This invention relates generally to gaming printers and more specifically to printers for use in cashless gaming machines that use rewritable cards.
The gaming machine manufacturing industry provides a variety of gaming machines for the amusement of gaming machine players. An exemplary gaming machine is a slot machine. A slot machine is an electro-mechanical game wherein chance or the skill of a player determines the outcome of the game. Slot machines are usually found in casinos or other more informal gaming establishments.
Gaming machine manufacturers have more recently introduced cashless enabled games to the market and these have begun to find wide acceptance in the gaming industry. Cashless enabled games are so named because they can conduct financial exchanges using a mixture of traditional currencies and rewritable cards. Typically, a cashless enabled game has a gaming printer to produce rewritable cards and a rewritable card reader that supports automatic reading of rewritable cards. To coordinate the activities of multiple cashless enabled games, one or more cashless enabled games may be electronically coupled to a cashless enabled game system that controls the cashless operations of a cashless enabled game.
When a player cashes out using a cashless enabled game coupled to a cashless enabled game system, the cashless enabled game signals the system and the system may determine the type of pay out presented to the player. Depending on the size of the pay out, the cashless enabled game system may cause the cashless enabled game to present coins in the traditional method of a slot machine, or the cashless enabled game system may cause a gaming printer in the cashless enabled game to produce a rewritable card for the value of the pay out. The rewritable card may then be redeemed in a variety of ways. For example, the rewritable card may be redeemed for cash at a cashier's cage or used with another cashless enabled game. In order to use the rewritable card in a cashless enabled game, the rewritable card is inserted into a rewritable card reader of another cashless enabled game at a participating casino and the cashless enabled game system recognizes the rewritable card, redeems the rewritable card, places an appropriate amount of playing credits on the cashless enabled game.
Cashless enabled games have found an increasing acceptance and use in the gaming industry, both with players who enjoy the speed of play and ease of transporting their winnings around the casino and casinos who have realized significant labor savings in the form of reduced coin hopper reloads in the games, and an increase in revenue because of the speed of play. Practical field experience with printers used in cashless enabled games has illustrated that there are areas for improvement in the current printer designs and implementation. These areas in need of improvement include methods and means for using rewritable card media for printing of vouchers.
A rewritable card printer useful as a gaming machine printer for printing vouchers is provided. The rewritable card printer includes a print module coupled to one or more separate card magazines, each having independent card drives. The operations of the print module and one or more card magazines is controlled by a printer controller. Cards may be exchanged between multiple card magazines so that cards can be escrowed, exchanged, or selectively located and retrieved.
The print module may receive as well as dispense cards from and to an external card source so that the card magazines may be replenished without opening up a gaming machine hosting the rewritable card printer. The print module may further include a security device reader that is used to read security features embedded in the cards. The security features may be used to track individual card use and to guard against card duplication and fraud.
In another aspect of the invention, a rewritable card printer includes a print module having a print card drive and a print head with the print module mechanically coupled to a base. The rewritable card printer further includes a card magazine having a card storage location and a magazine card drive with the card magazine coupled to the base such that the magazine card drive and the print card drive may exchange cards. The rewritable card printer has a printer controller electronically coupled to the print module and the card magazine. The printer controller includes a processor and a memory coupled to the processor. The memory has program instructions stored therein, the program instructions for operation by the printer controller of the print module and the card magazine.
In another aspect of the invention, the program instructions further include receiving card information for printing onto a card, generating printable indicia using the card information, and printing onto a rewritable card the printable indicia using the print head.
In another aspect of the invention, the rewritable card printer further includes an erase head with the program instructions further including instructions for erasing the rewritable card using the erase head.
In another aspect of the invention, the rewritable card printer further includes a security feature reader, the program instructions further including reading a security signature from the rewritable card using the security feature reader.
In another aspect of the invention, the rewritable card printer may be removably coupled to an external card magazine for dispensing and receiving cards.
In another aspect of the invention, the rewritable card printer may be programmed using a rewritable card or an external controller.
In another aspect of the invention, the rewritable card printer further includes encryption/decryption means coupled to the printer controller.
In another aspect of the invention, the rewritable card printer further includes a display device coupled to the printer controller.
In another aspect of the invention, the rewritable card printer further includes a card cleaning device coupled to the input module.
In another aspect of the invention, the input module further includes a magnetic strip read/write head. In another aspect of the invention, the input module further includes an optical scanning device.
In another aspect of the invention, the input module further includes means for coupling to a static memory in a rewritable card.
In another aspect of the invention, the program instructions further include: receiving a card for storage; reading card information from the card; erasing the card; storing the card information in a static memory; and storing the card in the card magazine.
In another aspect of the invention, the card magazine further includes the static memory for storage of the card information.
In another aspect of the invention, the base is slidably coupled to a base plate fixedly coupled to a gaming machine.
In another aspect of the invention, the card magazine is slidably coupled to the base.
In another aspect of the invention, the print module is removably coupled to the base by mechanical quick disconnect means and removably coupled to the printer controller by electrical quick disconnect means.
In another aspect of the invention, the card magazine is removably coupled to the base by mechanical quick disconnect means and removably coupled to the printer controller by electrical quick disconnect means.
In another aspect of the invention, the rewritable card further comprises a second card magazine coupled to the base such that the second card magazine's magazine card drive is in communication with the first of the card magazine's magazine card drive.
In another aspect of the invention, the program instructions further include: receiving a request for a card located in the first card magazine; determining the location of the requested card located in the first card magazine; and moving cards from the first card magazine to the second card magazine until the location of the requested card is reached.
In another aspect of the invention, the rewritable card printer further includes an additional card magazine coupled to the base such that the second card magazine's magazine card drive is in communication with the print module's print card drive.
In another aspect of the invention, the program instructions further include instructions for escrowing a card or exchanging a card for another card.
In another aspect of the invention, the print module further includes an embossing detector.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
a is an illustration of a rewritable card in accordance with an exemplary embodiment of the present invention;
b is an illustration of another portion of a rewritable card in accordance with an exemplary embodiment of the present invention;
c is an illustration of another portion of a rewritable card having a static memory in accordance with an exemplary embodiment of the present invention;
a is a block diagram of a rewritable card printer in accordance with an exemplary embodiment of the present invention;
b is an architecture diagram of a rewritable card printer employing components having integral controllers in accordance with an exemplary embodiment of the present invention;
a is side elevation view of a rewritable card printer in accordance with an exemplary embodiment of the present invention;
b is side elevation view of a rewritable card charging process in accordance with an exemplary embodiment of the present invention;
c is a side elevation view of a rewritable card printer with a card magazine having two independent magazine card drives in accordance with an exemplary embodiment of the present invention;
d is a side elevation view of a card magazine having a plurality of card storage locations serviced by a single card magazine drive in accordance with an exemplary embodiment of the present invention;
e is side elevation view of a rewritable card printer slidably coupled to a gaming machine in accordance with an exemplary embodiment of the present invention;
The rewritable card printer may also be coupled (112) to the host system and cashless gaming controller. The rewritable card may be redeemed (116) in a variety of ways. The rewritable card may be redeemed by a human cashier or card reader 122 at a game table 124, or a human cashier or card reader 126 at a cashier's cage or kiosk 128, or by a card reader 118 at another cashless enabled game 120. Redemption is only possible after the rewritable card passes a verification of account information 130 and validation using security features 132 included in the rewritable card.
a is an illustration of a rewritable card in accordance with an exemplary embodiment of the present invention. The rewritable card shown is produced from commands issued by the cashless enabled game to the gaming printer in response to a player's request to cash-out. The rewritable card 114 includes features such as a validation number, printed in both a human readable form such as a character string 200 and in a machine-readable form such as a bar code 202, time and date stamps 204, cash-out amount 206, casino location information 208, cashless enabled game identifier 210, and an indication of an expiration date 212. Included in the card is a security feature 132 that may take one or more forms as discussed below.
In one rewriteable card media in accordance with an exemplary embodiment of the present invention, one face of the rewriteable card includes a layer of writable and erasable thermally sensitive film. The thermal film becomes opaque at one temperature level but becomes transparent at another temperature. This effect can be used to create a thermally rewritable card.
b is an illustration of another side of a rewriteable card in accordance with an exemplary embodiment of the present invention. The rewriteable card 114 may also include a read/write magnetic strip 214 for encoding of any of the information described above.
In addition, the magnetic strip may be used to transmit information to the rewritable card printer. For example, the magnetic strip may encode instructions such as configuration flags or programming instructions used to reconfigure or reprogram a rewritable card printer.
c is an illustration of another portion of a rewriteable card having a static memory in accordance with an exemplary embodiment of the present invention. The rewriteable card 114 may also include a static memory 216 embedded in the rewritable card so that the rewritable card can be used as a “smart” card for encoding of any of the information described above.
In addition, the static memory may be used to transmit information to the rewritable card printer. For example, the static memory may encode instructions such as configuration flags or programming instructions used to reconfigure or reprogram a rewritable card printer.
The rewritable card printer also includes an erase head 602 for erasing a rewritable card prior to printing on the rewritable card. The erase head raises the temperature of the rewritable thermal film to the erasing temperature and any images previously written to the rewritable card are erased.
The rewritable card printer also includes a print head 604 for printing on the rewritable card. The print head raises the temperature of the thermal film on the rewritable card to the writing temperature and indicia are printed onto the rewritable card as a result.
The rewritable card printer also includes an optical scanning device 605 for reading the printed indicia on the rewritable card. The operation of such a device is more fully detailed in U.S. patent application Ser. No. 10/136,897, filed Apr. 30, 2002, the contents of which are hereby incorporated by reference as if stated herein in full.
The rewritable card printer also includes a magnetic strip read/write head 607 for reading from, and writing to a magnetic strip 214 (of
The rewritable card printer includes a printer controller 606 operably coupled to the security feature reader. The security feature reader generates a security signature signal 608 that is transmitted to the printer controller.
The printer controller is also coupled to the erase head. The printer controller generates an erase control signal 612 that is transmitted to the erase head. In response to the erase head signal, the erase head heats the rewritable card until all indicia are erased from the rewritable card.
The printer controller is also coupled to the print head. The printer controller transmits print head control signals 616 to the print head. In response to the print head control signals, the print head heats a thermal element for each dot that is to be imaged on the rewritable card. The print head typically creates dot images to a granularity of 12 dots per millimeter, each dot image using a separate thermal element to create a dot image.
The printer controller is also coupled to the optical scanner 605. As the optical scanner scans the printed indicia on the rewritable card, the optical scanner transmits scanned signals 617 to the printer controller.
The printer controller is also coupled to the magnetic strip read/write head 607. The printer controller transmits magnetic strip write signals and receives magnetic strip read signals to and from (619) the magnetic strip read/write head.
The printer controller may also be coupled to a static memory read/write connector 622. The printer controller transmits static memory write signals and receives static memory read signals to and from (624) the static memory read/write head.
In one embodiment of a rewritable card printer in accordance with the present invention, a game controller 108 is operably coupled to the printer controller. The printer controller receives printer control instructions 614, including card information for writing to the rewritable card, from the game controller. The printer controller may also transmit printer status and card identification signals 610 to the game controller.
a is a block diagram of a rewritable card printer in accordance with an exemplary embodiment of the present invention. A rewritable card printer 110 includes a printer controller 606, a print module 702, and one or more card magazines 704.
The print module includes a print card drive 706 that moves cards through the print module. The print card drive is reversible such that a card may be fed through the print module in more than one direction by the print card drive. The print card drive includes a card motion sensor 707 for sensing card movement within the print card drive. A more detailed discussion of printer media motion detection within a printer is presented in U.S. Patent Application entitled “PAPER MOTION DETECTOR IN A GAMING MACHINE”, Ser. No. 10/640,495 filed Aug. 12, 2003, the contents of which are hereby incorporated by reference as if stated herein in full. The print drive further includes an embossing detector 709 that may be used to sense when an embossed item, such as a conventional credit card, is inserted into the print module. The embossing detector may be a mechanical device, such as a limit switch, that contacts an inserted card and detects any embossing. If an embossed card is inserted into the rewritable card printer, the rewritable card printer may not attempt to write to the card, only read the card.
The print module further includes a security feature reading device 600 for reading any security features included in the card. The print module further includes a print head 604 for writing indicia to the rewritable card and an erase head 602 for erasing the indicia from the rewritable card.
The print module further includes an optical scanning device 605 for scanning the indicia printed onto a rewritable card. The print module further includes a magnetic strip read/write head 607 used to read and write from and to a rewritable card's magnetic strip. The print module is removably and electronically coupled to the printer controller and removably and mechanically coupled to the card magazine.
In operation, the print module receives printer control signals from the printer controller. In response to the printer control signals, the print module scans rewritable cards for the presence and value of any security feature in the rewritable card. As the print module scans the rewritable card, the security feature reading device generates a previously described security signature signal that is transmitted to the printer controller. In addition, the print module thermally prints on the rewritable cards, and thermally erases the rewritable cards, under the control of the printer controller. The print module may also receive a rewritable card from a player and transmit a rewritable card detection signal to the printer controller.
The print module may also include a static memory read/write connector 622 for coupling to a “smart” card having a readable/writable static memory. The printer controller transmits static memory write signals and receives static memory read signals to and from the static memory read/write head.
The one or more independently controlled card magazines store rewritable cards and provide the rewritable cards to the printer module on command from the printer controller. Each card magazine may includes one or more magazine card drives 710 for moving cards into and out of the magazine. Each card magazine also includes a card storage area 712 for storage of rewritable cards. In operation, the card magazine receives card magazine control signals from the printer controller. In response to the control signals, the card magazine feeds cards to the printer from the card storage area using the magazine card drive. In response to the card magazine control signals, the card magazine may also receive rewritable cards from the print module and store the rewritable cards in the card storage area. The card magazine may also include one or more card sensors 714 used to detect the number of cards stored in the card storage area. The card sensors sense the quantity of cards stored in the card storage area and transmit card count signals to the printer controller for further processing. The card magazine may also include a read/write static memory 715 for semi-permanent storage stored in the card magazine.
The printer controller include to a main memory 718 by a system information about cards a processor 716 coupled bus 720. The printer controller also includes a storage memory 722 coupled to the processor by the bus. The storage memory stores programming instructions 113, executable by the processor to implement the features of a rewritable card printer. The storage memory also includes printer and card information 724 stored and used by the processor. The printer and card information includes information received by the printer controller about the status of the print module and card magazine and also about the status and identity of any cards stored in the card magazines or being operated on by the print module. The types of status information may include an image of a last printed rewritable card as scanned by the optical scanning device and the current status, such as millimeters of advancement, of a card currently in the print module.
The printer controller also includes an Input/Output (I/O) device 726 coupled to the processor by the system bus. The I/O device is used by the printer controller to transmit control signals to the print module and the card magazine. The I/O device may also be used by the printer controller to receive security feature and status signals from the print module and card magazine.
One or more communications devices 728 may be coupled to the system bus for use by the printer controller to communicate with a cashless gaming system host 102 or a game controller 108 (both of
In addition, the printer controller may use the communication devices to transmit printer status information to the external devices. Other communication devices may also be used by the printer controller to couple in a secure fashion over a local area network 732 for administrative or other purposes.
Additional communication devices and channels may be provided for communication with other peripheral devices as needed. For example, one communication device may be provided with a local communications port, accessible from an exterior of a gaming machine hosting the rewritable card printer, that a technician may use to communicate with the printer controller during servicing using an external controller 730. The external controller may communicate with the printer controller using an infrared link, other short-range wireless communication link, are a hard link with an external connector in a secure manner.
The processor may be further coupled to an encryption/decryption module 740 that may be used to encrypt and decrypt messages encoded using the an encryption standard. This enables the printer controller to engage in secure transactions with external devices. The processor may access the display device either as a component through the bus as shown or as an external device through a communications device using a high level communications protocol. In addition, the printer controller may also include program instructions to perform encryption/decryption services as well.
The processor may be further coupled to a display device 742 that may be used to display printer status information or card information. For example, the display may used to display an “as-scanned” version of the most recently printed and scanned card. The processor may access the display device either as a component through the I/O device or as an external device through a communications device.
In operation, the processor loads the programming instructions into the main memory and executes the programming instructions to implement the features of a rewritable card printer as described herein.
As illustrated, the printer controller is shown as being electronically coupled to the print module and card magazine without any mechanically coupling. The printer controller may be mounted in a variety of ways and may be incorporated into various components of either the rewritable card printer or the game hosting the rewritable card printer. For example, the printer controller may be attached to and supported by the print module, the card magazine, or the host game as may be required to mechanically integrate the rewritable card printer into the host game.
b is an architecture diagram of a rewritable card printer employing components having integral controllers in accordance with an exemplary embodiment of the present invention. A rewritable card printer 110 may be composed of a printer controller 606 that communicates with components and modules of the rewritable card printer using a communications link 749. The communications link may use either serial or parallel communications protocols to communicate with the components of the rewritable card printer. In this embodiment a print module 750 includes a print module controller 752 coupled to the printer controller. To control the operations of the print module, the printer controller transmits high level commands and status requests to the print module. In response, the print module performs the commands and transmits the requested information.
One or more card magazines 754 may also have integral card magazine controllers that are coupled to the printer controller via the communications link. To control the operations of the card magazine, the printer controller transmits high level commands and status requests to the card magazine. In response, the card magazine performs the commands and transmits the requested information to the printer controller.
The internal architecture of the rewritable card printer may be extended to external devices 758 as well, each having its own internal controller 760. In this embodiment, the printer controller communicates with the external device using high level commands. In response, the external device performs the commands and transmits any requested information to the printer controller. An example of an external device having its own internal controller includes an external card magazine or cassette used to load cards into, or retrieve cards from, the rewritable card printer.
As the print module and card magazine are separately mounted and controllable, the orientation of the print module and card magazine may be altered as needed to suit the mechanical requirements of a host game. For example the distance between the print module and the card magazine may be altered in order to accommodate a shorter printer bay included in a host game.
In one card magazine in accordance with an exemplary embodiment of the present invention, the cards are stored in the card magazine at an angle, up to 90 degrees, relative to the orientation to a card as it is fed into or out of a print module. This allows the card magazine to accommodate a larger number of cards in a given space, thus enhancing the card magazine's storage capabilities. In operation, the magazine card drive receives the card from the print module or another card magazine and tilts the card as it is added to the card storage area. When a card is retrieved from the card magazine, the magazine card drive reorients the card into a proper position for presentation to the print module.
A cleaning device 902 (shown through a cutaway in the front bezel 802) is attached to the print module such that incoming rewritable cards are cleaned before they enter the print module. The cleaning device may include flexible solid or bristled wiper elements that contact the card as it is taken into the print module. The wiper elements may be conductive so as to remove static surface charges from the card as it moves in the card printer. The wiper elements may also be charged so as to electrically attract and collect particles of dust and dirt from the card. As the print module's print card drive is reversible, the incoming card may be passed repeatedly, back and forth, through the cleaning element as needed.
In other print modules in accordance with other exemplary embodiments of the present invention, the cleaning device may be located within the print module, within the card magazine, or between the print module and a card magazine. In other rewritable card printers in accordance with exemplary embodiments of the present invention, the cleaning device is a separate device and not integrated with either a print module or a card magazine. Instead, the cleaning device is a separate motorized device similar to a card magazine and is electronically coupled to a printer controller.
In the top view, additional positions for card magazines are illustrated. These additional card magazine positions may be used to mount one or more card magazines in various relationships to the print module as may be dictated by an existing printer bay in a host game. In one possible configuration, a card magazine 704a is located to the side of the print module. In another configuration, two card magazines, 704b and 704c, are mounted such that the card magazines may feed and receive rewritable cards to and from each other as companions. As illustrated, card magazine 704b is the primary card magazine and may feed cards into and receive cards from the print module. Card magazine 704c is a secondary card magazine that may feed cards to and receive cards from the primary card magazine.
Card magazines configured so as to allow movement of cards between the card magazines are herein termed “companion” magazines. Companion card magazines may be used to move rewritable cards around such that individual rewritable cards may be identified and retrieved from storage. This is because a card magazine with a single magazine card drive may be used as a Last In First Out (LIFO) rewritable card “memory” where the last rewritable card placed into the card magazine will be the first rewritable card retrieved from the card magazine when a rewritable card is requested. Through the use of multiple magazine drives serving a single rewritable card storage location, different styles of rewritable card memories may be implemented such as a First In First Out (FIFO) memory.
Companion card magazines may also be used to store different kinds of rewritable cards for use by the rewritable card printer. For example, the rewritable cards may have different permanent graphics imprinted on them indicating different user affiliations such as affiliations to different loyalty reward programs. In this way, a user may “upgrade” their affiliations by inserting a first style of rewritable card into the rewritable card printer and exchange it for a second style of rewritable card.
a is side elevation view of a rewritable card printer in accordance with an exemplary embodiment of the present invention. The rewritable card printer 110 includes a print module 702 and one or more card magazines 704d and 704e mechanically coupled to a base 800. The rewritable card printer includes a front bezel 802 through which a rewritable card may be fed by the print module's print card drive 706, either into or out of the rewritable card printer as previously described. Card magazine 704d is positioned on the base such that the card magazine's magazine card drive 710d may feed rewritable cards to and receive rewritable cards from the print module as previously described.
In the side view, an additional position for a card magazine is shown as card magazine 704e located beneath card magazine 704d. This position may be used to mount a card magazine as either a previously described primary or secondary card magazine. In addition, card magazine 704e may be replaced by a larger card storage area for card magazine 704d that extends through the base.
b is side elevation view of a rewritable card charging and retrieval process in accordance with an exemplary embodiment of the present invention. The rewritable card printer 110 includes a print module 702 and a card magazine 704 mechanically coupled to a base 800. The rewritable card printer includes a front bezel 802 through which a rewritable card may be fed by the print module's print card drive 706, either into or out of the rewritable card printer as previously described. Card magazine 704 is positioned on the base such that the card magazine's magazine card drive 710 may feed rewritable cards to and receive rewritable cards from the print module as previously described.
A technician may use an external controller 730 electronically coupled to the rewritable card printer and to an external card magazine 1112 removable and mechanically coupled to the rewritable card printer to load rewritable cards into and retrieve cards, such as escrowed cards, from the rewritable card printer. This may be done without opening a cabinet in a game hosting the rewritable card printer. To load cards into the rewritable card printer, the technician couples the external controller and external card magazine to the rewritable card printer. The technician then uses the external controller to send a card load signal to the rewritable card printer and the external card magazine. In response to the card load signal, the external card magazine dispenses cards into the rewritable card printer print module. In response to the card load signal, the print module accepts the dispensed cards and forwards them to an appropriate internal card magazine in the rewritable card printer.
To retrieve cards from the rewritable card printer, the technician couples the external controller and external card magazine to the rewritable card printer. In response to the card retrieval signal, the rewritable card printer retrieves cards from the rewritable card printer's one or more internal card magazines and dispenses the cards using the printer module. In response to the card retrieval signal, the external card magazine receives the dispensed cards from the rewritable card printer and stores them.
Optionally, the external print controller may store the number of rewritable cards loaded into the rewritable card printer, an identification of each of the rewritable cards loaded into the rewritable card printer, and an identifier of the rewritable card printer.
To keep track of the rewritable cards held by the rewritable card printer, the rewritable card printer may receive from the external controller a rewritable card identifier for each card dispensed by the external card magazine. The rewritable card printer may also scan each rewritable card for its identifier as each rewritable card is dispensed into the rewritable card printer.
In one rewritable card printer in accordance with an exemplary embodiment of the present invention, the rewritable card printer's printer controller contains all of the program instructions necessary to perform card loading and retrieval operations. In this embodiment, the external card magazine couples electronically with the rewritable card printer's printer controller and the rewritable card printer's printer controller commands the external card magazine to dispense and receive cards. The external controller may also communicate directly to the host game 106 or the system host 102.
An external controller may be implemented in a variety of different external devices. For example, the external controller may be a purpose-built controller. Other external controllers may be implemented in a programmable device such a Personal Digital Assistant (PDA) or a portable or “laptop” computer.
c is a side elevation view of a rewritable card printer with a card magazine having two independent magazine card drives in accordance with an exemplary embodiment of the present invention. The rewritable card printer 110 includes a print module 702 and a card magazine 1100 mechanically coupled to a base 800. The rewritable card printer includes a front bezel 802 through which a-rewritable card may be fed by the print module's print card drive 706, either into or out of the rewritable card printer as previously described.
Card magazine 1100 includes a first magazine card drive 1102 and a second magazine card drive 1104. The card is positioned on the base such that the card magazine's magazine card drives may feed rewritable cards, 114a and 114b, to and receive rewritable cards from the print module using the same card storage area 1106. The first magazine card drive receives and dispenses cards from a first end 1108 of the card storage location. The second card magazine drive receives and dispenses cards from a second end 1110 of the card storage location. In this way, the card magazine may be used as a LIFO card storage device or a FIFO card storage device depending on whether two drives or one drive are employed. In addition, the magazine card drives may be used to store cards in the card storage location at an angle, such as at a 90 degree angle, relative to the orientation of the card while the card is being operated on by the printer module.
d is a side elevation view of a card magazine having a plurality of card storage locations serviced by a single card magazine drive. A card magazine 1112 may have a plurality of card storage locations, such as card storage locations 1114 and 1116. A single magazine card drive 1118 may service both card storage locations. In this way, a single card magazine may be used to shuffle cards to locate specific cards or rotate cards in storage to even out erase and write cycles performed on the cards.
e is side elevation view of a rewritable card printer slidably coupled to a gaming machine in accordance with an exemplary embodiment of the present invention. The rewritable card printer 110 includes a print module 702 and a card magazine 704 mechanically coupled to a printer base 1150.
The rewritable card printer includes a front bezel 802 through which a rewritable card may be fed by the print module's print card drive 706, either into or out of the rewritable card printer as previously described. Card magazine 704 is positioned on the base such that the card magazine's magazine card drive 710 may feed rewritable cards 114 to and receive rewritable cards from the print module as previously described.
The printer base is further slidably coupled to a base plate 1152 that is fixedly coupled to a portion 1154 of a gaming machine hosting the printer. The rewritable card printer may be accessed while still in the gaming machine by sliding the rewritable card printer out of the gaming machine.
The card magazine may be mechanically coupled to the printer base by a quick disconnect 1156 so that the card magazine may be easily removed. To facilitate easy removal, the card magazine may be coupled to the printer controller 606 (of
The print module may be mechanically coupled to the printer base by a quick disconnect 1158 so that the print module may be easily removed. To further facilitate easy removal, the print magazine may be coupled to the printer controller 606 (of
In one embodiment of a card magazine, the card magazine is slidably coupled to the printer base separately from the print module. In this embodiment, the card magazine may accessed by sliding the card magazine past the print module so that the card magazine may be separately serviced.
Cards may be removed from service by moving the card into an escrow location within the rewritable card printer by either a magazine card drive or by a print card drive. In the escrow process, the rewritable card determines (1302) if a card should be removed from service. If the rewritable card printer determines that the card should remain in service (1304), the rewritable card continues processing (1306) the rewritable card. Otherwise, the rewritable card printer moves (1306) the rewritable card to an escrow location 1307 within the rewritable card printer and obtains (1308) a replacement card from a card magazine 1310 and continues processing (1312) the newly obtained rewritable card.
Optionally, the rewritable card printer may put all of the moved rewritable cards back into their original locations within a card magazine. For each of the moved cards (as indicated by the loop structure 1518 to 1522) the rewritable card printer retrieves (1520) a moved card out of the companion storage location and places it back into the card magazine 1507.
In a card replacement process 1600, a rewritable card printer receives (1602) a card from a user for imprinting.
The rewritable card printer moves (1604) the received card into a first card magazine 1606 for storage and possible reuse. The rewritable card printer then retrieves (1608) a replacement card from a second card magazine 1610. The rewritable card printer continues processing (1612) the replacement card such as by printing on the card as previously described. The rewritable card printer dispenses (1614) the imprinted replacement card to the user whereby the user's original card has been replaced with another type of card.
Although this invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that this invention may be practiced otherwise than as specifically described. Thus, the present embodiments of the invention should be considered in all respects as illustrative and not restrictive, the scope of the invention to be determined by any claims supported by this application and the claims' equivalents rather than the foregoing description.
In a programming process 1700, a rewritable card printer receives (1702) a card and determines (1704) if the card includes programming instructions. A rewritable card printer may make the determination by either scanning the card and parsing the information found on the card or may be signaled by an external device that the inserted card includes programming instructions. If the card does have programming instructions, the rewritable card printer reads (1706) the programming instructions and stores the programming instructions 113 in the rewritable card printer's memory 722.
After reading the card, the rewritable card printer dispenses the card 724. In addition to reading rewritable cards to obtain additional programming instructions, the rewritable card printer may receive programming instructions from an external device, such as external controller 730 (of
The rewritable card printer retrieves (1902) a card from a card magazine 1816. The rewritable card printer reads (1904) the cards signature and uses (1906) the card's signature to retrieve card information from the static memory. The rewritable card printer then continues (1908) processing the rewritable card using the retrieved card information. This may include incrementing the number of erase/write cycles that the card has gone through onto the card before dispensing the card. This processing may also include removing the card from service.
Although this invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that this invention may be practiced otherwise than as specifically described. Thus, the present embodiments of the invention should be considered in all respects as illustrative and not restrictive, the scope of the invention to be determined by any claims supported by this application and the claims' equivalents rather than the foregoing description.
This application is a continuation of, and claims the benefit of: (a) U.S. patent application Ser. No. 10/654,521, filed Sep. 2, 2003, the contents of which are incorporated herein by reference in their entirety; and (b) U.S. patent application Ser. No. 11/448,605, filed Jun. 6, 2006, the contents of which are hereby incorporated by reference in their entirety. This application is related to the following commonly-owned co-pending patent applications: “GAMING DEVICE HAVING A CARD MANAGEMENT SYSTEM FOR THE MEASUREMENT OF CIRCULATING DATA CARDS,” Ser. No. 10/661,229; “GAMING DEVICE INCLUDING A CARD PROCESSING ASSEMBLY HAVING VERTICALLY-STACKED CARD HOLDERS OPERABLE WITH THERMALLY-PRINTABLE DATA CARDS AND PORTABLE CARD CHANGEOVER MACHINES,” Ser. No. 11/158,478; “GAMING SYSTEM WITH REWRITABLE DISPLAY CARD AND LCD INPUT DISPLAY FOR READING SAME,” Ser. No. 10/923,568; “GAMING DEVICE HAVING AN ELECTRONIC FUNDS TRANSFER SYSTEM,” Ser. No. 10/229,772; “GAMING DEVICE HAVING AN ELECTRONIC FUNDS TRANSFER SYSTEM,” Ser. No. 10/662,618; and “ELECTRONIC FUND TRANSFER KIOSK FOR USE WITH WAGERING GAMING MACHINE,” Ser. No. 10/662,495.
Number | Name | Date | Kind |
---|---|---|---|
3947691 | Goldstein | Mar 1976 | A |
4197986 | Nagata | Apr 1980 | A |
4519600 | Warwick et al. | May 1985 | A |
4575622 | Pellegrini | Mar 1986 | A |
4593183 | Fukatsu | Jun 1986 | A |
4677435 | Causse D'Agraives et al. | Jun 1987 | A |
4683371 | Drexler | Jul 1987 | A |
4747049 | Richardson et al. | May 1988 | A |
4764666 | Bergeron | Aug 1988 | A |
4820912 | Samyn | Apr 1989 | A |
4879268 | Sheldon | Nov 1989 | A |
4880237 | Kishishita | Nov 1989 | A |
4882473 | Bergeron | Nov 1989 | A |
4977410 | Onuki et al. | Dec 1990 | A |
5038022 | Lucero | Aug 1991 | A |
5067832 | Baur et al. | Nov 1991 | A |
5122754 | Gotaas | Jun 1992 | A |
5179517 | Sarbin et al. | Jan 1993 | A |
5200601 | Jarvis | Apr 1993 | A |
5227226 | Rzasa | Jul 1993 | A |
5264689 | Maes et al. | Nov 1993 | A |
5265874 | Dickinson et al. | Nov 1993 | A |
5266781 | Warwick et al. | Nov 1993 | A |
5276312 | McCarthy | Jan 1994 | A |
5290033 | Bittner et al. | Mar 1994 | A |
5294785 | Fukuda et al. | Mar 1994 | A |
5326104 | Pease et al. | Jul 1994 | A |
5326179 | Fukai et al. | Jul 1994 | A |
5332076 | Ziegert | Jul 1994 | A |
5342047 | Heidel et al. | Aug 1994 | A |
5344144 | Canon | Sep 1994 | A |
5371345 | LeStrange et al. | Dec 1994 | A |
5397125 | Adams | Mar 1995 | A |
5398932 | Eberhardt et al. | Mar 1995 | A |
5426285 | Sherrod | Jun 1995 | A |
5440108 | Tran et al. | Aug 1995 | A |
5448279 | Matsuda et al. | Sep 1995 | A |
5448280 | Matsuda et al. | Sep 1995 | A |
5448284 | Matsuda et al. | Sep 1995 | A |
5457306 | Lucero | Oct 1995 | A |
5470079 | LeStrange et al. | Nov 1995 | A |
5471044 | Hotta et al. | Nov 1995 | A |
5504321 | Sheldon | Apr 1996 | A |
5504701 | Takahashi et al. | Apr 1996 | A |
5504808 | Hamrick, Jr. | Apr 1996 | A |
5505449 | Eberhardt et al. | Apr 1996 | A |
5530232 | Taylor | Jun 1996 | A |
5554312 | Ward | Sep 1996 | A |
5557086 | Schulze et al. | Sep 1996 | A |
5559312 | Lucero | Sep 1996 | A |
5575374 | Orus et al. | Nov 1996 | A |
5580309 | Piechowiak et al. | Dec 1996 | A |
5594233 | Kenneth et al. | Jan 1997 | A |
5606158 | Takemoto et al. | Feb 1997 | A |
5609337 | Clapper | Mar 1997 | A |
5611730 | Weiss | Mar 1997 | A |
5627356 | Takemoto et al. | May 1997 | A |
5628685 | Takemoto et al. | May 1997 | A |
5645485 | Clapper, Jr. | Jul 1997 | A |
5645486 | Nagao et al. | Jul 1997 | A |
5655961 | Acres et al. | Aug 1997 | A |
5683082 | Takemoto et al. | Nov 1997 | A |
5698839 | Jagielinski et al. | Dec 1997 | A |
5709603 | Kaye | Jan 1998 | A |
5714743 | Chiba et al. | Feb 1998 | A |
5714748 | Lee | Feb 1998 | A |
5720500 | Okazaki et al. | Feb 1998 | A |
5724545 | Skorski | Mar 1998 | A |
5748737 | Daggar | May 1998 | A |
5761647 | Boushy | Jun 1998 | A |
5766074 | Cannon et al. | Jun 1998 | A |
5768143 | Fujimoto | Jun 1998 | A |
5810665 | Takemoto et al. | Sep 1998 | A |
5811772 | Lucero | Sep 1998 | A |
5814796 | Benson et al. | Sep 1998 | A |
5816918 | Kelly et al. | Oct 1998 | A |
5836817 | Acres et al. | Nov 1998 | A |
5852463 | Koshida et al. | Dec 1998 | A |
5854477 | Kawaji et al. | Dec 1998 | A |
5876284 | Acres et al. | Mar 1999 | A |
5880769 | Nemirofsky et al. | Mar 1999 | A |
5882127 | Amano | Mar 1999 | A |
5902184 | Bennett | May 1999 | A |
5902983 | Crevelt et al. | May 1999 | A |
5919091 | Bell et al. | Jul 1999 | A |
5935000 | Sanchez, III et al. | Aug 1999 | A |
5952640 | Lucero | Sep 1999 | A |
5959277 | Lucero | Sep 1999 | A |
5959278 | Kobayashi et al. | Sep 1999 | A |
5971271 | Wynn et al. | Oct 1999 | A |
5974961 | Kazo et al. | Nov 1999 | A |
5988642 | Ziemba et al. | Nov 1999 | A |
5993316 | Coyle et al. | Nov 1999 | A |
6007426 | Kelly et al. | Dec 1999 | A |
6012832 | Saunders et al. | Jan 2000 | A |
6014594 | Heidel et al. | Jan 2000 | A |
6015344 | Kelly et al. | Jan 2000 | A |
6019283 | Lucero | Feb 2000 | A |
6030474 | Isono et al. | Feb 2000 | A |
6036495 | Marcus et al. | Mar 2000 | A |
6039648 | Guinn et al. | Mar 2000 | A |
6045050 | Ippolito et al. | Apr 2000 | A |
6048269 | Burns et al. | Apr 2000 | A |
6050487 | Bonifas et al. | Apr 2000 | A |
6056289 | Clapper, Jr. | May 2000 | A |
6056642 | Bennett | May 2000 | A |
6064413 | Fukui et al. | May 2000 | A |
6071190 | Weiss et al. | Jun 2000 | A |
6089982 | Holch et al. | Jul 2000 | A |
6104311 | Lastinger | Aug 2000 | A |
6104815 | Alcorn et al. | Aug 2000 | A |
6108236 | Barnett | Aug 2000 | A |
6110041 | Walker et al. | Aug 2000 | A |
6110044 | Stern | Aug 2000 | A |
6113098 | Adams | Sep 2000 | A |
6113495 | Walker et al. | Sep 2000 | A |
6125307 | Heidel et al. | Sep 2000 | A |
6128550 | Heidel et al. | Oct 2000 | A |
6135884 | Hedrick et al. | Oct 2000 | A |
6139419 | Abe | Oct 2000 | A |
6142876 | Cumbers | Nov 2000 | A |
6145741 | Wisdom et al. | Nov 2000 | A |
6147605 | Vega et al. | Nov 2000 | A |
6151037 | Kaufman et al. | Nov 2000 | A |
6152620 | Ozawa et al. | Nov 2000 | A |
6161743 | Shoemaker, Jr. | Dec 2000 | A |
6190256 | Walker et al. | Feb 2001 | B1 |
6227972 | Walker et al. | May 2001 | B1 |
6230973 | Fukui et al. | May 2001 | B1 |
6236420 | Matsuzaka | May 2001 | B1 |
6244958 | Acres | Jun 2001 | B1 |
6247643 | Lucero | Jun 2001 | B1 |
6251014 | Stockdale et al. | Jun 2001 | B1 |
6264103 | Stanley | Jul 2001 | B1 |
6308886 | Benson et al. | Oct 2001 | B1 |
6313856 | Ulrich | Nov 2001 | B1 |
6318536 | Korman et al. | Nov 2001 | B1 |
6319125 | Acres | Nov 2001 | B1 |
6327376 | Harkin | Dec 2001 | B1 |
6345760 | Eason et al. | Feb 2002 | B1 |
6347738 | Crevelt et al. | Feb 2002 | B1 |
6364550 | Petteruti | Apr 2002 | B1 |
6371852 | Acres | Apr 2002 | B1 |
6394907 | Rowe | May 2002 | B1 |
6409595 | Uihlein et al. | Jun 2002 | B1 |
6439996 | LeMay et al. | Aug 2002 | B2 |
6443642 | Luciano et al. | Sep 2002 | B1 |
6471590 | Saunders | Oct 2002 | B2 |
6488203 | Stoutenberg et al. | Dec 2002 | B1 |
6500067 | Luciano et al. | Dec 2002 | B1 |
6503147 | Stockdale et al. | Jan 2003 | B1 |
6511377 | Weiss | Jan 2003 | B1 |
6543685 | Lien et al. | Apr 2003 | B1 |
6547131 | Foodman et al. | Apr 2003 | B1 |
6547664 | Saunders | Apr 2003 | B2 |
6558256 | Saunders | May 2003 | B1 |
6565434 | Acres | May 2003 | B1 |
6575090 | Vienneau et al. | Jun 2003 | B1 |
6598794 | Ishii | Jul 2003 | B1 |
6601771 | Charrin | Aug 2003 | B2 |
6623357 | Chowdhury | Sep 2003 | B2 |
6629591 | Griswold et al. | Oct 2003 | B1 |
RE38295 | Kobayashi et al. | Nov 2003 | E |
6641034 | Oki et al. | Nov 2003 | B1 |
6648755 | Luciano et al. | Nov 2003 | B1 |
6675152 | Prasad et al. | Jan 2004 | B1 |
6676515 | Baltz et al. | Jan 2004 | B1 |
6676522 | Rowe et al. | Jan 2004 | B2 |
6679775 | Luciano et al. | Jan 2004 | B1 |
6682421 | Rowe et al. | Jan 2004 | B1 |
6682422 | Walker et al. | Jan 2004 | B1 |
6694884 | Klinefelter et al. | Feb 2004 | B2 |
6698654 | Zuppicich | Mar 2004 | B1 |
6702417 | Silverbrook | Mar 2004 | B2 |
6729719 | Klinefelter et al. | May 2004 | B2 |
6729958 | Burns et al. | May 2004 | B2 |
6736725 | Burns et al. | May 2004 | B2 |
6743098 | Urie et al. | Jun 2004 | B2 |
6745887 | Heidel et al. | Jun 2004 | B2 |
6752312 | Chamberlaine et al. | Jun 2004 | B1 |
6758616 | Pribula et al. | Jul 2004 | B2 |
6814282 | Seifert et al. | Nov 2004 | B2 |
6834794 | Dabrowski | Dec 2004 | B2 |
6852029 | Baltz et al. | Feb 2005 | B2 |
6852031 | Rowe | Feb 2005 | B1 |
6890260 | Ollins | May 2005 | B2 |
6901375 | Fernandez | May 2005 | B2 |
6969319 | Rowe et al. | Nov 2005 | B2 |
7100829 | Okada | Sep 2006 | B2 |
7134962 | Meyerhofer et al. | Nov 2006 | B2 |
7147152 | Yoshioka et al. | Dec 2006 | B2 |
7192208 | Meyerhofer | Mar 2007 | B2 |
7198571 | LeMay et al. | Apr 2007 | B2 |
7277601 | Zorab et al. | Oct 2007 | B2 |
7329186 | Griswold et al. | Feb 2008 | B2 |
7458895 | Tastad et al. | Dec 2008 | B2 |
7494059 | Chang | Feb 2009 | B2 |
20010014246 | Luciano et al. | Aug 2001 | A1 |
20020002075 | Rowe | Jan 2002 | A1 |
20020103027 | Rowe et al. | Aug 2002 | A1 |
20020111206 | Van Baltz et al. | Aug 2002 | A1 |
20020169021 | Urie et al. | Nov 2002 | A1 |
20030010827 | Hilton et al. | Jan 2003 | A1 |
20030032474 | Kaminkow | Feb 2003 | A1 |
20030036425 | Kaminkow et al. | Feb 2003 | A1 |
20030038176 | Dabrowski | Feb 2003 | A1 |
20030064784 | Wells et al. | Apr 2003 | A1 |
20030172083 | Goodwin et al. | Sep 2003 | A1 |
20030186739 | Paulsen et al. | Oct 2003 | A1 |
20030201009 | Paulsen et al. | Oct 2003 | A1 |
20030205896 | Geiger et al. | Nov 2003 | A1 |
20030211885 | Fujimoto | Nov 2003 | A1 |
20040022444 | Rhoads | Feb 2004 | A1 |
20040033095 | Saffari et al. | Feb 2004 | A1 |
20040039702 | Blair et al. | Feb 2004 | A1 |
20040043813 | Chamberlain et al. | Mar 2004 | A1 |
20040043814 | Angell et al. | Mar 2004 | A1 |
20040053692 | Chatigny et al. | Mar 2004 | A1 |
20040087360 | Chamberlain et al. | May 2004 | A1 |
20040110557 | Rowe | Jun 2004 | A1 |
20040136764 | Meyerhofer et al. | Jul 2004 | A1 |
20040147309 | Chamberlain et al. | Jul 2004 | A1 |
20040155104 | Mitchell, Jr. | Aug 2004 | A1 |
20040204233 | Saffari et al. | Oct 2004 | A1 |
20050017067 | Seifert et al. | Jan 2005 | A1 |
20050020348 | Thomas et al. | Jan 2005 | A1 |
20050057633 | Meyerhofer | Mar 2005 | A1 |
20050058482 | Meyerhofer | Mar 2005 | A1 |
20050059482 | Hedrick et al. | Mar 2005 | A1 |
20050077995 | Paulsen et al. | Apr 2005 | A1 |
20050124407 | Rowe | Jun 2005 | A1 |
20050153768 | Paulsen | Jul 2005 | A1 |
20060019745 | Benbrahim | Jan 2006 | A1 |
20060040741 | Griswold et al. | Feb 2006 | A1 |
20060067890 | Fujiwara et al. | Mar 2006 | A1 |
20060092193 | Block et al. | May 2006 | A1 |
20060104697 | Meyerhofer | May 2006 | A1 |
20060183541 | Okada et al. | Aug 2006 | A1 |
20070094721 | Nguyen et al. | Apr 2007 | A1 |
20070134042 | Meyerhofer | Jun 2007 | A1 |
20070167229 | LeMay et al. | Jul 2007 | A1 |
20080051193 | Kaminkow et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
0288300 | Oct 1988 | EP |
729848 | Sep 1996 | EP |
0 805 424 | Nov 1997 | EP |
0827101 | Mar 1998 | EP |
0854461 | Jul 1998 | EP |
0729848 | May 1999 | EP |
805424 | Apr 2000 | EP |
2221870 | Feb 1990 | GB |
62-089167 | Apr 1987 | JP |
5-169762 | Jul 1993 | JP |
10-255118 | Sep 1998 | JP |
2002-86970 | Mar 2002 | JP |
WO 9109369 | Jun 1991 | WO |
9606411 | Feb 1996 | WO |
WO 9702872 | Jan 1997 | WO |
WO 9857295 | Dec 1998 | WO |
0222223 | Mar 2002 | WO |
WO 03058878 | Jul 2003 | WO |
WO 2004013820 | Feb 2004 | WO |
2005029229 | Mar 2005 | WO |
2005029238 | Mar 2005 | WO |
WO 2005029229 | Mar 2005 | WO |
WO2005021275 | Mar 2005 | WO |
2005102705 | Nov 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070134042 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10654521 | Sep 2003 | US |
Child | 11678837 | US | |
Parent | 11448605 | Jun 2006 | US |
Child | 10654521 | US |