions 240 connected to the outer wall 224. In this example, each flow partition 240 connects to the proximal end 202 of the flash hider 200 adjacent the central opening 208 and extends forward to the distal end 203. Accordingly, each flow partition 240 isolates one of the radially outer volumes 222 from the first flash hider portion 216 and in part defines the inner volume 216a of the first flash hider portion 216. In this example, three radially outer volumes 222 generally resemble sectors of an annular region located between the frustoconical inner volume 216a and the outer wall 224. The second flash hider portion 220 can have other numbers of radially outer volumes 222, such as two, four, or some other number. In one example, each flow partition 240 generally has a U shape as viewed from the distal end 203. The flow partitions 240 can be rectangular, rounded, or have some other geometry. The radially outer volumes 222 are distributed and spaced circumferentially about the bore axis 10 and are located radially outside of the inner volume 216a of the first flash hider portion 216. In some embodiments, all flow partitions 240 have the same dimensions and are evenly distributed about the bore axis 10, although this is not required.


The second flash hider portion 220 optionally also includes additional second outer volumes 236 that are positioned laterally between adjacent flow partitions 240 and radially between the outer wall 224 and a circumferential wall 244 between adjacent flow partitions 240. In this example, each additional second outer volume 236 is located radially outside of the first outer volume 216b of the first flash hider portion 216, so that a first outer volume 216b and an additional second outer volume 236 share a region between adjacent flow partitions 240 and are separated by the circumferential wall 244. The additional second outer volumes 236 are shown as having a reduced cross-sectional area compared to the radially outer volumes 222, but this is not required. For example, each additional second outer volume 236 can have a reduced radial dimension, but a greater circumferential dimension compared to these dimensions of the radially outer volumes 222, resulting in a cross-sectional area that is about equal to or even greater than that of the radially outer volume 222.


Gases can enter the radially outer volumes 222 of the second flash hider portion 220 from the inner chamber 108 via ports 230 in the proximal portion of the outer wall 224, in some embodiments. When the flash hider 200 is part of a suppressor assembly, some or all of the gases flowing through the suppressor along a radially outer flow path can enter the second flash hider portion 220 through ports 230. Absent any openings through the flow partition 240, and absent any gases entering the second flash hider portion 220 through the distal end 203, gases entering the central opening 208 are isolated from and cannot flow through the radially outer volumes 222 of the second flash hider portion 220.


One advantage of venting radially outer volumes or off-axis flow of the suppressor 100 is to reduce the pressure of the gases flowing along the bore axis 10. In doing so, flash can be reduced. Venting through the second flash hider portion 220 also can reduce the pressure in the suppressor 100 and therefore reduce the back flow of gases into the firearm's chamber, such as when the suppressor 100 is used with semi-automatic or automatic rifles. Further, isolating the gas flow through the second flash hider portion 220 from the first flash hider portion 216 can inhibit mixing and turbulence of gases exiting the flash hider 200, and therefore reduce the visible signature of the firearm, as will be appreciated.


In some embodiments, ports 230 into radially outer volumes 222 are oriented generally parallel to the bore axis 10 so as to prevent a line-of-sight into the suppressor 100 through radially outer volumes 222. In one such embodiment, the proximal end portion of the outer wall 224 protrudes radially outward at these ports 230 so as to preclude a line of sight into the suppressor 100. As shown in FIGS. 11B-11C, for example, these ports 230 are generally oriented parallel to the bore axis 10 due to a radial expansion of the outer wall 224.



FIGS. 12A-12C illustrate a suppressor 100 with a flash hider 200 in accordance with another embodiment of the present disclosure. FIG. 12A is a front perspective view of a distal end portion of a suppressor 100. FIG. 12B is a side view of a section as viewed along line BC-BC of FIG. 12A, and FIG. 12C is a front perspective view of the section as viewed along line BC-BC.


In this embodiment, the flash hider includes a first flash hider portion 216 that includes the inner volume 216a and first outer volumes 216b, similar to the embodiment discussed above with reference to FIGS. 11A-11D. A second flash hider portion 220 includes radially outer volumes 222 and additional second outer volumes 236, similar to as discussed above. Compared to the embodiment of FIGS. 11A-11D, this embodiment also includes a third flash hider portion 246 with vents 248 positioned radially outside of each additional second outer volume 236. Gases in the outer chamber 109 can exit the flash hider 200 directly through vents 248. Gases in the outer chamber 109 can also exit the suppressor directly through radially outer volumes 222. Unlike the embodiment of FIGS. 11A-11D, the cross-sectional view of FIG. 12C illustrates gas flow paths for gases in the outer chamber 109 to exit the suppressor 100 via vents 248 and radially outer volumes 222, where the first flash hider portion 216 and additional second outer volumes 236 vent gases from the inner chamber 108. Gases from the inner chamber 108 can also exit the suppressor 100 via radially outer volumes 222, such as shown in FIGS. 12B-12C.



FIGS. 13A and 13B illustrate part of a suppressor 100 with a flash hider 200, in accordance with another embodiment of the present disclosure. FIG. 13A is a front perspective view showing a distal end portion of a suppressor 100 with the flash hider 200. FIG. 13B is a side view showing a section as viewed along line B-B of FIG. 13A.


In this embodiment, the flash hider 200 includes a first flash hider portion 216 that includes the inner volume 216a and first outer volumes 216b, similar to the embodiment discussed above with reference to FIGS. 11A-11D. A second flash hider portion 220 is radially outside of the first flash hider portion 216 and includes radially outer volumes 222 positioned radially outside of the inner volume 216a, and additional second outer volumes 236 positioned radially outside of first outer volumes 216b of the first flash hider portion 216. This embodiment further includes third flash hider portion 246 radially outside of the second flash hider portion 220. The third flash hider portion 246 includes vents 248 positioned radially outside of some or all of the additional second outer volumes 236 and radially outside of some or all of the radially outer volumes 222. In this example, the third flash hider portion 246 includes six vents 248 distributed circumferentially.


The first flash hider portion 216 vents gases from the inner chamber 108 and that enter the flash hider 200 through the central opening 208. In this example, the second flash hider portion 220 vents gasses flowing directly from the inner chamber 108 and directly from the outer chamber 109. Gases in the inner chamber 108 can exit the flash hider 200 through the additional second outer volumes 236 or through radially outer volumes 222 via ports 230. Gases in the outer chamber 109 can exit the flash hider 200 directly through radially outer volumes 222. Thus, the second flash hider portion 220 vents gases from both the inner chamber 108 and outer chamber 109 in this example.


In other embodiments, the second flash hider portion 220 can be configured to directly communicate only with the inner chamber 108 or only with the outer chamber 109. For example, radially outer volumes 222 can communicate directly with the inner chamber 108 via ports 230, such as shown in FIGS. 12B-12C, so that the second flash hider portion 220 vents gases directly from the inner chamber 108 and vents 248 vent gases directly from the outer chamber 109.


Gases in the outer chamber 109 can exit the flash hider 200 directly through vents 248. Gases in the outer chamber 109 can also exit the suppressor directly through radially outer volumes 222. The cross-sectional view of FIG. 12C illustrates gas flow paths for gases to exit the suppressor 100 from the outer chamber 109 via vents 248 and radially outer volumes 222, where the first flash hider portion 216 and additional second outer volumes 236 vent gases from the inner chamber 108.


As will be appreciated in light of the present disclosure, a suppressor assembly 100 provides multiple gas flow paths that can be configured to reduce the audible and visible signature of the firearm. As discussed above, combustion gases can be divided into two volumes of gas that are largely separated from each other to more evenly and more completely fill the entire volume of the suppressor 100. These gas volumes pass through the corresponding inner and outer chambers (with some mixing therebetween) before exiting the suppressor 100 through a flash hider 200. Flow of part of the gases through the outer chamber can significantly reduce the back flow of pressurized gases into the firearm. This mixing of gases between the inner chamber 108 and outer chamber 109 allows for better filling of the chambers by the combustion gases, longer flow paths, increased gas turbulence, better cooling, and a faster reduction in total energy of the gases. These in turn, can produce the benefits described above.


It will be appreciated that the gases flowing through the inner chamber 108 are slowed and/or cooled by the operation of the baffles 122, which additionally induce localized turbulence and energy dissipation, thus reducing (or “suppressing”) the sound and/or flash of expanding gases. For example, as the gases collide with baffles 122 and other surfaces in the suppressor, the gases converge and then expand again in a different direction, for example. The various collisions and changes in velocity (direction and/or speed) result in localized turbulence, an elongated flow path, and heat and energy losses from the gases, thereby reducing the audible and visual signature of the rifle.


Further Example Embodiments

The following examples pertain to further embodiments, from which numerous permutations and configurations will be apparent.


Example 1 is a suppressor comprising a hollow tubular housing extending along a bore axis from a proximal end to a distal end. A baffle stack within the hollow tubular housing extends along the bore axis from a proximal baffle stack end to a distal baffle stack end. The baffle stack has a tubular baffle wall with a plurality of cone-like baffle structures connected to an inside of the baffle wall and tapering in a rearward direction to a central opening on the bore axis. The suppressor defines an inner volume inside of the tubular baffle wall and an outer volume between the tubular baffle wall and the hollow tubular housing. Flow-directing structures in the outer volume include pairs of diverging vanes and pairs of converging vanes with respect to gases flowing distally through the suppressor. A conduit wall extends between and connects adjacent baffle structures, wherein the conduit wall defines a gas flow pathway in a radially outer portion of the inner volume. The gas flow pathway passes around a proximal one of the adjacent baffle structures and through an opening defined in a distal one of the adjacent baffle structures.


Example 2 includes the subject matter of Example 1, where the tubular baffle wall defines an initial gas port adjacent the proximal baffle stack end.


Example 3 includes the subject matter of Example 2, where the initial gas port is positioned between a pair of converging vanes.


Example 4 includes the subject matter of any one of Examples 1-3 and further comprises a diffusor cone in a proximal end portion of the suppressor, the diffusor cone tapering in a distal direction from the tubular outer housing to the baffle stack and defining a plurality of openings, where the gas port is positioned adjacent a distal end portion of the diffusor cone.


Example 5 includes the subject matter of any one of Example 2-4, where the initial gas port is configured to direct gases from the outer volume to the inner volume and through a vent opening in a baffle structure in a proximal end portion of the baffle stack.


Example 6 includes the subject matter of Example 5, where gases passing through the vent opening intersect with gases flowing along the bore axis.


Example 7 includes the subject matter of any one of Examples 1-6, where the suppressor includes two or more conduits with at least one conduit on a first side of the bore axis and at least one conduit on an opposite second side of the bore axis, and where the two or more conduits alternate sequentially between the first side of the bore axis and the second side of the bore axis.


Example 8 includes the subject matter of Example 7, wherein the suppressor includes at least three conduits.


Example 9 includes the subject matter of Examples 7 or 8, wherein the two or more conduits define a sinuous gas flow path through the inner volume.


Example 10 includes the subject matter of Example 9, wherein the sinuous gas flow path crosses the bore axis.


Example 11 includes the subject matter of any one of Examples 1-10, where the central opening of at least some of the baffle structures has a first portion and a second portion, where the first portion is axially offset relative to the second portion.


Example 12 includes the subject matter of Example 11, wherein the first portion is semicircular and the second portion is semicircular, so that as viewed along the central axis the first and second portions in combination define a circular central opening.


Example 13 includes the subject matter of any one of Examples 1-12, where the pairs of converging vanes and the pairs of diverging vanes generally define a zig-zag pattern around an outside of the tubular baffle wall, the pattern including circumferential rows of vanes and axial columns of vanes, wherein adjacent vanes in the circumferential rows have an alternating orientation with respect to the bore axis.


Example 14 includes the subject matter of Example 13, where individual vanes of the pairs of converging vanes and pairs of diverging vanes have a helical shape.


Example 15 includes the subject matter of Example 13 or 14, wherein vertices of pairs of converging vanes are aligned along first axes generally parallel to the bore axis, and wherein vertices of pairs of diverging vanes are aligned along second axes generally along to the bore axis, the first axes interspersed with the second axes around the baffle stack.


Example 16 includes the subject matter of any one of Examples 1-15 and further comprises a flash hider in fluid communication with the baffle stack and connected to the distal end of the hollow tubular housing.


Example 17 includes the subject matter of Example 16, wherein the flash hider includes a first flash hider portion configured to vent a first portion of gases from the inner volume and a second flash hider portion configured to vent a second portion of gases from the outer volume and from the inner volume.


Example 18 includes the subject matter of Example 17, wherein the flash hider further defines a third flash hider portion configured to vent gases directly from the outer volume.


Example 19 includes the subject matter of Example 18, wherein the second flash hider portion is radially outside of the first flash hider portion and the third flash hider portion is radially outside of the second flash hider portion.


Example 20 is a suppressor that includes a baffle stack with a cylindrical wall around an inner volume and extending along a central axis. The baffle stack includes a plurality of cone-like baffle structures each of which is connected to the cylindrical wall and tapers rearwardly to a central opening, where at least some of the baffle structures define a vent opening between the central opening and the baffle stack wall. An outer housing around the baffle stack has an inner surface spaced from and confronting the cylindrical wall, where the suppressor defines an outer volume between the cylindrical wall of the baffle stack and the outer housing. Flow-directing features are in the outer volume. A diffusor cone is in a proximal end portion of the suppressor, the diffusor cone tapering in a distal direction between the outer housing and the baffle stack and defining a plurality of openings. A conduit wall extends between and connects adjacent baffle structures of the baffle stack, wherein the conduit wall defines a gas flow pathway in a radially outer portion of the inner volume. The gas flow pathway passes around a proximal cone of the adjacent baffle structures and through the vent opening defined in a distal cone of the adjacent baffle structures. An end cap is connected to a distal end of the outer housing, the end cap defining a central opening aligned with the central axis.


Example 21 includes the subject matter of Example 20, where a proximal end portion of the cylindrical wall of the baffle stack defines an initial gas port between a pair of converging vanes, the initial gas port in direct fluid communication with a vent opening in one of the plurality of baffle structures.


Example 22 includes the subject matter of Example 20 or 21, where the central opening of at least some baffle structures of the plurality of baffle structures defines a step as viewed from a side of the suppressor, such that a first portion of the central opening is spaced distally along the central axis from a second portion of the central opening.


Example 23 includes the subject matter of any of Examples 20-22, wherein the end cap is configured as a flash hider, the flash hider including a first flash hider portion configured to vent a first portion of gases directly from the inner volume and a second flash hider portion configured to vent gases from both the inner volume and the outer volume.


Example 24 includes the subject matter of Example 23, wherein the flash hider further defines a third flash hider portion configured to vent gases directly from the outer volume.


Example 25 is a suppressor baffle comprising an annular baffle wall extending axially along a bore axis from a first end to a second end; a baffle structure connected to the tubular baffle wall and extending along the bore axis away from the tubular baffle wall and defining a central opening aligned with the bore axis. Flow-directing structures are on an outside of the tubular baffle wall and include vanes oriented transversely to the bore axis. The vanes include converging vanes and diverging vanes, wherein each pair of converging vanes and pair of diverging vanes generally defines a vertex and an open mouth opposite the vertex. The baffle structure defines a through-opening between the central opening and the tubular baffle wall. A conduit around the through opening extends rearwardly and is configured to engage a baffle structure of a proximally located suppressor baffle. When two or more suppressor baffles are assembled together, the conduit defines a gas flow path around a rearward baffle structure and through the through-opening of the forward baffle structure.


Example 26 includes the subject matter of any of Example 25, wherein the vertex is an open vertex permitting gas flow through the vertex.


Example 27 includes the subject matter of Example 25 or 26, wherein individual pairs of diverging vanes and individual pairs of converging vanes direct gases along a helical gas flow path.


Example 28 includes the subject matter of any of Examples 25-27, wherein the tubular baffle wall is cylindrical.


Example 29 includes the subject matter of any of Examples 1-28, wherein the tubular baffle wall defines one or more openings adjacent an intersection between the baffle structure and the tubular baffle wall.


Example 30 includes the subject matter of Example 29, wherein each of the one or more openings is positioned between a pair of diverging vanes on the outside of the tubular baffle wall.


Example 31 includes the subject matter of any one of Examples 25-30, wherein the central opening has a stepped shape as viewed from the side, the stepped shape defining a first portion of the central opening that is axially offset from a second portion of the central opening.


Example 32 includes the subject matter of Example 31, wherein the first portion and second portion of the central opening together define a circular shape as viewed along the central axis.


Example 33 includes the subject matter of any of Examples 25-32, wherein the vanes are arranged in a zig-zag pattern around a circumference of the tubular baffle wall.


Example 34 includes the subject matter of any of Examples 25-33, wherein each of the vanes follows a helical path.


Example 35 is a suppressor baffle stack including a plurality of suppressor baffles as disclosed in Examples 25-34.


Example 36 includes the subject matter of Example 35, wherein the baffle stack includes at least three suppressor baffles.


Example 37 is a suppressor comprising the baffle stack of Example 36.


The foregoing description of example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims appended hereto. Future-filed applications claiming priority to this application may claim the disclosed subject matter in a different manner and generally may include any set of one or more limitations as variously disclosed or otherwise demonstrated herein.

Claims
  • 1. A suppressor comprising: a hollow tubular housing extending along a bore axis from a proximal end to a distal end;a baffle stack within the hollow tubular housing and extending along the bore axis from a proximal baffle stack end to a distal baffle stack end, the baffle stack comprising a tubular baffle wall with a plurality of baffle structures connected to an inside of the tubular baffle wall, individual baffle structures of the plurality of baffle structures tapering proximally to a central opening on the bore axis, wherein the suppressor defines an inner volume inside of the tubular baffle wall, and an outer volume between the tubular baffle wall and the hollow tubular housing;flow-directing structures in the outer volume, the flow-directing structures including pairs of diverging vanes and pairs of converging vanes with respect to gases flowing distally through the suppressor; anda conduit wall extending between and connecting adjacent baffle structures of the plurality of baffle structures, wherein the conduit wall defines a gas flow pathway in a radially outer portion of the inner volume, the gas flow pathway passing around a proximal one of the adjacent baffle structures and through an opening defined in a distal one of the adjacent baffle structures.
  • 2. The suppressor of claim 1, wherein the tubular baffle wall defines an initial gas port adjacent the proximal baffle stack end.
  • 3. The suppressor of claim 2, wherein the initial gas port is positioned between one of the pairs of converging vanes.
  • 4. The suppressor of claim 3, further comprising a diffusor cone in a proximal end portion of the suppressor, the diffusor cone tapering in a distal direction from the tubular housing to the baffle stack and defining a plurality of openings, wherein the gas port is positioned adjacent a distal end portion of the diffusor cone.
  • 5. The suppressor of claim 3, wherein the initial gas port is configured to direct gases from the outer volume to the inner volume and through a vent opening in one of the baffle structures at the proximal baffle stack end of the baffle stack.
  • 6. The suppressor of claim 1, further comprising two or more conduits that include at least one conduit on a first side of the bore axis and at least one conduit on an opposite second side of the bore axis, and wherein the two or more conduits alternate sequentially between the first side of the bore axis and the opposite second side of the bore axis.
  • 7. The suppressor of claim 6, further comprising at least two conduits.
  • 8. The suppressor of claim 1, wherein the central opening of at least some of the baffle structures has a first portion and a second portion, the first portion axially offset from the second portion.
  • 9. The suppressor of claim 8, wherein the first portion and the second portion each have a semicircular shape that combine to define the central opening of circular shape as viewed along the bore axis.
  • 10. The suppressor of claim 1, wherein the pairs of converging vanes and the pairs of diverging vanes define a zig-zag pattern around an outside of the tubular baffle wall.
  • 11. The suppressor of claim 10, wherein individual vanes of the pairs of converging vanes and pairs of diverging vanes have a helical shape.
  • 12. The suppressor of claim 1 further comprising: a flash hider in fluid communication with the baffle stack and connected to the distal end of the hollow tubular housing.
  • 13. The suppressor of claim 12, wherein the flash hider includes a first flash hider portion configured to vent a first portion of gases from the inner volume and a second flash hider portion configured to vent gases from the outer volume and from the inner volume.
  • 14. The suppressor of claim 13, wherein the flash hider further defines a third flash hider portion configured to vent gases directly from the outer volume.
  • 15. The suppressor of claim 14, wherein the second flash hider portion is radially outside of the first flash hider portion and the third flash hider portion is radially outside of the second flash hider portion.
  • 16. A suppressor comprising: a baffle stack with a cylindrical wall around an inner volume and extending along a central axis, the baffle stack including a plurality of baffle structures connected to the cylindrical wall and tapering rearwardly to a central opening, wherein at least some of the baffle structures define a vent opening;an outer housing around the baffle stack, the outer housing having an inner surface spaced from and confronting the cylindrical wall, wherein the suppressor defines an outer volume between the cylindrical wall of the baffle stack and the outer housing;flow-directing features in the outer volume;a diffusor cone in a proximal end portion of the suppressor, the diffusor cone tapering in a distal direction between the outer housing and the baffle stack and defining a plurality of openings;a conduit wall extending between and connecting adjacent baffle structures of the plurality of baffle structures, wherein the conduit wall defines a gas flow pathway in a radially outer portion of the inner volume, the gas flow pathway passing around a proximal cone of the adjacent baffle structures and through the vent opening defined in a distal cone of the adjacent baffle structures; andan end cap connected to a distal end of the outer housing, the end cap defining a central opening aligned with the central axis.
  • 17. The suppressor of claim 16, wherein a proximal end portion of the cylindrical wall of the baffle stack defines a gas port between a pair of converging vanes of the flow-directing features, the gas port in direct fluid communication with the vent opening in one of the plurality of baffle structures.
  • 18. The suppressor of claim 16, wherein the central opening of at least some baffle structures of the plurality of baffle structures defines a step as viewed from a side of the suppressor, such that a first portion of the central opening is spaced distally along the central axis from a second portion of the central opening.
  • 19. The suppressor of claim 16, wherein the end cap is configured as a flash hider, the flash hider including a first flash hider portion configured to vent a first portion of gases directly from the inner volume and a second flash hider portion configured to vent gases from the outer volume and from the inner volume.
  • 20. The suppressor of claim 19, wherein the flash hider further defines a third flash hider portion configured to vent gases directly from the outer volume.
US Referenced Citations (186)
Number Name Date Kind
748157 Bouton Dec 1903 A
822127 Hufnagel May 1906 A
916885 Maxim Mar 1909 A
1000702 Thurler Aug 1911 A
1111202 Westfall Sep 1914 A
1341363 Fiala May 1920 A
1427802 Goodwin Sep 1922 A
1462158 Wildner Jul 1923 A
1736319 Maxim Nov 1929 A
1773443 Wilman Aug 1930 A
2101849 Green Dec 1937 A
2150161 Green Mar 1939 A
2165457 Cutts, Jr. Jul 1939 A
2351037 Green Jun 1944 A
2468926 Garrett May 1949 A
2514996 Faust, Jr. Jul 1950 A
3368453 Shaw Feb 1968 A
3385164 Walther et al. May 1968 A
3667570 WerBell, III Jun 1972 A
3693750 Takkunen Sep 1972 A
3786895 Perrine Jan 1974 A
4291610 Waiser Sep 1981 A
4454798 Shea et al. Jun 1984 A
4482027 Gould Nov 1984 A
4501189 Brandl et al. Feb 1985 A
4510843 Rabatin Apr 1985 A
4530417 Daniel Jul 1985 A
4576083 Seberger, Jr. Mar 1986 A
4583445 Blair Apr 1986 A
4588043 Finn May 1986 A
4907488 Seberger Mar 1990 A
4930396 Johnson Jun 1990 A
4946105 Pane, Jr. et al. Aug 1990 A
4974489 Fishbaugh Dec 1990 A
5010676 Kennedy Apr 1991 A
5029512 Latka Jul 1991 A
5036747 McClain, III Aug 1991 A
5078043 Stephens Jan 1992 A
5092223 Hudson Mar 1992 A
5136924 Foerster et al. Aug 1992 A
5164535 Leasure Nov 1992 A
5425299 Teetzel Jun 1995 A
5433133 La France Jul 1995 A
5486425 Seibert Jan 1996 A
5590484 Mooney et al. Jan 1997 A
5656166 Linnersten et al. Aug 1997 A
5661255 Webb, III Aug 1997 A
5679916 Weichert Oct 1997 A
5698810 Rose Dec 1997 A
5777258 Soon Jul 1998 A
5952625 Huff Sep 1999 A
6079311 O'Quinn et al. Jun 2000 A
6298764 Sherman et al. Oct 2001 B1
6308609 Davies Oct 2001 B1
6374718 Rescigno et al. Apr 2002 B1
6376565 Dyer et al. Apr 2002 B1
6425310 Champion Jul 2002 B1
6490822 Swan Dec 2002 B1
6499245 Swan Dec 2002 B1
6575074 Gaddini Jun 2003 B1
6732628 Coburn et al. May 2004 B1
6792711 Battaglia Sep 2004 B2
6796214 Hausken et al. Sep 2004 B2
6959509 Vais Nov 2005 B2
7000547 Amick Feb 2006 B2
7036259 Beretta May 2006 B2
7059233 Amick Jun 2006 B2
7131228 Hochstrate et al. Nov 2006 B2
7207258 Scanlon Apr 2007 B1
7216451 Troy May 2007 B1
7237467 Melton Jul 2007 B1
7308967 Hoel Dec 2007 B1
7325474 Yoshimura et al. Feb 2008 B2
7353740 Hoffman Apr 2008 B1
7412917 Vais Aug 2008 B2
7587969 Silvers Sep 2009 B2
7610710 Brittingham Nov 2009 B2
7661349 Brittingham Feb 2010 B1
7676976 Dueck et al. Mar 2010 B2
7707762 Swan May 2010 B1
7789008 Petersen Sep 2010 B2
7823314 Wheatley Nov 2010 B1
7832323 Davies Nov 2010 B1
7836809 Noveske Nov 2010 B2
7870815 Hung Jan 2011 B2
7905319 Sullivan Mar 2011 B2
7987944 Brittingham Aug 2011 B1
8100224 Olson Jan 2012 B1
8167084 Moore May 2012 B1
8196701 Oliver Jun 2012 B1
8286750 Oliver Oct 2012 B1
8307946 Johnston Nov 2012 B1
8490535 Moore et al. Jul 2013 B1
8516941 Oliver Aug 2013 B1
8522662 Presz, Jr. et al. Sep 2013 B2
8579075 Brittingham et al. Nov 2013 B2
8671818 Bliver Mar 2014 B1
8790434 Oliver Jul 2014 B1
8826793 Oliver Sep 2014 B2
8844422 Klett Sep 2014 B1
8875612 Klett et al. Nov 2014 B1
8973481 Dueck Mar 2015 B2
9052152 Moss et al. Jun 2015 B2
9163891 Dater et al. Oct 2015 B1
9175920 Moore Nov 2015 B2
9194640 Wirth et al. Nov 2015 B2
9207033 Nais Dec 2015 B2
9239201 Reis Green Jan 2016 B1
9316456 Oliver Apr 2016 B1
9347727 Cler May 2016 B1
9410761 Morris et al. Aug 2016 B2
9423198 Oliver Aug 2016 B1
9435600 Oliver Sep 2016 B2
9482484 Barney Nov 2016 B2
9500427 Larue Nov 2016 B1
9709354 Larue Jul 2017 B2
9835399 Lessard Dec 2017 B1
10024617 Moore et al. Jul 2018 B1
10030929 Lessard Jul 2018 B1
10126084 Oglesby Nov 2018 B1
10228210 Parker Mar 2019 B2
10234231 Gianelloni, III et al. Mar 2019 B2
10254068 Piemme et al. Apr 2019 B2
10267586 Marfione Apr 2019 B1
10371476 Oglesby Aug 2019 B1
10393463 Sanders et al. Aug 2019 B1
10415917 White Sep 2019 B2
10458739 Smith Oct 2019 B2
10480883 Smith Nov 2019 B2
10480888 Barrett Nov 2019 B2
10502512 Beaudry Dec 2019 B1
10502513 Ellison et al. Dec 2019 B2
10533819 Thomas Jan 2020 B2
10634445 Klett Apr 2020 B1
10648756 Mooty May 2020 B2
10655926 Young et al. May 2020 B2
10724817 Miele Jul 2020 B2
10746491 Garst et al. Aug 2020 B2
10753699 Klett et al. Aug 2020 B2
10690432 Campbell et al. Sep 2020 B2
10890403 Petersen Jan 2021 B2
10890404 Petersen Jan 2021 B2
11493298 Magee Nov 2022 B2
11585623 Borunsky Feb 2023 B2
11668541 Grob Jun 2023 B2
20070107590 Silvers May 2007 A1
20070107982 Sullivan May 2007 A1
20070256347 Fitzpatrick et al. Nov 2007 A1
20090200105 Geyer, III Aug 2009 A1
20090235568 Auvine Sep 2009 A1
20100048752 Vignola et al. Feb 2010 A1
20100163336 Presz, Jr. et al. Jul 2010 A1
20100199834 Dueck et al. Aug 2010 A1
20110067950 Shults et al. Mar 2011 A1
20140035076 Zhang et al. Feb 2014 A1
20140224574 Latka Aug 2014 A1
20140262605 Washburn, III et al. Sep 2014 A1
20140353076 Bethlenfalvy Dec 2014 A1
20140360807 McKenzie Dec 2014 A1
20150136519 Moore May 2015 A1
20150253099 Shults Sep 2015 A1
20150260472 Smith Sep 2015 A1
20160084602 Smith Mar 2016 A1
20160109205 Coppinger et al. Apr 2016 A1
20160238335 Bertschinger et al. Aug 2016 A1
20170160034 Parker Jun 2017 A1
20170299314 Palu Oct 2017 A1
20170321984 Palu et al. Nov 2017 A1
20180135932 Tomczak May 2018 A1
20180252489 Parker Sep 2018 A1
20180313626 Tomczak Nov 2018 A1
20180313627 Tomczak Nov 2018 A1
20180340750 Mooty Nov 2018 A1
20190257607 Dobrinescu Aug 2019 A1
20200025491 Petersen Jan 2020 A1
20200025494 Parker Jan 2020 A1
20200064099 Young et al. Feb 2020 A1
20200096279 Hibbitts et al. Mar 2020 A1
20200116450 Ellison et al. Apr 2020 A1
20200224989 Bundy et al. Jul 2020 A1
20200232741 Hood, II Jul 2020 A1
20200240737 Wheeler et al. Jul 2020 A1
20200263947 Calderwood et al. Aug 2020 A1
20210003360 Kras Jan 2021 A1
20210041200 Kras Feb 2021 A1
20210071979 Plunkett, Jr. et al. Mar 2021 A1
Foreign Referenced Citations (7)
Number Date Country
1 764 577 Mar 2007 EP
743111 Jan 1956 GB
2 288 007 Apr 1995 GB
2 287 780 Sep 1995 GB
9902826 Jan 1999 WO
2015016998 Feb 2015 WO
2020081268 Apr 2020 WO
Non-Patent Literature Citations (5)
Entry
United States Patent and Trademark Office, Non-Final Office Action issued in U.S. Appl. No. 17/399,337 (dated Nov. 3, 2022).
Volk, Oleg, AllOutdoor.com, “Thermal Defense Solutions: 3D-Printed Inconel Sound Suppresors” available at https://www.alloutdoor.com/2018/04/03/thermal-defense-solutions-3d-printed-steel-sound-suppressors/ (Apr. 3, 2018).
OSS Suppressors.com Website, RAD 22 Suppressor, https://osssuppressors.com/suppressors/rimfire/ (visited Apr. 29, 2019).
RetroRifles.com Website, M16A1 Birdcage Flash Hider, https://retrorifles.com/m16a1-birdcage-flash-hider-4-options/ (last visited Dec. 17, 2019).
Operators Suppressor Systems Info Sheet (2015).