MACHINE LEARNING-BASED PATENT QUALITY METRIC

Abstract
A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers.
Description
BACKGROUND
Field of the Invention

The present disclosure relates to a system comprising a CPU, storage and database of patent grants or applications and other relevant data for computation of an estimation of patent quality utilizing machine learning algorithms for factor selection and classification based on non-linear models.


Related Art

Attempts have been made to assess or to estimate the value or expected life of a patent or a patent application based on historic data about patents. However, testable and reproducible quantitative metrics are difficult to come by. Also, using a combination of quantitative factors available from a universe of patent information to arrive at a patent value or estimated patent life or the like is difficult given the sheer number of patent-related and patent application-related factors and given that each patent represents a unique invention. Therefore, finding the combination of factors that produces an optimal or maximized patent quality/patent life profile has been a difficult task.


Existing methods of patent quality ratings depend on either linear combinations of simple factors (e.g. the number of forward citations combined with age of the patent) or traditional linear and statistical mathematical tools based on an iterative human driven factor selection process. Using a “brute force” approach to finding the most relevant factors entails examining every factor and every combination of factors. The solution space for a machine learning problem should be considered as all possible combinations of factors and coefficients. Therefore, the only way to find the optimal solution using the brute force approach is consider every element in the solution space iteratively; this process is known as brute-force computation. As a simple example for a problem with two factors, A and B, and no coefficients, the algorithm would need to consider at least:


A
B
A+B

as the potential solutions to the problem. If a third factor, C, was added, the brute-force approach would then need to consider:


A
B
C
A+B
A+C
B+C
A+B+C

Generally, using a brute-force approach, each additional factor, or combination of factors, increases the complexity and the processing time exponentially.


SUMMARY OF THE DISCLOSURE

A machine-learning based artificial intelligence device for finding an estimate of patent quality is disclosed. Such a device may include:


a patent data retriever configured to receive a first set of patent data comprising at least one of patent application data and patent data for a plurality of patents, and to generate a list of binary classifiers based on the first set of patent data;


a quantitative data scalar configured to assign a standardized scaled score to each binary classifier of the list of binary classifiers;


a binary classifier optimizer configured to generate, using an automated processor, a candidate set of binary classifiers from the list of binary classifiers using a heuristic search and to generate, using the automated processor, a final set of binary classifiers by maximizing iteratively a yield according to a cost function,


wherein the device is configured to provide a signal representing the final set of binary classifiers.


The heuristic search may include an artificial neural network model. The maximizing iteratively may include changing a number of hidden layers of the artificial neural network.


The maximizing iteratively may include using a genetic algorithm or an artificial neural network model and a genetic algorithm.


The cost function may be a receiver operating characteristic and the yield may be calculated according an area under a curve.


The estimate of patent quality may represent an estimate of a lifetime of the patent.


The patent data retriever may be configured to receive a second set of patent data comprising at least one of patent application data and patent data for a plurality of patents, and


wherein the device may be configured to test a validity of the final set of binary classifiers using the second set of patent data.


The device may also include a user information manager configured to receive patent information for a target patent and to report the estimate of patent quality according to the final set of binary classifiers.


Also contemplated is a system that includes such a device in combination with a second device communicatively connected to the device over a network. Such a second device may include:


a second automated processor;


a user interface receiving the patent information for the target patent;


an estimate requester requesting from the device the estimate of patent quality for the target patent; and


the user interface providing to a user a signal representing the estimate of patent quality.


Further aspects of the disclosure are explained in the description below and in the accompanying Drawings.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is an example of ROC (Receiver Operating Characteristic) curves generated by a heuristic such as NBC or ANN, according to an aspect of the present disclosure.



FIG. 2 is an example of an overview of a machine learning approach, according to an aspect of the present disclosure.



FIG. 3 is an example of a more detailed overview of a machine learning approach, according to an aspect of the present disclosure.



FIG. 4 is an example of a classifier selection process, according to an aspect of the present disclosure.



FIG. 5 is an example of an artificial neural network model iteration for finding binary classifiers, according to an aspect of the present disclosure.



FIG. 6 is a schematic diagram showing an overview of a value evaluation system connected over a network, according to an aspect of the present disclosure.



FIG. 7 is an example of a patent value determination module and some components, according to an aspect of the present disclosure.



FIGS. 8A-8B contain a flowchart illustrating an example of steps of a machine learning and patent life query responding method, according to an aspect of the present disclosure.





DETAILED DESCRIPTION OF THE DISCLOSURE

A computer system, network platform including a server computer, a processor-readable medium, a method, and means for implementing the method according to the present disclosure employs a set of algorithms based on training data receive from a database of patent information, including granted patents and patents applications in addition to other relevant patent data, including aggregate data for patent examination, grant, opposition, abandonment, annuity/maintenance fee payment, and the like. A device or a system according to the present disclosure implements a suite of binary classifiers to predict a measure of patent quality, for example, whether a given issued patent will be maintained over the lifetime of that patent. Other measures of quality may include whether a patent will be licensed or upheld against legal challenge, and the like. The system may also be adapted to predict a measure of quality of other intangible assets.


Supervised machine learning algorithms are used to select an optimal set of input factors from a number of raw and computed inputs and then to find a set of binary classifier from a set of classifiers, for example using Naïve Bayes Classifier (NBC), Artificial Neural Network (ANN) or Support Vector Machines (SVC). The disclosed invention trains classifiers to represent a prediction based on a non-linear computation of the input factors.


The system selects features using a heuristic search procedure such as a genetic algorithm or simulated annealing. The algorithms accept as input a series of features identified from information for a set of patents and patent applications. A random or pseudo-random initial weight for each feature is assigned and the search proceeds to iterate over the input set of data. At each iteration the heuristic evaluates a cost function and determines whether the current state of feature weights is more optimal than the previous state. The final step is to mutate the feature weights before starting the next iteration. The mutation computation varies based on the algorithm; in a genetic algorithm, the weights are mutated randomly or pseudo-randomly, while using simulated annealing the weights are modified according to an energy transition equation. The heuristic terminates after a given number of iterations or when the changes to the feature weight drops below a given threshold. The threshold may be a user-defined parameter chosen based on experience with the system. The final selected factors are used to train a binary classifier.


The cost function utilized by the search procedure heuristic is used to optimize the area under a Receiver Operating Characteristic (ROC) curve (FIG. 1). At each iteration, the current set of factors under consideration—as identified by those with non-zero factor weights—are used to train a binary classifier.


A larger sampling may yield a more accurate result for the model. For example, 100,000 patent records may be used and divided into the three sets to yield good sampling sets. The sets need not be of equal size. However, it will be understood that more than 100,000 or fewer than 100,000 records may be used. The training, validation and testing sets need not necessarily follow particular size guidelines and may be dependent on the size of the total population. For example, four million active U.S. patents versus 1.5 million active EPO patents may have different training set sizes. The machine learning may be customized for country or region, such that patent value/estimate of patent quality returned for a patent queried may be based only on data obtained from patent information for the country or region of the patent queried. Similarly, the patent value/estimate of patent quality may be customized for a given field of technology or scientific endeavor, for example, mechanical arts, pharmaceuticals, chemical fields, computer-related technology, and the like. In this way, the patent value/estimate of patent quality returned for queried patent of field of technology or scientific endeavor X may be based only on data obtained based on patents/patent applications of field X.


The resultant binary classifier is evaluated against the cross-validation set and an ROC curve is computed. FIG. 1 shows the results of several iterations of factor selection and additionally demonstrates that the search heuristic can select an optimal binary classification algorithm in addition to the input factors.


Specificity is defined as the number of true negatives divided by the total number of negatives. For example, in a data set with ten total negatives and finding two of them, specificity equals 2/10 or 0.2. The false positive rate is then 1-0.2 which equals 0.8. “ANN” refers to the artificial neural network classifier, and “NBC” refers to the Naïve Bayes classifier.


The system maintains a database of raw patent factors that are derived from the patent publication such as the number of claims, number of citations, countries of issuance, patent litigation and licensing, are also stored in the database. Additional such factors may include:









TABLE 1





Raw Factors
















Issuing countries
Priority


Application Date
Foreign Priority


Issuance Date
Number of Assignees


Length of Pendency
Number of Licensees


Number of Inventors
Number of Attorneys


Number of Figures
Number of Office Actions


Number of Claims
PCT Issuance


Number of Independent Claims
Patent Family Size


Number of Dependent Claims
Number of words in Description


Average Number of Words in Claims
Number of words in Title


Total number of words in claims
Number of Backward Citations


Number of different words in claims
Number of Forward Citations


Claim Type
Number of Patent Classifications


Number of words in Abstract
Number of Foreign Citations









From these raw factors, the input features to be evaluated by the search heuristic are calculated through a number of methods including:

    • 1. Linear combination (e.g., adding factors together)
    • 2. Non-linear calculations (e.g., squaring a factor or taking the square root)
    • 3. Ratios of raw factors (e.g., number of patents with 10 claims against all the total number of all patients)


      These methods produce around 200 features, with approximately 30 from raw factors, 50 ratio factors and the rest being combinations. With a base set of features calculated, the set of available features can be further expanded by computing linear and non-linear combinations of all features to be evaluated by the search heuristic. This expansion results in a combinatorial increase in the number of available features. The binary classifiers are trained using supervised machine learning with three sets of data: training set, cross-validation set, and a testing set. The input sets comprise a random or pseudo-random sampling of issued patents from a given patent office. In a preferred embodiment, the system then creates multiple binary classifiers, each predicting the maintenance of patent for a given maintenance period. The final output of each classifier is combined into a final score.


A significant advantage of the use of machine learning when identifying input factors and computing the classification model is that the model can be continuously updated in response to changes in the market, such as increased rates of abandonment or litigation- or to the availability of additional raw factors. In this way the rating can be constantly maximized for prediction accuracy.


The system effectively works in two different phases. The first phase, described in FIG. 2, is used in the regular computation of the patent scores. It utilizes the classifier and parameters that were calculated during the second phase (FIG. 3 and FIG. 4).


For regular score computation, the system starts by downloading the electronic record for each published and granted patent from a given patent office (e.g., the European Patent Office) and stores the downloaded information in a database. In a preferred embodiment, the download process runs automatically in response to external events; e.g., if the issued patents are published on Tuesday morning, the system may automatically start to download that week's issued patents on Tuesday afternoon.


Most patent offices publish the patent data in a standardized XML format. The downloading process parses the data from the XML and stores the information in the database. The system then proceeds to compute the input features to the classifier using the raw factors from the patent record. The final score is computed using the trained classifier and then saved with the patent record.


In addition to information in the electronic record stored, additional raw factors may be calculated from the data in the electronic record. A list of raw factors can be found in Table 1. However, it will be understood that such a list is not exhaustive and that many other such raw factors may be used in addition to, or instead of those listed.


The system computes the model by first computing a set of features from the electronic patent data stored in the database. The features fall into two categories. The first category is the raw factors on a patent basis from Table 1. The second are features that are computed over multiple records of patent data (i.e., over the entire set or over a subset). A list of the features considered when training the model is listed in Table 2.









TABLE 2





Computed Features


















pcnt_abandoned
Number of patents abandoned




by year of patent




against total number patents




filed on a given date


AB
abandyear
Number of years after issuance




the patent was abandoned, or




20 if still in-force







Percent abandoned grouped by assignee based on the patents in the


period (now-4.5 years) and (now-8.5 years)










pcnt_abandoned_assg
Percentage of patents




abandoned by the assignee




in the given date range


A
pcnt_abandoned_assg_avg
Average percentage of patents




abandoned by the assignee in




the given date range


C
pcnt_abandoned_assg_stdev
Standard deviation of




percentage of patents




abandoned by the assignee




in the given date range


E
pcnt_abandoned_assg_median
Median percentage of patents




abandoned by the assignee in




the given date range







Percent abandoned grouped by assignee based on the patents in the


period (now-4.5 years) and (now-16.5 years)










pcnt_abandoned_assg_16
Percentage of patents




abandoned by the assignee in




the given date range


B
pcnt_abandoned_assg_16_avg
Average percentage of patents




abandoned by the assignee in




the given date range


D
pcnt_abandoned_assg_16_stdev
Standard deviation of




percentage of patents




abandoned by the assignee




in the given date range


F
pcnt_abandoned_assg_16_median
Median percentage of patents




abandoned by the assignee in




the given date range







Percent abandoned grouped by attorney based on the patents in the


period (now-4.5 years) and (now-8.5 years)










pcnt_abandoned_atty
Percentage of patents




abandoned by attorney in the




given date range



pcnt_abandoned_atty_avg
Average percentage of patents




abandoned by attorney in the




given date range



pcnt_abandoned_atty_stdev
Standard deviation of




percentage of patents




abandoned by attorney in




the given date range



pcnt_abandoned_atty_median
Median percentage of patents




abandoned by attorney in the




given date range







Percent abandoned grouped by attorney based on the patents in the


period (now-4.5 years) and (now-16.5 years)










pcnt_abandoned_atty_16
Percentage of patents




abandoned by attorney in the




given date range



pcnt_abandoned_atty_16_avg
Average percentage of patents




abandoned by attorney in the




given date range



pcnt_abandoned_atty_16_stdev
Standard deviation of




percentage of patents




abandoned by attorney in




the given date range



pcnt_abandoned_atty_16_median
Median percentage of patents




abandoned by attorney in the




given date range







Data calculated based on the legal status codes of the patents.









G
impact_plus
Count of positive legal status




codes


H
impact_minus
Count of negative legal status




codes


I
impact_neutral
Count of neutral legal status




codes


J
assg_avg_ip
Average of Impact Plus per




assignee


K
assg_avg_im
Average of Impact Minus per




assignee


L
assg_avg_in
Average of Impact Neutral per




assignee


M
assg_stdev_ip
Standard deviation of Impact




Plus per assignee


N
assg_stdev_im
Standard deviation of Impact




Minus per assignee


O
assg_stdev_in
Standard deviation of Impact




Neutral per assignee


P
assg_median_ip
Median of Plus per assignee


Q
assg_median_im
Median of Minus per assignee


R
assg_median_in
Median of Neutral per assignee


S
atty_avg_ip
Average of Impact Plus per




attorney


T
atty_avg_im
Average of Impact Minus per




attorney


U
atty_avg_in
Average of Impact Neutral per




attorney


V
atty_stdev_ip
Standard deviation of Impact




Plus per attorney


W
atty_stdev_im
Standard deviation of Impact




Minus per attorney


X
atty_stdev_in
Standard deviation of Impact




Neutral per attorney


Y
atty_median_ip
Median of Plus per attorney


Z
atty_median_im
Median of Minus per attorney


AA
atty_median_in
Median of Neutral per attorney







Data calculated based on the pendency, calculated as (filed - issued)










pendancy_month
Number of months between




filing and issuance per patent



pendancy_month_avg_by_week
Average pendency grouped by




week of issuance



pendancy_month_stdev_by_week
Standard deviation of the




pendency grouped by week of




issuance



pendancy_month_median_by_week
Median pendency grouped by




week of issuance







Data calculated based on number of independent claims










iclaim_avg_by_week
Average number of independent




claims group by issuance week


AC
iclaim_stdev_by_week
Standard deviation of




independent claims group by




issuance week


AD
iclaim_median_by_week
Median of independent claims




group by issuance week


AE
iclaim_avg_by_ipc
Average number of independent




claims group by International




Patent Classification


AF
iclaim_stdev_by_ipc
Standard deviation of




independent claims group by




International Patent




Classification


AG
iclaim_median_by_ipc
Median of independent claims




group by International Patent




Classification









In Table 2, legal status code refers to events during the lifetime of the patent. These include office actions, change of ownership, abandonment, maintenance and expiration. “Week of issuance” may refer to a week number of the year that patent was granted. (e.g. January 1 is week 1, etc). “iClaim” means independent claim, Claim type “A” refers to an apparatus claim, claim type “S” to a system claim, claim type “C” to a claim for a compound, and claim type “M” refers to a method claim. “Pendency” may be the time between the application initial filing date or a provisional initial filing date and the final action, such as a Notice of Allowance or issuance of a patent.


The plus sign (“+”) on the appended list of legal status codes indicates those status codes that are positive, meaning having received some positive treatment, the minus sign (“−”) indicates those status codes that are negative. Those with neither sign mean neutral treatment. Individual specific legal status codes need not be counted, but a total number of status codes that are positive, negative and neutral may be counted.


In a preferred embodiment, training the model begins by exporting three sets of randomly or pseudo-randomly selected issued patent records. The first is the training set that is used to evaluate a set of parameters in the model to determine how accurate the prediction is. The second is a cross-validation set that is used as second check for the accuracy of the prediction. By using a different set to evaluate a set of parameters instead of the training set, the model achieves a greater level of accuracy. The training and cross-validation sets are both used to select parameters in the model. The final set is a testing set that is used to evaluate a complete model for accuracy. The sets are not required to be of any particular size, nor are they required to be the same size.


One further step to prepare for model training is to normalize the input features, with each feature falling between 0 and 1. This step prevents any one set of features from unduly influencing the model. The normalization step produces a scaling weight for each feature that is applied to the features before said feature is used in training or score calculation. For example the range of values for number of backward citations is 0 to 141, so the normalized backward citation for a patent with 40 citations would be 0.28.


What follows is an example of a reduced set of inputs to demonstrate the implementation in model training. Table 3 contains a sample of issued patent records; Table 4 contains a sample training set; Table 5 contains the sample training set with scaled features. In each of Tables 3-5, the columns of each row are continued on the second page of the table (for example, for Table 3, the first column of the second page shows the number of inventors for the documents listed on the first page).



















TABLE 3










ctry
assignee
num
attorney
num
bwd
fwd
inventor


doc number
filed
issued
codes
name
assg
name
atty
cites
cites
name





20040016127
Jul. 6,
Oct. 31,
AT BE
KATHREIN-
1
Flach, Dieter
1
5
0
ZEHETNER,



2004
2007
BG CH
WERKtext missing or illegible when filed

Dipl.-Ing



HERMANN





CY CZ





DE DK





EE ES





FI FR





GB GR





HU IE





IT . . .


20050000163
Jan. 4,
Sep. 9,
AT BE
XEROX
1
Gronecker,
1
5
0
FRAZIER,



2005
2009
BG CH
CORPORAtext missing or illegible when filed

Kinkeldey,



ISAAC S.





CY CZ


Stockmair &





DE DK


Schwanh?





EE ES


§ussetext missing or illegible when filed





FI FR





GB GR





HU IE






text missing or illegible when filed



19870810708
Dec. 1,
Aug. 28,
CH DE
LOOSER
1
Ritscher,
1
3
1
LOOSER,



1987
1991
FR GB
GOTTLIEtext missing or illegible when filed

Thomas, Dr.



GOTTLIEB





LI


20060300035
Jan. 17,
Apr. 9,
AT BE
ALCATEL
1
Hervouet,
1
4
0
ROBISON,



2006
2008
BG CH
LUCENtext missing or illegible when filed

Sylvie



ANDREW





CY CZ





DE DK





EE ES





FI FR





GB GR





HU IE





IS . . .


20060002755
Feb. 7,
May 14,
AT BE
SONY
1
MUELLER &
1
5
0
KOIZUMI,



2006
2008
BG CH
CORPORATItext missing or illegible when filed

HOFFMANN



YOSHIHIRO





CY CZ


Patentanwolte





DE DK





EE ES





FI FR





GB GR





HU IE






text missing or illegible when filed



20050734111
Mar. 22,
Oct. 19,
AT BE
TRW
1
Sties, Jochen
1


HANSEMANN,



2005
2011
BG CH
AUTOMOTIVtext missing or illegible when filed





VOLKER





CY CZ





DE DK





EE ES





FI FR





GB GR





HU IE


20050077290
Dec. 17,
Aug. 29,
AT BE
BIOSENSE
1
Mercer,
1
2
0
GOVARI,



2002
2012
BG CH
WEBSTtext missing or illegible when filed

Christopher



ASSAF





CY CZ


Paul





DE DK





EE ES





FI FR





GB GR





IE IT





LI . . .


20040819222
Nov. 23,
Jan. 30,
AT BE
Novartis
1
Leon, Susanna
1


BAESCHLIN,



2004
2013
BG CH
AG

Iris



DANIEL





CY CZ






KASPAR





DE DK





EE ES





FI FR





GB GR





HU IE





IS . . .
















num
1st
1st claim
1st claim





invt
claim_type
total_words
diff_words
title
abstract
claim_one





1
A
112
64
LIGHTNING
An antenna installation lightning
Lightning protection device for






ARRESTER
protection unit has a radio
antenna systems, with a plurality






FOR ANTENNA
transparent protective housing
of radiator elements and radiator






ARRANGEMENTS
(5) . . .
arrangements (3) arranged offset








. . .


4
A
181
79
IMPROVED
A sheet feeder and separator
A sheet feeder and separator






REPLACEMENT
assembly for separating and
assembly (11) for separating and






METHOD AND
sequentiallyfeeding individual print
sequentially feeding individual






ASSEMBLY
media sheets . . .
print media sheets . . .






FOR PAPER






PICK ROLLERS


1
M
170
64
WINDING
A method of winding a
A method of winding a






METHOD AND
continuously moving web (10),
continuously moving web (10)






APPARATUS
such as a flexible polymer film . . .
consisting of an essentially








flexible material . . .


1
M
122
45
METHOD FOR
The invention provides a system
A method for controlling a request






CONTROLLING
and a method for controlling a
for a resource from a process






A PROCESS
request for a resource from a
(110) operating on a






RESOURCE
process . . .
microprocessor-enabled machine






ACCESS VIA

(100) . . .






A PARENT






PROCESS


6
A
160
60
RECORDING
A recording apparatus includes:
A recording apparatus






APPARATUS,
recording means having a drive
comprising: recording means (8)






REPRODUCTION
part including rotational drive
having a drive part (91. 87)






APPARATUS
means for rotating an optical . . .
including rotational drive . . .






AND CONTROL






METHOD


3
S
107
57
RUBBER
The invention relates to a rubber
A rubber bearing (10), in






BEARING,
bearing (10), especially for a motor
particular for a motor pump unit






ESPECIALLY
pump unit (12) of a power steering
(12) of a power steering system . . .






FOR A MOTOR
system . . .






PUMP UNIT






OF A POWER






STEERING






SYSTEM


1
M
199
92
IMPLANTABLE
Apparatus for determining the
Apparatus (20) for determining






AND
position of an object within a body
the position of an object (22)






INSERTABLE
of a subject includes at least one
within a body of a subject,






PASSIVE
acoustic wave generator . . .
comprising: at least one acoustic






TAGS

wave generator (11, 13, 15) . . .


3
C
411
85
ORGANIC
Disclosed are (E¥-amino-ceú-
A compound having formula






COMPOUNDS
hydroxy-ceâ-aryl-alkanoic acid
(I)whereinR1 is hydrogen,







amide compounds of formula (I)
halogen, optionally halogenated







and the salts thereof, having renin-
alkyl, . . .







inhibiting properties . . .






text missing or illegible when filed indicates data missing or illegible when filed






















TABLE 4












E
F
G
H



A
B
C
D
pcnt_abandoned
pcnt
impact
impact


document #
pcnt_abandone
pcnt_abandone
pcnt_abandone
pcnt_abandone
assg_text missing or illegible when filed
abandone
plus
minus





20040016127
0.0195241
0.101213
0.0126767
0.07313
0.0161905
0.0926465
5
23


20050000163
0.0214966
0.121255
0.0150865
0.0899635
0.0163899
0.107652
5
0


19870810708
0
0
0.212828
0.212828
0.13399
0.13399
5
5


20060300035
0.0345951
0.118892
0.0100198
0.0738601
0.0345279
0.105121
6
22


20060002755
0.0188527
0.109995
0.0143231
0.0864105
0.0157964
0.0979499
6
3


20050734111
0.0265622
0.0524952
0.0153431
0.0328344
0.0302613
0.0476627
3
14


20050077290
0.0197951
0.0527218
0.0133056
0.0506772
0.0161905
0.0371031
4
5


20040819222
0.0352521
0.068873
0.00294144
0.0384033
0.0346951
0.0560363
4
1


19850309337
0.0238328
0.176999
0.0138066
0.0855378
0.0215054
0.178412
5
7


19810400286
0
0
0.212828
0.212828
0.13399
0.13399
3
5



















R
S
T
U
V
W
X
Y


document #
assg_median_itext missing or illegible when filed
atty_avg_ip
atty_avg_im
atty_avg_in
atty_stdev_ip
atty_stdev_im
atty_stdev_in
atty_median_ip





20040016127
8
5.13158
8.39474
6
1.50981
7.29139
3.77044
5


20050000163
2
3.9665
2.25741
2.93347
1.64693
4.29542
3.12237
4


19870810708
11
0
0
0
0
0
0
0


20060300035
3
5.09155
12.3169
5.76761
1.30414
7.16608
2.81502
5


20060002755
1
4.17358
1.09065
2.21382
1.67789
2.31697
2.15989
4


20050734111
2
3.66735
3.86448
4.77207
1.65807
5.67121
3.70177
4


20050077290
3
4.59333
5.99333
9.4
1.21012
4.6074
4.17085
5


20040819222
11
2.94545
3.4
6.21818
1.39335
5.46233
6.47128
3


19850309337
1
0
0
0
0
0
0
0


19810400286
3
4
1
2
0
0
0
4


















I
J
K
L
M
N
O
P
Q


impact
assg
assg
assg
assg
assg
assg
assg
assg


neutral
avg_ip
avg_im
avg_in
stdev_ip
stdev_im
stdev_in
median_ip
median_im





7
4.65094
9.36792
6.59434
1.70736
7.39669
3.77152
5
11


2
5.09486
0.598155
1.8621
1.43756
1.28656
1.62292
5
0


3
3
10
11
0
0
0
3
10


7
4.35834
6.16016
4.11809
1.49673
6.77812
3.46319
4
1


3
3.97511
0.785045
1.84866
1.63357
1.59374
2.12393
4
0


9
3.89091
1.89091
2.27273
1.27181
2.41655
2.15557
4
1


9
4.3399
4.59606
4.38424
1.50502
5.90556
4.01114
5
1


11
3.77778
5.33333
8.22222
1.71594
4.8734
5.35672
4
4


5
3.17966
4.89401
3.57559
1.26971
5.73916
4.12182
3
1


2
4.08772
2.4386
3.29825
1.55692
3.07193
2.45283
4
1




















AC
AD
AE
AF
AG


Z
AA
AB
iclaim
iclaim
iclaim
iclaim
iclaim


atty_median_im
atty_median_in
abandyear
stdev_btext missing or illegible when filed
median
avg_by_text missing or illegible when filed
stdev_btext missing or illegible when filed
median_by_ipc





9
7
20
4.87303
2
2.85074
3.15911
2


1
2
20
4.01328
2
3.24691
3.58188
2


0
0
9
2.47977
1
3.24691
3.58188
2


15
7
20
4.52145
2
3.40922
3.65869
2


0
2
6
4.03512
2
3.54489
3.6441
2


1
4
20
4.52227
2
2.78329
3.07821
2


7
9
20
4.56603
2
3.73529
4.29976
2


1
3
20
4.04123
2
3.11477
3.58162
2


0
0
8
2.34696
1
3.91159
4.03486
2


1
2
13
2.68575
1
3.30404
3.5839
2






text missing or illegible when filed indicates data missing or illegible when filed






















TABLE 5









B

D







A
pcnt
C
pcnt
E
F
G
H


document #
pcnt_abandone
abandonetext missing or illegible when filed
pcnt_abandone
abandoned_text missing or illegible when filed
pcnt_abandone
pcnt_abandone
impact_plus
impact_minus





20040016127
0.0195241
0.101213
0.0126767
0.07313
0.0161905
0.0926465
0.666666667
1


20050000163
0.0214966
0.121255
0.0150865
0.0899635
0.0163899
0.107652
0.666666667
0


19870810708
0
0
0.212828
0.212828
0.13399
0.13399
0.666666667
0.217391304


20060300035
0.0345951
0.118892
0.0100198
0.0738601
0.0345279
0.105121
1
0.956521739


20060002755
0.0188527
0.109995
0.0143231
0.0864105
0.0157964
0.0979499
1
0.130434783


20050734111
0.0265622
0.0524952
0.0153431
0.0328344
0.0302613
0.0476627
0
0.608695652


20050077290
0.0197951
0.0527218
0.0133056
0.0506772
0.0161905
0.0371031
0.333333333
0.217391304


20040819222
0.0352521
0.068873
0.00294144
0.0384033
0.0346951
0.0560363
0.333333333
0.043478261


19850309337
0.0238328
0.176999
0.0138066
0.0855378
0.0215054
0.178412
0.666666667
0.304347826


19810400286
0
0
0.212828
0.212828
0.13399
0.13399
0
0.217391304



















R
S
T
U
V
W
X
Y


document #
assg_median_itext missing or illegible when filed
atty_avg_ip
atty_avg_im
atty_avg_in
atty_stdev_ip
atty_stdev_im
atty_stdev_in
atty_median_ip





20040016127
0.580645161
0.833333333
0.567968942
0.531914894
0.749855473
0.833333333
0.485535062
0.833333333


20050000163
0.096774194
0.649196545
0.152731207
0.260059397
0.817956878
0.499508332
0.402080423
0.666666667


19870810708
0.822580645
0
0
0
0
0
0
0


20060300035
0.177419355
0.833333333
0.833333333
0.511312943
0.647708332
0.833333333
0.3625017
0.833333333


20060002755
0.016129032
0.757181246
0.151647748
0.196260638
0.833333333
0.340457915
0.278137916
0.666666667


20050734111
0.096774194
0.665339743
0.537330666
0.423055851
0.833333333
0.833333333
0.476692143
0.666666667


20050077290
0.177419355
0.833333333
0.833333333
0.833333333
0.723747324
0.702905171
0.537097504
0.833333333


20040819222
0.822580645
0.613635417
0.833333333
0.833333333
0.833333333
0.833333333
0.833333333
0.625


19850309337
0.071428571
0
0
0
0
0
0
0


19810400286
0.5
0.5
0.5
0.5
0
0
0
0.5


















I
J
K
L
M
N
O
P
Q


impact
assg
assg
assg
assg
assg
assg
assg
assg


neutral
avg_ip
avg_im
avg_in
stdev_ip
stdev_im
stdev_in
median_ip
median_im





0.555555556
0.606096345
0.771550103
0.436428682
0.829166521
0.833333333
0.586727201
0.722222222
0.833333333


0
0.725627869
0.010383305
0.032690867
0.698140184
0.15817562
0.252474151
0.722222222
0


0.111111111
0.212013535
0.824128884
0.812303858
0
0
0
0.166666667
0.833333333


0.555555556
0.675511116
0.817858725
0.314645335
0.46097416
0.802351215
0.373033589
0.444444444
0.208333333


0.111111111
0.5372749
0.027202025
0.044080071
0.592127358
0.054846103
0.089827276
0.444444444
0


0.777777778
0.505670097
0.077381064
0.056476005
0.245401395
0.093784103
0.091656022
0.444444444
0.05


0.777777778
0.674200271
0.594540578
0.241508653
0.468919644
0.744852162
0.458792602
0.722222222
0.05


1
0.522563281
0.760252149
0.772491776
0.671074222
0.545407915
0.760100318
0.666666667
0.8


0.333333333
0.269287447
0.750428615
0.567148153
0.2978666
0.740863421
0.723731199
0.25
0.5


0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5




















AC
AD
AE
AF
AG


Z
AA
AB
iclaim
iclaim
iclaim
iclaim
iclaim


atty_median_im
atty_median_in
abandyear
stdev_btext missing or illegible when filed
median_text missing or illegible when filed
avg_by_text missing or illegible when filed
stdev_by_text missing or illegible when filed
median_by_ipc





0.5
0.648148148
0.791666667
0.733254076
0.7545115
0.252954271
0.258251691
0.258251691


0.055555556
0.185185185
0.791666667
0.587172044
0.592978587
0.413524065
0.414998977
0.4)4998977


0
0
0.21875
0.218377404
0.167200864
0.413524065
0.414998977
0.414998977


0.833333333
0.648148148
0.791666667
0.683449185
0.734071547
0.479309165
0.443477249
0.443477249


0
0.185185185
0.0625
0.631837212
0.599042444
0.534296933
0.438067823
0.438067823


0.119047619
0.37037037
0.772727273
0.627210769
0.734299219
0.225616429
0.228257001
0.228257001


0.833333333
0.833333333
0.772727273
0.721785122
0.746449145
0.564678497
0.625197872
0.625197872


0.833333333
0.833333333
0.772727273
0.705118442
0.728038015
0.282891905
0.362413839
0.362413839


0
0
0.173913043
0.514594639
0.348904211
0.618507263
0.591346991
0.591346991


0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5






text missing or illegible when filed indicates data missing or illegible when filed







Examples of additional factors that may be used and heuristically searched are provided in the following lists.












List Part 1
















CCRE−
BE: expiry of a complementary protection certificate


EN−
FR: translation not filed


EN3−
FR: translation not filed ** decision concerning opposition


EUG−
SE: european patent has lapsed


FDY−
File destroyed


FITB−
IT: spc for herbicidal products: suspended


FITG−
IT: spc for herbicidal products: definitive refusal


FITM−
IT: spc for herbicidal products: withdrawal of spc application


FITN−
IT: spc for herbicidal products: annulment of spc


FITO−
IT: spc for herbicidal products: expiry


FITP−
IT: spc for herbicidal products: renunciation of spc


GBAW−
GB: application withdrawn


GBDW−
GB: gb designation withdrawn


GBGD−
GB: date of publication of the new specification of the



patent under article 103 (1977) ** grant date withdrawn


GBGR−
GB: grant date revoked


GBGW−
GB: grant date withdrawn


GBPC−
GB: european patent ceased through non-payment of



renewal fee


GBPR−
GB: patent revoked under art. 102 of the ep convention



designating the uk as contracting state


GBV−
GB: ep patent (uk) treated as always having been void in



accordance with gb section 77(7)/1977


LTIE−
LT: invalidation of european patent or patent extension


LTLA−
LT: lapse of european patent or patent extension


R29U−
Interruption of proceedings (correction) [after grant]


RVAA−
Decision on revocation request is admissible (for revocation



filed after opposition period)


RVDA−
Decision on revocation request is admissible (for revocation



filed during opposition period)


RX1−
Cancellation of first publication


RX2−
Cancellation of second publication


X−
Document not published


X1−
No entry under this number


17A+
Application maintained


17P+
Request for examination filed


17Q+
First examination report


18RA+
Date of receipt of request for re-establishment of rights


18RR+
Re-established


19F+
Date of resumption (after stay of proceedings) [before grant]


19W+
Date of resumption (after interruption of proceedings)[before



grant]


25N+
Valid in all designated states


26D+
Opposition deemed not to have been filed


26N+
No opposition filed


26U+
Inadmissible opposition


27C+
Termination of opposition procedure


27O+
Opposition rejected



















List Part 2
















28+
Re-established


29F+
The resumption of a previous incorrect announcement of a



suspension of proceedings (correction) [after grant]


29W+
Date of resumption (after interruption of proceedings)



[after grant]


31R+
Resumption


31W+
Resumption


A4+
Supplementary search report


A5+
Separate publication of the ep or int. search report


AK+
Designated contracting states:


AKX+
Payment of designation fees


AX+
Extension or validation of the european patent to


AXX+
Payment of extension fees


BERR+
BE: reestablished


CCHV+
BE: grant of a complementary protection certificate for



herbicides


CCPV+
BE: grant of a complementary protection certificate


D19F+
Previously announced “resumption after interruption of



proceedings” was erroneous


D25+
Lapsed in a contracting state (deleted)


DBV+
Designated contracting states (deleted)


EAL+
SE: european patent in force in sweden


EL+
FR: translation of claims filed


EL1+
FR: translation or corrected translation of claims filed


EM+
FR: revised translation of claims filed


GBTC+
GB: corrected translation (of ep patent) filed (gb section



80(3)/1977)


IECL+
IE: translation for ep claims filed


INTG+
Announcement of intention to grant


ITCL+
IT: translation for ep claims filed


ITF+
IT: translation for a ep patent filed


MEDD+
IT: spc for pharmaceutical products: granted


NLE+
NL: notifications concerning applications


NLR3+
NL: receipt of modified translations in the netherlands



language after an opposition procedure


NLR4+
NL: receipt of corrected translation in the netherlands



language at the initiative of the proprietor of the patent


PGFP+
Postgrant: annual fees paid to national office


PGRI+
Postgrant: patent reinstated in contracting state


R17C+
Date of despatch of first examination report


R17P+
Request for examination filed (correction)


R18X+
Re-established (correction)


R19F+
The resumption of a previous incorrect announcement of



a stay of proceedings (correction) [before grant]


R19W+
Resumption after interruption of proceedings (correction)



[before grant]


R26D+
Opposition deemed not to have been filed (corr.)


R26U+
Inadmissible opposition (correction)


R27A+
Maintained as amended (correction)



















List Part 3
















EN4+
FR: notification of non filing translation in an earlier bopi



is erroneous


EPTA+
LU: last paid annual fee


ET+
FR: translation filed


ET1+
FR: translation filed ** revision of the translation of the



patent or the claims


ET2+
FR: translation filed ** revision of the translation of the



modified patent after opposition


ET3+
FR: translation filed ** decision concerning opposition


ETR+
FR: translation filed ** restoration of the right


FITD+
IT: spc for herbicidal products: granted


GBA+
GB: translation amended (gb section 77(6)(a)/1977)


GBAT+
GB: amendment of translation allowed (of ep patent) (gb sect.



80 (3)/1977)


GBC+
GB: translation of claims filed (gb section 78(7)/1977)


GBC8+
GB: translation of claims filed (gb section 80(3)/1977)


GBCC+
GB: corrected translation (of claims) filed (gb section



80(3)/1977)


GBDL+
GB: delete “european patent ceased” from journal


GBRH+
GB: ep (uk) patent reinstated (gb rule 100)


GBRI+
GB: ep (uk) patent reinstated (gb rule 110(3)a/1987)


GBT+
GB: translation of ep patent filed (gb section 77(6)(a)/1977)


GBT8+
GB: translation filed (gb section 80(3)/1977)


GBTA+
GB: translation of amended ep patent filed (gb section 77(6)



(b)/1977)


R27O+
Opposition rejected (correction)


R28+
Re-established (correction)


R28E+
Date of receipt of request for re-establishment of rights



(art 122) (corr.)


R29W+
Resumption after interruption of proceedings (correction)[after



grant]


RA1+
Date and kind of first publication (correction)


RA4+
Date and kind of supplementary search report (correction)


RB1+
Date and kind of second publication (correction)


RB2+
Date and kind of third publication (correction)


RBV+
Designated contracting states (correction):


RJL1+
Rejection of limitation - substantive refusal


RJL2+
Rejection of limitation - inadmissible for formal reasons


RJL3+
Rejection of limitation - no or late reply to subset report


RJL4+
Rejection of limitation - request allowed but requirements



not fulfilled


SC4A+
PT: translation is available


T1+
DK: translation of the claims of ep patent


T3+
DK: translation of ep patent


T4+
DK: translation of amended ep patent


T5+
DK: corrected translation of ep patent


TCAT+
AT: translation of patent claims filed


TCNL+
NL: translation of patent claims filed


TDAT+
AT: translation of application published



















List Part 4
















110E
Request for conversion into a national patent application


111L
Licenses


111R
Other rights “in rem”


111Z
Registering of licences or other rights


16A
New documents discovered after completion of the EP-search



report


27A
Maintained as amended


33
Transfer of rights


34E
Establishment of other rights “in rem”


34G
Grant of licenses


34L
Legal means of execution


34TL
Transfer of licenses


34TR
Transfer of other rights “in rem”


35
Correction


710B
GB: proceeding under rule 110(4) patents act 1977


AC
Divisional application (art. 76) of:


AF
Successive application (art. 61)


AKNL
NL: corrections (part 1 heading g)


BECA
BE: change of holder's address


BECH
BE: change of holder


BECN
BE: change of holder's name


CCPA
BE: application for a complementary protection certificate


CND3
Copied from national register on demand of third party


DAX
Extension of the european patent to (deleted)


DB1
Date and kind of second publication (deleted)


DB2
Date of publication of new second specification ** last entry



deleted


DET
DE: translation of patent claims


DIN1
Inventor (deleted)


DIN2
Inventor (deleted)


DX
Miscellaneous: (deleted)


FIT
IT: spc for herbicidal products: no action taken


FITA
IT: spc for herbicidal products: examined


FITC
IT: spc for herbicidal products: partially granted


FITE
IT: spc for herbicidal products: interlocutary refusal


FITF
IT: spc for herbicidal products: office refusal


FITH
IT: spc for herbicidal products: board of appeal


FITI
IT: spc for herbicidal products: court of cassation


FITL
IT: spc for herbicidal products: court of justice


GBRJ
GB: reinstated under rule 110(4) - alteration of time limits


GBTH
GB: translations filed: amended european patents - correction


INTC
Former communication of intention to grant cancelled


ITCP
IT: complementary protection certificate


ITPR
IT: changes in ownership of a european patent


ITTA
IT: last paid annual fee


K1C0
Previously announced correction of patent application cancelled



















List Part 5


















CRD3
Copy of epo register on demand of third party



D11X
Legal means of execution (deleted)



D17D
Search report (deleted)



D17P
Request for examination filed (deleted)



D17Q
First examination report (deleted)



D18D
EP-application deemed to be withdrawn: (deleted)



D18R
Refused (deleted)



D18W
Withdrawal (deleted)



D18Z
Request for re-establishment (deleted)



D20
Corrections of a patent specification (deleted)



D26
Opposition filed (deleted)



D26N
No opposition filed (deleted)



D27A
Maintained as amended (deleted)



D27C
Opposition finished (deleted)



D27O
Opposition rejected (deleted)



D27W
Revoked (deleted)



D8RA
Date of receipt of request for re-establishment of rights




(art 122) (deleted)



DA1
Date and kind of first publication (deleted)



DA4
Date and kind of supplementary search report (deleted)



DAC
Divisional application (art. 76) of: (deleted)



DAF
Successive application (art. 61) (deleted)



DAHF
Divisional application (art 76) in: (deleted)




















List Part 6
















DAF
Successive application (art. 61) (deleted)


DAHF
Divisional application (art 76) in: (deleted)


DAX
Extension of the european patent to (deleted)


DB1
Date and kind of second publication (deleted)


DB2
Date of publication of new second specification ** last



entry deleted


DET
DE: translation of patent claims


DIN1
Inventor (deleted)


DIN2
Inventor (deleted)


DX
Miscellaneous: (deleted)


FIT
IT: spc for herbicidal products: no action taken


FITA
IT: spc for herbicidal products: examined


FITC
IT: spc for herbicidal products: partially granted


FITE
IT: spc for herbicidal products: interlocutary refusal


FITF
IT: spc for herbicidal products: office refusal


FITH
IT: spc for herbicidal products: board of appeal


FITI
IT: spc for herbicidal products: court of cassation


FITL
IT: spc for herbicidal products: court of justice


GBRJ
GB: reinstated under rule 110(4) - alteration of time



limits


GBTH
GB: translations filed: amended european patents -



correction


INTC
Former communication of intention to grant cancelled


ITCP
IT: complementary protection certificate


ITPR
IT: changes in ownership of a european patent


ITTA
IT: last paid annual fee


K1C0
Previously announced correction of patent application



cancelled


K1C1
Correction of patent application (title page) published


K1C2
Correction of patent application (partial reprint)



published


K1C3
Correction of patent application (complete reprint)



published


K2
Correction of patent specification published


K2C0
Announced rectification cancelled


K2C1
Correction of patent specification (title page) published


K2C2
Correction of patent specification (partial reprint)



published


K2C3
Correction of patent specification (complete reprint)



published


KL
Correction list


LIM1
Limitation is admissible


LIM2
Limitation is inadmissible


LIM3
Limitation deemed not to be filed


LIM4
Limitation deemed not to be filed, opposition pending



or filed


LIM5
Limitation withdrawn


MED
IT: spc for pharmaceutical products: no action taken


MEDA
IT: spc for pharmaceutical products: examined


MEDC
IT: spc for pharmaceutical products: partially granted


MEDE
IT: spc for pharmaceutical products: interlocutary refusal


MEDF
IT: spc for pharmaceutical products: office refusal


MEDH
IT: spc for pharmaceutical products: board of appeal


MEDI
IT: spc for pharmaceutical products: court of cassation


MEDL
IT: spc for pharmaceutical products: court of justice


NLR2
NL: decision of opposition


NLR5
NL: patents in respect of which a request to provide a



certificate of prior use has been filed


NLR6
NL: patents in respect of which a decision has been taken



on a request concerning prior use


NLS
NL: assignments of EP-patents


NLT1
NL: modifications of names registered in virtue of



documents presented to the patent office pursuant to art.



16 a, paragraph 1


NLT2
NL: modifications (of names), taken from the european



patent bulletin


NLUE
NL: license registered with regard to european patents


NLXE
NL: other communications concerning EP-patents (part 3



heading xe)


PRVG
Petition for review by the enlarged board of appeal granted


PRVN
Petition for review by the enlarged board of appeal not



granted


R110
Filing of a request for conversion (correction)


R11L
Granting of a license (correction)


R11X
Legal means of execution (correction)


R16A
New documents discovered after completion of the EP-search



report (correction)


R17D
Search report (correction)


R18Z
Request for re-establishment (correction)


R19A
Stay of proceedings (correction)[before grant]


R20
Corrections of a patent specification


R26N
No opposition filed (correction)


R27C
Opposition finished


R80
Public notification if the address of the addressee cannot be



established


RAC
Divisional application (art. 76) of: (correction)


RAF
Successive application (art. 61) (correction)


RAG
Has successive application (art. 61) (correction)


RAP1
Transfer of rights of an ep application


RAP2
Transfer of rights of an ep publication


RAP3
Correction of the address or name of applicant (a document)


RAP4
Correction of name or address of patent owner (b document)


RAX
Extension of the european patent to (correction)


REF
Corresponds to:


REG
Reference to a national code


RHK1
Main classification (correction)


RHK2
Main classification (correction)


RIC1
Classification (correction)


RIC2
Classification (correction)


RIN1
Inventor (correction)


RIN2
Inventor (correction)


RTI1
Title (correction)


RTI2
Title (correction)


T2
DK: corrected translation of the claims of ep patent


XX
Miscellaneous:


ZE
NL: corrections to earlier entries in headings pe - xe









After the data is selected and the feature scaling factors are computed, the training of the model starts by randomly or pseudo-randomly choosing features as the input to classification model trainer. Using a genetic algorithm search heuristic, a population of sets of features is created and in each set the features included are randomly or pseudo-randomly selected.


Each population is then used to train a binary classifier in the next step. The output of the classification-training step is a value that indicates how well that collection of features performs on the training set of patent data.


The Artificial Neural Network (ANN) model will now be described to illustrate an aspect of the system's search heuristic to find an optimal classifier.


The size of the input layer to the ANN is defined as the number of selected features provided by the feature selector. In an Artificial Neural Network, the calculations “flow” from the input nodes on the left, through the nodes of the hidden layers and finally to the output node, as illustrated in FIG. 5. The size of the output layer is set at 1. During this step, the system varies iteratively the number of hidden layers and the number of nodes at each layer. Each node represents a mathematical combination of its inputs, and so the weights attached to the lines that represent the connections between nodes adjust how much affect one node has on another node. Given this, the hidden layers serve to increase the complexity that the classifier is able to model. In an ANN with no hidden layers, the maximum complexity is a linear system. Each additional layer means that arbitrarily complex domains can be represented and potentially give more accurate classifications.


The system initially considers an ANN with a single hidden layer with size equal to the half the size of the input features. The ANN is then trained using a feedforward cost function and backpropagation algorithms to compute the gradient of errors. Feedforward refers to the process of values propagating from the input along the edges to the hidden nodes and then the computed values from the hidden nodes propagating to the output node. Backpropagation refers to the process of computing the difference between the final output of the classifier against the test set and then computing the error that each of the hidden nodes contributed to that output. Backpropagation then computes the amount of error that each of the input nodes contributed to the final calculation. The result of backpropagation is the gradient of errors, which is a measure of the amount of error at each node along each path through the network. During training, the gradient of errors is used to alter the weights in the neural network to reach the optimal classifier. The errors are computed by evaluating the current ANN on the cross-validation set. This avoids the problem of the classifier being too specific (i.e., overfit) to the training set.


Once an optimal solution, as defined by a minimization of the difference in the output of the ANN and the testing set, is found, the Area Under the Curve (AUC) of the ROC curve is calculated by iterating over possible thresholds from 0 to 1 that the ANN uses to determine the output of the classifier. For example, if the threshold is 0.4, then any input to the output layer that is greater than 0.4 will be considered a prediction that the patent would be maintained. For each threshold, the system computes the true and false positive and the true and false negative rates. These data points are used to plot the ROC curve and compute the AUC.


After training the first classifier using the previously described method, the system alters the number of nodes in the hidden layer. The system then repeats the training and AUC computation for the new ANN. If the prediction is better, meaning that a larger area under the ROC curve is yielded, the new parameters are saved and the number of nodes in the input layer is again altered. This proceeds until the maximal AUC is found.


The system then increases the number of hidden layers to two and sets the size of the nodes in each layer to be half the inputs of that hidden layer's inputs. In the current example, this means the first hidden layer has 10 nodes and the second hidden layer has 5.


The system trains the ANN using the previously described method. The number of nodes in the hidden layers is then altered and the new ANN is trained. This proceeds until the maximal AUC is found. The classifier-training step returns the parameters of the binary classifier that had the maximal AUC.


The last step in the process is that the feature selection search heuristic changes the set of features using a genetic algorithm. The genetic algorithm selects the best sets of features to use in the next iteration of the search by choosing those features that performed best as measured by the maximum AUC that set. The best sets of features are combined and mutated (slight, random or pseudo-random changes) to create a new population of candidate solutions.


The classification-training step is then executed again, and the feature selection search heuristic collects all of the AUC outputs, then selects the best feature sets and creates a new population. This process continues until the selection process no longer finds better solutions. The best solution from all iterations of the feature selection search is the model that will be used in calculation of the patent scores.


The output of a binary classifier during training may be executed through a step function so that the actual prediction is a binary decision. The raw patent score output from this system is this value not executed through the step function; this raw comparative score forms the basis for the computation of additional scores.


By way of an example of an implementation, FIG. 6 illustrates Patent value determination application 40 residing or running on Value Evaluation System 20, which may be a server connected to the internet for providing information about the value of a patent to Patent Evaluation Requestor 31, a terminal connected to the Internet. Such a server may include network interface 21 for communicating with a network, operating system 22 for running the device, and a processor 23 and memory 24.


Patent value determination application 40 may obtain information from a database 33 or more than one such database. One or more software applications providing the functionality herein described may be provided by a server or server bank in the cloud or on a proprietor's premises, or may be downloaded to a computer or portable device of the user to make possible the delivery of patent or patent application value to a requesting user. Patent value determination application 40 illustrated in FIG. 6 may include a number of components or software modules under control of application controller 41. For example, judged patent information receiver 43 may receive identifying and other detailed information about a patent of interest or a target patent document to be evaluated. Patent information extractor 44 can obtain relevant information from database 33 to be used for generating the sets by set generator 48 and to produce the factor inputs for the algorithm by modules 46 and 47. Iteration controller 50 of patent value determination application 40 can control the iterations of the Genetic algorithm and/or the simulated annealing algorithm performed by modules 51 and 52, respectively, and ROC generator and AUC calculator 52 can obtain the best-fitting results using NBC, ANN and/or a support vector machine implemented by modules 61, 62 and 63, respectively. Patent evaluator 69 provides a result to the requestor based on the optimal factors obtained.


The present methods, functions, systems, computer-readable medium product, or the like may be implemented using hardware, software, firmware or a combination of the foregoing, and may be implemented by one or more automated processors or computer chips or cores, in one or more computer or other processing system, such that no human operation may be necessary.



FIGS. 8A-B contain a flowchart showing steps of an example of a machine learning, according to an aspect of the present disclosure.


After system start, the system at S2 retrieves a set of training patent data, for example, over a network, such as the Internet. As illustrated in FIG. 6, a patent information database 33, such as the European Patent Office, WIPO, U.S. Patent Office Database, a private database with patent information or a combination of the foregoing may be accessed online. A proprietary database located on site or off site may be used in addition to or instead of the foregoing. At S3, a list of features of potential interest is made and a weighted scale or standardized score is assigned to each feature. At S4, a heuristic search method, such as ANN, is used to generate a first set of binary classifiers. Iteratively, the ANN model is modified, at S5, by changing a number of hidden layers. This second set of binary classifiers is then compared with the first set with reference to a cost function, such as an area under a curve (AUC) of a ROC at S6. At S7, the ANN model may be further iterated through by changing the number of hidden layers and, at S8, the result is compared with the highest yielding binary classifier set thus far. At S9, a genetic algorithm may be used to improve upon the candidate set of binary classifiers. At S10, iterations of the genetic algorithm are continued to maximize the area under the curve of the ROC.



FIG. 8B contains S11. At S11 the iteration of the genetic algorithm is continued until no improved set of candidates binary classifiers is produced. At S12, the final set of binary classifiers is reported or outputted. This set of binary classifiers to be used or validated and tested may be reported (S13).


At S14, a validation patent data set may be received. However, it will be understood that the training patent data, the validation patent data and the testing patent data may all be received at the same time and randomly or pseudo randomly assigned to one of the three groups. At S15, the validation patent data is used to validate the final set of binary classifiers. At S16, testing patent data are received, and at S17 the testing patent data set is used to validate the final set of binary classifiers.


At S18, a patent of interest is received by the system, and at S19, an estimate of patent life or other patent quality estimate is generated using the binary classifiers arrived at through the machine learning algorithm. At S20, a report of the patent quality estimate, such as the patent life for the patent of interest is reported.


Thus described is a machine learning solution that may be more efficient, more speedy and may improve the functioning of a computer including an automated data processor or a set of automated data processors carrying out the machine learning when compared with, for example, a device implementing brute-force solutions. Utilizing a machine-learning approach as described herein according to the present disclosure, the solution space to be searched may be reduced in every iteration because combinations of factors and coefficients that do not lead to an optimal solution can be excluded. Theoretically, while reducing the number of solutions evaluated may exclude the optimal solution, the randomness introduced by the mutation step may be sufficient to reduce this risk. Further, a machine-learning approach as described herein according to the present disclosure may significantly reduce the system resources needed to calculate the solution by more intelligently and efficiently selecting factors and coefficients for evaluation.


For the reasons discussed above, such machine learning approaches may be more expensive to implement, more time and resource intensive, and may consume significantly more computer processing resources. A machine learning solution as described according to the present disclosure may consume less energy and generate less heat when carried out on an automated data processor or set of automated data processors.


A computer system for implementing the foregoing methods, functions, systems and computer-readable storage medium may include a memory, preferably a random access memory, and may include a secondary memory. Examples of a memory or a computer-readable storage medium product include a removable memory chip, such as an erasable programmable read-only memory (EPROM), a programmable read-only memory (PROM), removable storage unit or the like. The methods and functions can be performed entirely automatically through machine operations, but need not be entirely performed by machines. Similarly, the systems and computer-readable media may be implemented entirely automatically through machine operations but need not be so. A computer system may include one or more processors in one or more units for performing the system according to the present disclosure and these computers or processors may be located in a cloud or may be provided in a local enterprise setting or off premises at a third party contractor, and may communicate with a user requesting an evaluation or estimation of patent or patent application quality on site via a wired or wireless connection, such a through a LAN or WAN, or off site via internet protocol-enabled communication, via a cellular telephone provider or via other such means. Similarly, the information stored and/or the patent database from which the sets of data are extracted, may be stored in a cloud, in an official or third party patent information database, or may be stored locally or remotely. The computer system or systems that enable the user to interact with content or features can include a GUI (Graphical User Interface), or may include graphics, text and other types of information, and may interface with the user via desktop, laptop computer or via other types of processors, including handheld devices, telephones, mobile telephones, smartphones or other types of electronic communication devices and systems.


The communication interface of the Value Evaluation System shown in FIG. 6 may include a wired or wireless interface communicating over TCP/IP paradigm using HTTP or other types of protocols, and may communicate via a wire, cable, fire optics, a telephone line, a cellular link, a satellite link, a radio frequency link, such as WI-FI or Bluetooth, a LAN, a WAN, VPN, the world wide web or other such communication channels and networks, or via a combination of the foregoing.


While the preferred embodiments of the invention have been illustrated and described, modifications and adaptations, and other combinations or arrangements of the structures and steps described come within the spirit and scope of the application and the claim scope.

Claims
  • 1.-10. (canceled)
  • 11. A machine-learning based artificial intelligence device used is estimating patent quality, the device comprising: a patent data retriever configured to receive a first set of patent data, the first set of patent data comprising at least one of patent application data and patent data for a plurality of patents, wherein the first set of patent data includes, for each patent application and patent of the plurality of patent applications and patents: references cited information associated with references cited in a respective patent application or patentcited by information associated with references that cite the respective patent application or patent; andclassification information associated with one or more patent classifications corresponding to each respective patent or patent application;a classifier configured to generate, using an automated processor applying a machine learning algorithm, a set of features based on the first set of patent data, anda user information manager configured to receive target patent information associated with a target patent and to provide the estimate of patent quality associated with the target patent according to the set of features.
  • 12. The machine-learning based artificial intelligence device of claim 1, further comprising: a quantitative data scalar configured to normalize data included in the first set of patent data, wherein the normalized data is used by the classifier to generate the set of features.
  • 13. The machine-learning based artificial intelligence device of claim 2, wherein the quantitative data assigns weights to data items included in the first set of patent data and the weights data items are used by the classifier to generate the set of features.
  • 14. The machine-learning based artificial intelligence device of claim 1, wherein the first set of patent data includes raw data extracted from the patent application data and the patent data and derived data derived based on the raw data.
  • 15. The machine-learning based artificial intelligence device of claim 1, wherein the derived data includes group data associated with a first group of patents of the plurality of patents based on the raw data associated with each of the patents in the first group of patents.
  • 16. The machine-learning based artificial intelligence device of claim 5, wherein the first group of patents includes all patents in the plurality of patents.
  • 17. The machine-learning based artificial intelligence device of claim 5, wherein the first group of patents includes less than all patents in the plurality of patents.
  • 18. A system comprising the device of claim 1 and a second device communicatively connected to the machine-learning based artificial intelligence device over a network, the second device comprising: a second automated processor:a user interface receiving the target patent information for the target patent;an estimate requester requesting from the machine-learning based artificial intelligence device, the estimate of patent quality for the target patent; anda user interface providing, to a user, information indicating the estimate of patent quality.
CROSS-REFERENCE TO RELATED APPLICATION

The present non-provisional patent application claims the benefit of priority from U.S. Provisional Patent Application No. 61/928,806, filed Jan. 17, 2014, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61928806 Jan 2014 US
Continuations (2)
Number Date Country
Parent 15837652 Dec 2017 US
Child 16939935 US
Parent 14598879 Jan 2015 US
Child 15837652 US