This application is related to commonly-owned, co-pending application Ser. No. 11/645,910, entitled “Method and System for Hiding Information” to Reichelsheimer, et al. and filed herewith, which related application is incorporated herein by reference.
The present invention relates to a system and method for providing machine readable colored envelopes and more particularly in certain embodiments to systems and methods for processing machine readable colored envelopes colored with a photochromic colorant.
Mailing machines including postage metering systems are known in the art including the DM SERIES of mailing machines available from Pitney Bowes Inc. of Stamford, Conn. A postage metering system applies evidence of postage, commonly referred to as postal indicia, to an envelope or other mailpiece (directly or on a label to be applied thereto) and accounts for the value of the postage dispensed. The postage metering systems typically employ a red fluorescent ink to imprint a postage indicium although it is not the only color used. If a colored envelope is used for a mail piece, there may not be sufficient contrast from the indicium.
For example, during the end of year holiday season, it is common for business to send greeting cards to customers and colleagues. Such cards may not have white envelopes but may be processed by a company mailroom employee using a postage meter to apply postage. A typical postage meter utilizes. Such an indicium might not have significant contrast from the envelope and might not be easily read optically by a mail processing/sorting machine or by the naked eye. Additionally, during the Valentine's Day holiday in the United States, many greeting cards are mailed in colored envelopes such as pink or red envelopes. The sender may use a postage meter for postage payment. However, the user might intend to utilize a stamp but might then have the mailpiece collected by a mail aggregator service that would then apply a postage indicium. Accordingly, since more mail is being aggregated, it is more likely that a postage indicium will be applied to an envelope and readability contrast may become a problem in mail processing/sorting.
Thermochromic compositions of color formers and Lewis acids have been described such as in U.S. Pat. No. 6,908,505 B2, issued Jun. 21, 2005 that describes a two-layer reversible thermochromic system printed over a substrate and that transition from colorless to a colored state. One of the challenges that mailing machine manufactures and mail processing entities have is that they must deal with many different types of envelopes. For example, in the United States, the Unites States Postal Service (USPS) mandates certain physical characteristics of mail in the Domestic Mail Manual (DMM). However, a wide range of media types may be used for envelope substrates.
As barcode use becomes more widespread on mail pieces to facilitate the use of value added services and postage revenue security schemes it is imperative that these barcodes are machine readable with optical sensors such as the USPS Wide Field of View camera (WFOV). To insure barcode readability, flat, light-colored backgrounds may advantageously be used. The USPS might even decide to limit the customer's envelope use to the types that enable readability or have the user print indicia on controlled stock such as labels that are then adhered to the mailpiece. Both of those solutions have disadvantages including adding extra cost to the mailings and by limiting the advertising that can be done.
Accordingly, there is a need for a machine readable colored envelope that is easily processed by mail processing/sorting equipment. Additionally, there is a need for a system and method for processing reversible photochromic colored envelopes in mail processing/sorting systems including reversible “negative photochromatic” colorants. Furthermore, there is a need for a system and method for processing a single layer indicium printing on a reversible thermochromic colored envelope in mail processing/sorting systems.
The present application describes illustrative embodiments of a machine readable colored envelope and systems and methods for processing such envelopes. In additional illustrative embodiments, the machine readable colored envelopes are colored using a reversible “negative photochromic” colorant that bleaches when exposed to an activation energy such as ultraviolet radiation and returns to its original color after the activation energy is removed. In a further alternative, the colorant has more than one stable color state.
The accompanying drawings illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description given below, serve to explain the principles of the invention. As shown throughout the drawings, like reference numerals designate like or corresponding parts.
The illustrative embodiments of the present application describe systems and methods for providing machine readable colored envelopes and systems and methods for processing such envelopes in mail sorting/processing systems. Customers can use colored envelopes to enhance the ornamental effect of a mail piece and/or the sales and marketing potential of the mail piece without affecting the readably of the printed indicia. Thermochromatic multilayer processes transitioning from colorless to colored states have been described. However, in mail processing systems, it may be disadvantageous to apply heat to mail pieces. In certain countries such as Germany, the mailing machine manufacturers are required to demonstrate effectiveness using multi-colored envelopes.
By using negative photochromic (reversible reverse photochromic) dyes, colored envelopes can be produced during the manufacturing process. These envelopes when activated become colorless leaving a white background regardless of the original color in the reverse of the typical photochromic reaction. The reaction only takes place at the time of reading and quickly reverses back to the original color. The customer's choice remains unlimited and even dark colored envelopes which are currently unsuitable can be used. Currently dark envelopes would not allow enough contrast for a postal indicium to be read. However, by producing a white background on demand, the customer may use a wide range of such colors. Additionally, Black ink is becoming a standard for indicium printing in the mailing industry because it provides the highest contrast on the widest variety of envelopes. If the background remains white, even traditional red fluorescent ink (or any other color) can be used for the indicium. There is a large set of photochromic dyes that are widely commercial available, some of which are described herein. These inks have been used in many security applications such as, on checks to verify authenticity and in novelty applications. By coloring the envelope paper with these dyes, they will appear colored to the customer and the recipient but will change to white during the indicia reading operation.
If the systems described herein are not utilized, the USPS may have to restrict the types of envelopes that can be used for value added services. For example, if a customer mails a birthday card in a dark purple envelope and asks for delivery confirmation, the current equipment at the USPS will prevent proper tracking. The contrast of a black ink on a dark envelope will be insufficient for machine readability. The illustrative embodiments disclosed herein will allow to customer to use a dark purple (or any color) envelope that can be changed to white before the tracking barcode is read. Photochromic dyes are molecules that absorb specific light energies and chemically change. In negative photochromic processes, the chemical change results in a switch from a colored to colorless species. This process is reversible when the activation energy is removed. Alternatively, if the colorless state is also stable, then a second activation energy is applied to return to the colored state. The traditional USPS WFOV barcode reader can be used with the addition of a UV strobe light prior to the barcode capturing/reading process.
Referring to
Referring to
Referring to
As shown in the incorporated commonly-owned, co-pending application Ser. No. 11/645,910, entitled “Method and System for Hiding Information,” several suitable “negative photochromic” inks are known. Upon exposure to a photochromic excitation source, such as a suitable UV light, the information becomes invisible. Upon removal of the excitation source, the information advantageously becomes visible again. If a chromophore with two stable color states is utilized, then a second energy source would be used to switch back to the colored state.
The material can be tailored to work with different wavelengths and different light intensities. Sources of activation, such as sunlight, may generally be avoided for embodiments of the invention. A broad spectrum white light such as a Halogen lamp may be employed. The activation may be tailored to be, for example, X times a desired intensity to ensure that a special lamp may be used. A suitable UV lamp includes EN-280L (two 8 W bulbs) from Spectronics Corp., New York.
Photochromism is generally understood to mean a light-induced reversible change of color of a substance. During this transition, the color or absorption spectrum of the initial substance changes. The reverse reaction may then be initiated by, for example, exposure to light of a different wavelength, typically a UV light. “Positive” Photochromic substances are used today in applications such as sunglasses that automatically darken when you walk outdoors.
Photochromic dyes/inks are commercially available in a variety of colors from companies such as John Robinson, www.photochromic.co.uk or Spectra Group Limited, www.sglinc.com. The table below shows several Spectra Group Limited Dye Examples, some of which are irreversible “negative photochromics.” Examples of materials that are fully reversible include WC AG 1-6 (Blue) and SGL-440 (Red) also from Spectra Group Limited.
For example, in the last example in TABLE 1, the color changes state from a darker color orange to a lighter color magenta when activated. In an alternative applicable to any of the embodiments, the colored envelope includes only a small portion of reversible photochromatic or thermochromatic ink in the indicium area with a matched color coated on the rest of the envelope. Of course, the ink can be used to dye the substrate material during substrate manufacturing or could alternatively be applied as a coating over manufactured substrate envelopes. Alternatively, known reversible photochromatic chromophores have two stable color states may be utilized. Additional photochromic inks that may be utilized are described in U.S. Pat. No. 6,858,564 B2, issued Feb. 22, 2005 to Halbrook, Jr., et al. Organic photochromic dyes may be utilized.
Multi-state photochromic materials are known and may be used. For example, one described system includes a Photochromic-doped sol-gel material prepared by adding a spiropyran photochromic dye to a solution of ethoxy silane monomers containing non-reacting ethyl radicals. After polymerization, normal photochromism (i.e., colored material upon UV irradiation) is obtained in the resulting matrix. The sol-gel matrix hinders the organic molecule rotations, thus giving two stable states, which can be reversibly switched by UV and green-blue irradiation respectively.
In the envelopes described, there may be significant advantages in processing to placing the reversible photochromic and negative reversible photochromic dyes in the paper slurry during the manufacturing process instead of printing on the envelopes after envelope manufacture.
Referring to
In one example, a WC Ag 6 Ink from Spectra Group Limited was drawn down on a white envelope using KCC101 coater with #2 coating rod. This resulted in a blue coating on top of the envelope. A red fluorescent indicia was printed using a Pitney Bowes mailing machine on the envelope. The maximum contrast of a Pitney Bowes red fluorescent ink on a white envelope is approximately 45%. The barcode was then tested on two commercially available barcode verifiers. The envelope was then exposed to high intensity white LED lighting for 20 seconds turning the envelope from blue from white. The barcode was read on the same verifiers and the contrast improved ˜33%. On the LVS Integra 95 the error correction rate also went down by ˜40%. The results are shown below in TABLE 2.
In a second example shown in TABLE 3, the SGL-440 Ink from Spectra Group limited was drawn down on a white envelope using KCC101 coater with #2 coating rod. This resulted in a red coating on top of the envelope. A red fluorescent indicia was printed using a Pitney Bowes mailing machine on the envelope. The maximum contrast of a Pitney Bowes red fluorescent ink on a white envelope is approximately 45%. The barcode was then tested on two commercially available barcode verifiers. The envelope was then exposed to high intensity white LED lighting for 20 seconds turning the envelope from red from white. The barcode was read on the same verifiers and the contrast improved ˜50%. On the LVS Integra 95 the error correction rate also went down by ˜50%.
Additionally, two comparative samples were performed. In a first comparative example, a Blue non-photochromic dye was used as shown in TABLE 4. A mixture of 2.5% Triethlyene glycol mono n butyl ether, 20% Duasyn Direct Turquoise Blue FRL-SF (Clariant Corp.) and 77.5% H2O was mixed with a magnetic stirrer in a beaker. The mixture was drawn down on a white envelope using KCC101 coater with #2 coating rod. This resulted in a blue coating on top of the envelope. A red fluorescent indicia was printed using a Pitney Bowes mailing machine on the envelope. The maximum contrast of a Pitney Bowes red fluorescent ink on a white envelope is approximately 45%. The barcode was then tested on two commercially available barcode verifiers. The envelope was then exposed to high intensity white LED lighting for 20 seconds, the envelope did not change color. The barcode was read on the same verifiers and the contrast and error rate did not change.
In the second comparative example summarized in TABLE 5, a Red non-photochromic dye was used. A mixtured of 2.5% Triethlyene glycol mono n butyl ether, 20% Duasyn Red 3B-SF (Clariant Corp) and 77.5% H2O was mixed with a magnetic stirrer in a beaker. The mixture was drawn down on a white envelope using KCC101 coater with #2 coating rod. This resulted in a red coating on top of the envelope. A red fluorescent indicia was printed using a Pitney Bowes mailing machine on the envelope. The maximum contrast of a Pitney Bowes red fluorescent ink on a white envelope is approximately 45%. The barcode was then tested on two commercially available barcode verifiers. The envelope was then exposed to high intensity white LED lighting for 20 seconds, the envelope did not change color. The barcode was read on the same verifiers and the contrast and error rate stayed approximately the same.
Referring to
While preferred embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. In addition, the concepts of the present invention are not limited to application in the area of postal indicia printing, but may also be used in connection with other devices benefiting from better contrast. Accordingly, the invention is not to be considered as limited by the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
3658534 | Ishitani et al. | Apr 1972 | A |
3995741 | Henderson | Dec 1976 | A |
4126717 | Mazzola | Nov 1978 | A |
4927180 | Trundle et al. | May 1990 | A |
5289547 | Ligas et al. | Feb 1994 | A |
5518858 | Dyukova et al. | May 1996 | A |
5524070 | Shin et al. | Jun 1996 | A |
5551973 | Oliver et al. | Sep 1996 | A |
5593486 | Oliver et al. | Jan 1997 | A |
5872648 | Sanchez et al. | Feb 1999 | A |
6140012 | Smithey et al. | Oct 2000 | A |
6616964 | Hampp et al. | Sep 2003 | B1 |
6652959 | Foucher et al. | Nov 2003 | B2 |
6858564 | Wehr et al. | Feb 2005 | B2 |
6908505 | Lawandy et al. | Jun 2005 | B2 |
20030116747 | Lem et al. | Jun 2003 | A1 |
20060035202 | Broxey et al. | Feb 2006 | A1 |
20060172135 | Agrawal et al. | Aug 2006 | A1 |
20070053856 | Ribi et al. | Mar 2007 | A1 |
20070206982 | Roth et al. | Sep 2007 | A1 |
20080004176 | Cullen et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
0 305 211 | Mar 1989 | EP |
Number | Date | Country | |
---|---|---|---|
20080162162 A1 | Jul 2008 | US |