Machine-readable optical security device

Information

  • Patent Grant
  • 11590791
  • Patent Number
    11,590,791
  • Date Filed
    Thursday, January 11, 2018
    6 years ago
  • Date Issued
    Tuesday, February 28, 2023
    a year ago
Abstract
An IR and/or UV machine-readable optical security device (e.g., micro-optic security thread) that is made up of at least one IR-absorbing component with a characteristic IR signature detectable at two or more IR-wavelengths, at least one UV-absorbing component with a characteristic UV signature detectable at two or more UV-wavelengths, at least one IR-absorbing component that absorbs IR light and emits light at a different invisible wavelength, at least one UV-absorbing component that absorbs UV light and emits light at a different invisible wavelength, or a combination thereof, is provided. The IR and UV machine-readable features do not interfere with the optical effects projected by the optical material.
Description
TECHNICAL FIELD

The present invention generally relates to a machine-readable optical security device (MrOSD) that is suitable for use in securing (i.e., authenticating and/or aestheticizing) high security products such as high value articles of manufacture or high value documents. The MrOSD includes an optical security device (OSD) coupled to a Mr-component having a characteristic machine readable, signature (Mr-signature) such as an infrared (IR) and/or ultraviolet (UV) signature, which may also be visible in reflection or in transmission. The Mr-component imparts a characteristic Mr-signature to the OSD such that the OSD, when coupled along with the Mr-component to a high security product, is identifiable by a signature detector. As such, when the MrOSD is coupled to a high security product, such as a banknote, the signature detector can thereby identify the presence/absence of the OSD and thereby authenticate the high security product. The OSD is a transparent/translucent micro-optic security device through which the signature of the Mr-component can be read by the signature detector.


BACKGROUND

Optical materials are often employed to authenticate banknotes and other high security products and to provide visual enhancement of manufactured articles and packaging. Such materials have evolved mainly from a drive to resist counterfeiting, of certain high value documents or high value articles and/or to render such counterfeiting attempts obvious. Examples of optical materials used in anti-counterfeiting applications include image systems that rely on arrays of lenticular or cylindrical structures or arrays of microlenses to project images that exhibit one or more mobile effects when the optical materials are viewed from varying points of view. Because of these mobile effects, the projected images cannot be effectively reproduced using traditional or contemporary printing and/or photocopying processes.


Optical materials based upon the concept of moiré magnification have been and are currently used in anti-counterfeiting applications. Such materials are typically multi-layered materials that include a lens layer containing an array of lenses, an intermediate spacer layer, and an image layer, which contains an array of image elements (i.e., image icons). The lens layer may be located above or below the image layer (i.e., refractive or reflective optical materials, respectively). The image icons are magnified or otherwise optically altered when viewed through the lenses. Alternative optical materials do not include an optical spacer.


For refractive optical materials, an upper lens layer and a image layer are configured such that when the icons are viewed through the upper lens layer one or more images are projected. These projected images may show a number of different mobile effects when the optical material is viewed from varying points of view (i.e., upon tilting of the optical material).


Multi-layered constructions of optical materials conforming to the above descriptions, which are capable of presenting such effects are described in: U.S. Pat. No. 7,333,268 to Steenblik et al.; U.S. Pat. No. 7,468,842 to Steenblik et al; U.S. Pat. No. 7,738,175 to Steenblik et al.; U.S. Pat. No. 7,830,627 to Commander et al.; U.S. Pat. No. 8,149,511 to Kaule et al.; U.S. Pat. No. 8,878,844 to Kaule et al.; U.S. Pat. No. 8,786,521 to Kaule et al.; European Patent No. 2162294 to Kaule et al.; European Patent No. EP2164713 to Kaule et al.; U.S. Pat. No. 8,867,134 to Steenblik et al.; and U.S. Patent Application Publication No. 2014-0376091 A1 to Jordan et al.


Optical materials based upon the concept of moiré magnification may also constitute a single layer system such as those described in U.S. patent application Ser. Nos. 15/215,952 and 15/216,286 to Gregory R. Jordan, both filed Jul. 21, 2016, and in U.S. patent application Ser. No. 14/975,048 to Cape et al., filed Dec. 18, 2015.


These single layer systems can comprise a surface and a periodic array of image relief microstructures having a periodic surface curvature disposed on or within the surface. The image relief microstructures can have a first image repeat period along a first image reference axis within the array, and the periodic surface curvature can have a first curvature repeat period along a first curvature reference axis within the array. Transmission of light through the array, reflection of light from the array, or a combination thereof forms a magnified moiré image.


The image relief microstructures can be (+)-relief or (−)-relief image relief microstructures. In some cases, the image relief microstructures can be (+)-relief image relief microstructures that upwardly project from the surface terminating in an arcuate image generating surface. In other cases, the image relief microstructures can be (−)-relief image relief microstructures that are voids formed within the surface terminating in an arcuate image generating surface. Depending on the desired appearance of the magnified moiré image, the image relief microstructures can be a positive image representation or a negative image representation.


The above-described optical materials can be utilized in a variety of different forms (e.g., strips, patches, security threads, planchettes) with any product and in particular with any security product (e.g., high security products or high value products) such as banknotes, checks, stamps, government letterheads, stock certificates, lottery tickets, other secure documents and other high value or secure commercial products, apparel, identification, passports and other government issued documents, product packaging, or the like, for authentication or aestheticizing purposes. For banknotes and secure documents, these materials are typically used in the form of a strip, patch, or thread and can be fully or partially embedded within the banknote or document, or applied to a surface thereof. For passports or other identification (ID) documents, these materials could be used as a full laminate or inlayed in a surface thereof. For product packaging, these materials are typically used in the form of a label, seal, or tape and are applied to a surface thereof.


It has long been recognized that the use of machine testable security features with security devices used on or within a security document or article offer a heightened level of security. In fact, many security products, such as secured documents, include a security device (e.g., security thread) that is disposed on or within the paper, includes one or more machine detectable/readable (Mr-) security features, such as magnetic features that serve to authenticate the security paper and prevent or deter counterfeiting. For example, in GB 2,227,451 B, a security device in the form of a security thread comprises a plastic strip. Along a surface of the plastic strip is a coating of metal and a machine readable, discontinuous track of magnetic material, which is divided into machine-readable word and termination segments.


The above-described optical materials, however, are incompatible with conventional magnetics. Magnetic materials have a degree of inherent color, which renders them visually detectable in reflected and transmitted light and thus interfere with the projected optical images and their corresponding mobile effects. This is particularly true where the magnetic color is different from the pigments used in certain micro-optic materials as contrasting materials. Moreover, other conventional security threads, patches or stripes include materials that obstruct their machine readability. For example, many of these security devices are opaque or include certain materials, such as metals or demetalized areas that interfere with the machine readability of the machine readable components. For these reasons, heretofore it has been impractical to incorporate certain machine readable features into security devices for high value documents or high value articles.


A need therefore exists for an optical material, such as a micro-optic security device, that employs a machine detectable and/or readable feature that does not interfere with the optical effects projected by the optical material and where the optical security device does not interfere with the machine-readable signature.


SUMMARY OF THE INVENTION

The present invention provides such a machine-readable optical security device (MrOSD) by avoiding at least one of the above impediments to incorporating a machine readable component into an optical security device. In a particular aspect the present invention provides an MrOSD. In one embodiment of this aspect, the MrOSD comprises an OSD component; and an Mr-component coupled to the OSD and imparting a characteristic machine-readable Mr-signature to the OSD; wherein the Mr-signature displays at least one machine readable Mr-signal within the invisible spectral range; wherein the OSD is transparent or translucent; and wherein the Mr-signature is readable, through the OSD, by a signature detector. In another embodiment, the MrOSD is an IR and/or UV machine-readable optical security device (e.g., micro-optic security thread) that comprises at least one of (i) a first IR-component having a characteristic signature (e.g., IR signature) that is detectable at two or more wavelengths (i.e., IR-wavelengths), (ii) a first. UV-component having a characteristic signature (e.g., UV signature) detectable at two or more wavelengths (e.g., UV-wavelengths), (iii) a second IR-component that absorbs IR light and emits light at a different invisible wavelength, and (iv) a second UV-component that absorbs UV light and emits light at a different invisible wavelength.


In another aspect, the present invention provides a method of making an MrOSD. In one particular embodiment of this aspect, this method comprises (i) forming an OSD where the OSD at least comprises (a) a focusing layer of focusing elements, (b) an image layer of image elements disposed relative to the focusing layer such that a synthetic image is projected by the OSD when the image elements are viewed through the focusing elements; and optionally (c) at least one additional layer coupled to at least one of the focusing layer or the image layer and (ii) coupling an Mr-component to the OSD such that the Mr-component imparts a characteristic machine-readable Mr-signature to the OSD; where the Mr-signature displays at least one machine readable Mr-signal within the invisible spectral range; wherein the OSD is transparent or translucent; and wherein the Mr-signature is readable, through the OSD, by a signature detector. In another particular embodiment of aspect, this method comprises (i) forming an OSD where the OSD at least comprises (a) a focusing layer of focusing elements, (b) an image layer of image elements disposed relative to the focusing layer such that a synthetic image is projected by the OSD when the image elements are viewed through the focusing elements, and optionally (c) at least one additional layer coupled to at least one of the focusing layer or the image layer and (ii) introducing (e.g., coupling) at least one Mr-component to the OSD. For this method, the Mr-component is as described above.


In another aspect, the present invention provides a secured product. In one particular embodiment, the secured product comprises an MrOSD, as described herein, wherein the MrOSD is coupled to a substrate of a high security product. In another aspect, the present invention provides a use for the MrOSD. In one particular embodiment, this use comprises using the MrOSD to secure a high security product, wherein the MrOSD is as described herein throughout.


In another aspect, the present invention provides a sheet material and a base platform that are made from or employ the inventive MrOSD, as well as documents made from these materials.


In a particular embodiment of the aspects of the invention presented above, the optical security device of the present invention is a micro-optic security device (MOSD), such as a security thread, that comprises an IR-component with an IR signature that is detectable at two IR-wavelengths, where the ratio of absorption between the two IR-wavelengths is reliably and measurably the same when measured in transmission.


In another exemplary embodiment, the OSD of the MrOSD is a micro-optic security device (e.g., security thread) that comprises an IR-absorbing component that absorbs IR light and emits light at a different invisible wavelength and/or a UV-absorbing component that absorbs UV light and emits light at a different invisible wavelength (e.g., IR and/or UV phosphors). The emitted light may be viewed from the same side as the incident light or from an opposite side of the device.


In view of the present disclosure, various other aspects, embodiments, features and advantages of the invention will, in hindsight, be apparent to a person having ordinary skills in the art (PHOSITA).





BRIEF DESCRIPTION OF THE DRAWINGS

Particular features of the disclosed invention are illustrated by reference to the accompanying drawings in which:



FIGS. 1a-f are top side images of exemplary embodiments of paper documents employing different optically variable security threads according to the present invention, as viewed in IR transmission, where the IR-absorbing component of the inventive optically variable security threads is present in the form of intermittent patterns, namely, similar or different size horizontal bars (FIGS. 1a, 1d, 1e), chevrons or zig zags (FIG. 1c), angled bars (FIG. 1b), and indicia (FIG. 1f).



FIG. 2 is a cross-sectional view of a machine readable optical security device with the Mr-component within the image layer.



FIG. 3 is a cross-sectional view of a machine readable optical security device with the Mr-component as a discrete layer.



FIG. 4 is cross-sectional view of a machine readable optical security device with the Mr-component integrated as a pattern or indicia.



FIG. 5 is a cross-sectional view of a machine readable optical security device with the Mr-component randomly distributed throughout a layer of the OSD.



FIG. 6 is an isometric view of a machine readable optical security device with the Mr-component integrated with the ODS as a separate layer between the image layer and focusing layer.



FIG. 7 is a plan view of a secured product presented as a banknote with a windowed thread displaying the synthetic image of the MrOSD being used to authenticate the banknote.



FIG. 8 is a graphical view of a predetermined Mr-signature with Mr-signals suitable for use in detecting the authenticity of secured product.





DETAILED DESCRIPTION OF THE INVENTION

Definitions


The term “characteristic signature”, as used herein is intended to mean a unique absorption or transmission (absorption/transmission) pattern, such as that depicted on a spectrogram of a material that is exposed to electromagnetic radiation like IR or UV. This unique pattern may include unique slopes, peaks along a wavelength/frequency scale correlating to particular spectral absorption/transmission curves, or other predetermined identifying spectral characteristics such as the width of two or more absorption/transmission peaks, the height to width relationship of two or more peaks, the ratio of absorption/transmission (height) between two absorption/transmission peaks, or changes in the curvature of the spectrum. These can include absorption/transmission maxima (peaks) and/or absorption/transmission minima and/or absorption/transmission edges at substantially the same wavelengths.


The term “coupling” or “couple”, as used herein, is intended to mean that the component is either directly or indirectly secured to another component.


The term “detectable”, as used herein, is intended to mean reliably measurable IR and/or UV absorbance (or transmittance) at two or more wavelengths using a detector that reacts to IR and/or UV radiation, when the inventive optical security device is present on or partially within a paper or polymer sheet material.


The term “imparting”, as used herein, is to be understood as adding to or enabling the OSD to be authenticated/identified, or its presence or absence to be determined, by the presence or absence of the Mr-signature


The term “integrated”, as used herein, refers to the incorporation of the Mr-component into a layer or array of the OSD by, for example, having the Mr-component distributed in the formulation used to prepare the OSD layer.


The term “intermittent pattern”, as used herein, is intended to mean that when viewed (by machine or with a viewer that images at the appropriate wavelength) in IR or UV illumination, an optionally repeating pattern (e.g., an encoded pattern) may be seen on the micro-optic security device.


The term “integration” or “integrating”, as used herein, is intended to mean that the subject component is added to at least a bulk portion of another component of the invention.


The term “introducing”, as used herein, is intended to mean that the subject component is added to another component of the invention by integration or layering.


The term “layering”, as used herein, is intended to mean that the subject component is coupled to another component in a continuous or discontinuous layer under or over another referenced component/layer of the invention such that at least one surface of each component is substantially parallel to a surface of the other component/layer.


The term “spectral range”, as used herein refers to the relative ranges of wavelengths among the electromagnetic range including, for example, the UV-spectral range, the IR-spectral range, the visible-spectral range, the x-ray-spectral range, etc.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by a PHOSITA. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.


Written Description


As noted above, the present invention may be described in several aspects, including an MrOSD, methods of manufacturing an MrOSD, a secured product comprising an MrOSD, use of an MrOSD in securing certain security products and certain sheet materials, base platforms or documents made from an MrOSD. Particularly, the MrOSD, forming elements of these aspects of the invention, comprises an OSD and an Mr-component that is coupled to the OSD.


The optical security device (OSD) of the present invention is either (a) a multi-layered material or (b) a single-layered material. Exemplary multi-layered materials include those having one or more focusing element layers coupled to one or more image layers. At least one of the focusing element layers includes an array of focusing elements while at least one of the image layers includes an array of image elements. The focusing element layer having the array of focusing elements is layered with the image layer having the array of image elements such that when the image elements are viewed through the focusing elements, from at least one point of view, a synthetic image is projected by the OSD. It is contemplated within the scope of the present invention that the multi-layered material, in certain embodiments, includes additional layers or arrays. For example, in one such embodiment, the OSD further includes an optical spacer layer that is disposed between the image layer and the focusing element layer. Alternatively, where the OSD is a single-layered material, the single-layered construction is made up of a substrate with a surface having a periodic array of image relief microstructures and a periodic surface curvature disposed on or within the surface, which forms a magnified moiré image.


In hindsight from the present disclosure, various suitable OSDs will become apparent to a PHOSITA. For example, certain suitable OSDs are as described in U.S. Pat. No. 7,333,268 to Steenblik et al., U.S. Pat. No. 7,468,842 to Steenblik et al., and U.S. Pat. No. 7,738,175 to Steenblik et al. and these OSDs include focusing element layers formed from a variety of formulation materials such as substantially transparent or clear, colored or colorless polymers such as acrylics, acrylated polyesters, acrylated urethanes, epoxies, polycarbonates, polypropylenes, polyesters, urethanes, and the like, using a multiplicity of methods that are known in the art of micro-optic and microstructure replication, including extrusion (e.g., extrusion embossing, soft embossing), radiation cured casting, and injection molding, reaction injection molding, and reaction casting. High refractive index, colored or colorless materials having refractive indices (at 589 nm, 20° C.) of more than 1.5, 1.6, 1.7, or higher, such as those described in U.S. Patent Application Publication No. US 2010/0109317 A1 to Hoffmuller et al., may also be used in the practice of the present invention. Materials and methods for providing the image layer, spacer layer and additional layers are likewise suitably disclosed in the above incorporated patent documents.


Though various methods of manufacturing the OSD will be apparent in view of the present disclosure, an exemplary method of manufacturing the multi-layered construction comprises forming the image layer by forming an array of image elements, in a radiation cured liquid polymer (e.g., acrylated urethane) that is cast against a base film (i.e., an optical spacer), such as 75 gauge adhesion-promoted polyethylene terephthalate (PET) film; forming the focusing element layer by forming an array of focusing elements in a radiation cured polymer disposed on the opposite face of the base film. Suitable image elements and methods of providing them are described in International Patent Application Publications WO2005/052650, WO2006/125224, WO2008/008635, WO2011/019912, WO2011/163298, WO/2013/028534, WO2014/143980, WO2009/017824, WO2016/044372, WO2016/011249, WO2013/163287, WO2007/133613, WO2012/103441, and WO2015/148878, WO2005/106601, WO2006/087138, which are all incorporated herein in their entirety. In preferred embodiments, the image elements, are in the form of voids, solid regions, protrusions, or any combination thereof. Suitable focusing elements and methods of providing them are described in International Patent Application Publications WO2005/052650, WO2006/125224, WO2008/008635, WO2011/019912, WO2011/163298, WO/2013/028534, WO2014/143980, WO2009/017824, WO2016/044372, WO2016/011249, WO2013/163287, WO2007/133613, WO2012/103441, WO2015/148878, WO2017/105504, WO2005/106601 WO2006/087138, which are all incorporated herein in their entirety, in preferred embodiments, the focusing elements are micro-lenses. The array of focusing elements and the array of image elements are disposed on opposing sides of the base film and are oriented (array alignment or skew) relative to each other such that when the image elements are viewed through the focusing elements a desired synthetic image is projected. Preferably, the image elements are coupled with a contrasting material thereby enhancing the optical effect of the synthetic image. For example, the contrasting material may be coupled to the image elements by coating (e.g., full, partial, or patterned) the front or back of the voids and/or solid regions, by filling the voids, or by coating (e.g., full, partial or patterned) the protrusions. In a preferred embodiment, the image elements are voids that are filled, or substantially filled, with a contrasting material, thereby providing improved contrast between the images projected from the void areas and the surrounding solid regions. Various suitable contrasting materials will be apparent in view of the present disclosure, however Applicant has found it most suitable to use an ink, dye or pigment with sub-micron particle/pigment size. Applying the contrasting material to the image elements may be by gravure-like doctor blading against the film surface, followed by solidifying the filling of contrasting material by suitable means (e.g., solvent removal, radiation curing, or chemical reaction).


Materials, formulations and methods of manufacturing the above-mentioned single-layered construction of the OSD are described in U.S. patent application Ser. Nos. 15/215,952 and 15/216,286, both filed Jul. 21, 2016, and in U.S. patent application Ser. No. 14/975,048, filed Dec. 18, 2015.


The optical security device of the present invention may further comprise additional features and layers, such as those described in U.S. Pat. No. 7,333,268 to Steenblik et at, U.S. Pat. No. 7,468,842 to Steenblik et al., and U.S. Pat. No. 7,738,175 to Steenblik et al. For example, the inventive device may further comprise additional layers (e.g., embedding, sealing or obscuring layers), textured surfaces for better adhesion to further layers, adhesion promoters, etc.


In one such embodiment, the inventive optical security device advantageously contains an obscuring layer on the side of the OSD proximate the image layer of the multi-layer material, or on the backside of the single-layer material, the obscuring layer serving to conceal the device when viewed from the underside of a host sheet material (e.g., a banknote).


The OSD of the present invention is preferably transparent or translucent such that the Mr-component can be readily and/or reliably read by the signature detector through the OSD without the Mr-component interfering (i.e., reducing image resolution, distorting, or blocking) with the synthetic image. As such the layers of the OSD, whether in multi-layered or single-layered construction, must allow such transparency or translucency.


As noted, the MrOSD includes an Mr-component. Various suitable Mr-components will become apparent to a PHOSITA in hindsight of the present disclosure. The Mr-component is coupled with the OSD by integrating one or more of such Mr-components into one or more layers of the inventive MrOSD, or the Mr-component(s) is coupled with the OSD by applying a discrete layer(s) (e.g., Mr-layer) by, for example, coating the Mr-component onto a layer, or between layers, of the OSD or by separately forming an Mr-component layer (e.g., Mr-layer) and subsequently coupling that Mr-layer to the OSD. The Mr-component can be integrated as a mixture, dispersion, solution, emulsion or the like into a layer of the OSD. Other alternative means of integrating the Mr-component with the OSD layer(s) will be apparent, in view of the present disclosure. A discrete layer as used herein is to be understood as a layer that is bordered by a defined interface separating/connecting the OSD layer from/to the Mr-component. Preferably, the Mr-component is a separate layer(s) that is applied or added to the OSD. The Mr-component, whether integrated or discrete, may be present in a continuous fashion (i.e., a solid block) or may be in the form of an intermittent pattern or random distribution. Patterns incorporated herein may provide aesthetics or may provide a unique readable signature. In one embodiment, the pattern is in the form of at least one of horizontal bars, chevrons or zig zags, angled bars, shapes, indicia, or the like, or combinations thereof, and may be visible in reflection, or more likely in transmission at the prescribed wavelengths. Preferably, the pattern is arranged to provide a distinct and recognizable signal when read by a machine. In a particular embodiment, the pattern is a set of equally sized blocks, a set of variable sized blocks, or a set of text.


It is generally contemplated herein that the Mr-component is an ink vehicle and can be incorporated in the various embodiments described herein. Such ink vehicles can be transparent, or pigmented. In one particular embodiment, the MrOSD comprises an OSD coupled to the Mr-component and where the Mr-component is is at least one of an IR-absorbing IR-component and a UV-absorbing UV-component(s). In a further particular embodiment, this Mr-component is in the form of an ink vehicle, and is coupled to the OSD by being mixed in with a formulation used to make an opacifying layer of the OSD. While not always the case it is contemplated herein that the quantity of the Mr-components may be varied, in this particular embodiment, the IR-absorbing or UV-absorbing Mr-component(s) is present in the ink vehicle in a quantity ranging from about 30 to about 70% by wt. A quantity of the ink vehicle ranging from about 30 to about 70% by wt. is added to the formulation used to make the opacifying layer. The thickness of the opacifying layer, in this exemplary embodiment, ranges from about 0.5 to about 5 microns.


In another exemplary embodiment, the Mr-component(s) is applied between the image layer and the opacifying layer of the inventive optical security device.


In yet another exemplary embodiment, the Mr-component(s), in the form of a coating composition, is used to form a layer directly or indirectly on the image layer, which serves to replace the opacifying layer or which constitutes an additional layer(s). A pattern can be formed through the coating process by use of a mask allowing selected intermittent areas to be coated. If applied as a separate layer, the coating composition may be applied between two opacifying layers. The resulting layer may be at least as thick as each opacifying layer.


The various Mr-components are detectable by various means known or apparent to a PHOSITA including various known IR-machines, UV-machines and the like. As noted, the Mr-component may be selected from (i) a first IR-component imparting an Mr-signature to the OSD which includes at least two Mr-signals, that are detectable, at 2 or more wavelengths within the IR spectral range. (ii) a first. UV-component imparting an Mr-signature to the OSD which includes at least two Mr-signals, that are detectable, at 2 or more wavelengths within the UV spectral range, (iii) a second IR-component that absorbs IR-light of a first wavelength and emits light at a second different wavelength, and (iv) a second UV-component that absorbs UV-light and emits light at a second a different wavelength. The Mr-signature is a predetermined characteristic set of Mr-signals. These characteristic set of Mr-signals can be detected by, for example, a spectrometer that provides a graphical display of the Mr-signals. These Mr-signals may be plotted on a graph having an x-axis of wavelengths and a y-axis of % transmittance or % absorption over a range of wavelengths and a range of % transmittance/absorption. As such the Mr-signature may include various Mr-signals (peaks, valleys, area under curve, distance between peaks or valleys, slope between particular peaks or valleys, etc.). As noted, the second IR-component absorbs light within the IR-spectral range and emits light at a second and different wavelength. In a preferred embodiment, the second and different wavelength is within a separate invisible spectral range. However, it is also contemplated herein that the second and different wavelength is either in the visible spectral range or is within the same spectral range as the absorption. This is likewise for the second UV-component.


In one embodiment, the MrOSD comprises an OSD component coupled to an Mr-component, as described herein, where the Mr-component is an IR-absorbing IR-component. This IR-component is presented as an ink vehicle having an IR-taggant distributed therein that is detectable at a predetermined wavelength (or set of wavelengths) within the IR-spectral range. Alternatively, the Mr-component is a UV-absorbing UV-component, where said UV-component is presented as an ink vehicle having a UV-taggant distributed therein, that is detectable at a predetermined wavelength (or set of wavelengths) within the UV-spectral range.


Various suitable Mr-components are selected based on the desired predetermined wavelengths at which the Mr-signals are desired. Accordingly, various predetermined wavelengths are contemplated. For example, in certain embodiments where the MrOSD includes a first IR-component and/or a first UV-component, each are independently detectable at 2 or more wavelengths and in a particular embodiment, the IR-component is detectable within a spectral range from about 750 nm to about 850 nm (preferably about 800 nm) (with about 70-80% absorption; preferably 75%) and about 850 nm to about 950 nm (preferably 870 nm-890 nm) (with about 75-80% absorption; preferably about 77-78% absorption) while the UV-component, if present, is detectable at about 10 nm to about 400 nm (preferably about 200-300 nm; preferably 275 nm) (with about 70-80% absorption; preferably 75% absorption) and about 300-400 nm (preferably 350 nm) (with about 75-85% absorption; preferably 80% absorption). In one exemplary embodiment, the Mr-component includes an IR-absorbing component where this component is detectable, by an IR-machine, only in the infrared region of the electromagnetic spectrum or it may be detectable in the infrared region and observable (and possibly also machine detectable) in the visible regions of the spectrum. In a preferred embodiment, the IR-absorbing component is detectable in the near-infrared (MR) region of the electromagnetic spectrum.


The Mr-component in one embodiment is selected from the group of suitable IR-taggants and the group of IR-detectable pigments forming part of an ink vehicle. Suitable pigments and taggants are described in U.S. Pat. No. 6,926,764, which is incorporated herein in its entirety. Accordingly, the ink vehicle can be an ink set comprising a first set of ink including an IR-taggant with a first Mr-signal, and a black, yellow or magenta dye; and a second set of ink including a pigment with a second Mr-signal; wherein the first Mr-signal and the second Mr-signal are substantially the same; and wherein the ink set includes at least two inks of different colors. Preferably the second ink set include cyan having a pigment which provides a Mr-signature with at least one Mr-signal that is substantially the same as at least one Mr-signal provided by the IR-taggant. As such, the substantially the same Mr-signals are within 10 nm of each other. Particularly, in a preferred embodiment, the IR-taggant is a phthalocyanine and preferred pigments are crystallographic X-forms of phthalocyanine. In more preferred embodiments, the IR-taggant is at least one of a substituted phthalocyanine, a naphthalocyanine, a metal-containing phthalocyanine or a poly-substituted phthalocyanine or combinations thereof. Benzenethiol-substituted copper-phthalocyanines are preferred IR-taggants; more preferably para-toluenethiol-persubstituted copper-phthalocyanine of the formula:




embedded image


In one such embodiment, the IR-absorbing component is an IR-reactive pigment sold as part of an ink or ink vehicle under the trade designation SICPATalk by SICPA SA, Av de Florissant 41, 1008 Prilly, Switzerland. The pigment may be an organometallic pigment such as a metal-containing phthalocyanine pigment which absorbs or reflects more than 75% of any near IR light when viewed in transmission (% T<25% from 750-950 nm), and which is viewable at the following wavelengths: 750 nm and 900 nm. The ratio of absorption between the two IR-wavelengths is equal to about 35 percentage points. This pigment has an off-white body color in the visible region of the electromagnetic spectrum,


Suitable IR-absorbing components are described in GB 2,168,372, where certain IR- or UV-absorbing materials that are invisible or transparent in the visible region are disclosed, and in WO 90/1604 where certain IR-taggants are described, which exhibit narrow absorption characteristics; those including rare earth compounds. Other suitable IR-absorbing components are described in EP 553614 where certain phthalocyanines are used as a printing ink and provide spectral absorption in the wavelength range of 700 to about 1200 nm. EP 484018 describes suitable phthalocyanines having absorption wavelengths maximum between about 680 and 900 nm. EP 408191 describes substituted phthalocyanines with characteristic wavelength absorptions in the range of 700 to 1500 nm that are also suitable in the present invention. Naphthalocyanine compounds are also suitable and are described further in EP134518 as IR-absorbers the absorbing near IR (NIR) radiation in the spectral range of 750 to 900nm, which may be used as dyes or pigments.


In another such embodiment, the IR-absorbing component is an IR-reactive pigment sold as part of an ink or ink vehicle under the trade designation LUMOGEN-S by BASF Corporation, 100 Park Ave., Florham Park, N.J. 07932. This pigment is invisible in the visible region of the electromagnetic spectrum.


The ink or ink vehicle may be added to one or more layers of the optical security device, or it may be used to prepare one or more coatings or separate layers that are applied or added to the device. In the above embodiment, the ink vehicle is either mixed in with a composition used to form a pigmented or obscuring layer on the print or object layer, or is used to make a coating or separate layer that is applied or added to the pigmented or obscuring layer.


When the ink vehicle is mixed in with a composition used to from a pigmented or obscuring layer, the pigmented sealing or obscuring layer can be formed using one or more of a variety of opacifying coatings or inks, which include both solvent and solvent-free coatings or inks (both curing and non-curing). In an exemplary embodiment, the sealing or obscuring layer is formed using a pigmented coating comprising a pigment, such as titanium dioxide, dispersed within a binder or carrier of curable polymeric material. Preferably, the sealing or obscuring layer is formed using radiation curable polymers and has a thickness ranging from about 0.5 to about 5 microns.


When used to make a coating or separate layer that is applied or added to the pigmented or obscuring layer, the ink or ink vehicle may be used alone or added to an existing formulation.


In one embodiment, the Mr-signature includes at least two Mr-signals in the invisible spectral range. Here the at least one of the Mr-signal is in the visible and/or uv-spectral range and at least one Mr-signal is in the IR-spectral range. Alternatively, the Mr-signal is in the visible and/or IR-spectral range and at least one Mr-signal is in the UV-spectral range. In a further embodiment, the Mr-signature includes a least one Mr-signal in the near IR-spectral range (NIR).


In one embodiment, the IR-absorber imparts an Mr-signature that includes a first absorption at a first wavelength and a second absorption at a second wavelength where the first absorption is lower than the second absorption and the first wavelength is lower than lower than the second wavelength As such, the slope of the Mr-signature over this wavelength range is a negative slope thereby giving the OSD a characteristic signature readily identifiable and detectable by a signature detector. In a preferred embodiment, this Mr-signature is displayed as a positive slope if the MrOSD is missing, tampered with or is otherwise not authentic.


The invention also provides a secured product comprising the MrOSD, wherein the MrOSD is coupled to a substrate of a high security product. As noted, a high security product includes high value articles and high value documents. The MrOSD may be embedded within the substrate or layered over the surface of the substrate and thereby affixed by a suitable adhesive element. Examples of suitable adhesive elements include pressure, heat or water activated adhesives. Naturally, other adhesive elements will be apparent in view of the present disclosure.


In a preferred embodiment of the secured product, an OSD is at least partially embedded within a paper banknote and the IR-component is present in an amount ranging from about 0.5 gsm to about 5 gsm; more preferably from about 2 gsm to about 3.5 gsm. Applicant has found that surprisingly the emission from the IR-absorbing component is most reliably detectable when within these ranges. Alternatively, where the OSD is embedded in a polymeric security document, such as a polymeric banknote, the IR-absorbing component coupled to the OSD is present in an amount ranging from about 0.5 gsm to about 5 gsm, preferably, from about 2 gsm to about 3.5 gsm in order to enable detection. Suitable infrared detectors for detecting infrared rays in the near-, middle- and far-infrared wavelength ranges include: an LED or incandescent IR emitter in combination with a line scanner, CCD camera, photodiode or other similar detection device,


The invention also, provides a use for the MrOSD to secure high security products. As such the MrOSD when coupled to a high security product, is able to thwart counterfeit attempts by being able to authenticate the high security product or aestheticize the high security product. For example, the MrOSD provides a predetermined characteristic Mr-signature to the high security product such that a missing or tampered OSD will be indicated by a recognizable difference in the Mr-signature that is distinguishable from the predetermined characteristic Mr-signature.


The invention also provides a method of making the MrOSD. In one embodiment, this method comprises (i) forming an OSD which at least comprises (a) a focusing layer of focusing elements, and (b) an image layer of image elements disposed relative to the focusing layer such that a synthetic image is projected by the OSD when the image elements are viewed through the focusing elements; and optionally (CO at least one additional layer: and (ii) introducing at least one Mr-component to the OSD. The Mr-component is as described herein. Likewise the Mr-component is coupled to the OSD as described herein.


When the inventive optical security device is used in paper (e.g., paper banknotes or documents), or applied to a surface of the paper, in order to be detectable (i.e., reliably measureable) the signal intensity or the height of the absorption/transmission peaks generated by the IR-reactive pigment is preferably greater than about 10 percent (%) (more preferably, greater than about 25%) of the noise level or signal intensity of the surrounding paper.


When the inventive optical security device is used in polymer sheet materials (e.g., polymer banknotes or documents), or applied to a surface of the polymer sheet material, in order to be detectable (i.e., reliably measureable) the signal intensity or height of the absorption/transmission peaks generated by the IR-reactive pigment is preferably greater than about 50% (more preferably, greater than about 75%) of the noise level or signal intensity of the surrounding polymer sheet material.


It is noted that while the IR or UV absorbance (or transmittance) of these Mr-components may, be detectable from the isolated optical security device, once the device is placed, for example, on or partially within a paper sheet material, the effect becomes scattered or weak, which may render the effect undetectable or not reliably measurable. In an exemplary embodiment of the present invention, the polymer(s) used to make the inventive optical security device is 100% transmissive, and the optical security device is present on or partially within a paper sheet material having a basis weight ranging from about 70 to about 110 grams per square meter (g/m2 or gsm). In this exemplary embodiment, the characteristic IR-signature of the inventive MrOSD is reliably measureable in that the device absorbs or reflects more than 75 percent (%) of any near IR light when viewed in transmission (% T<25% from 750-950 nanometers (nm)).


In one exemplary embodiment, the IR-absorbing component is detectable in only the infrared region of the electromagnetic spectrum and is present in the form of a binary code. Two means for authentication are offered by way of this embodiment of the inventive optical security device, namely, the characteristic IR signature and the IR binary code.


In another exemplary embodiment, the IR-absorbing component is detectable in both the infrared and the visible regions of the electromagnetic spectrum and is present in the form of a binary code. Four means for authentication are offered by this embodiment, namely, the characteristic IR signature, the IR binary code, the visible appearance, and the visible binary code.


The UV-absorbing component used in the subject invention may be observable in only the ultraviolet region of the electromagnetic spectrum or it may be observable in both the ultraviolet and the visible regions of the electromagnetic spectrum, Similar to the IR-absorbing component, the UV-absorbing component may be present in a continuous manner or in the form of an intermittent pattern.


In one exemplary embodiment, the UV-absorbing component is observable in only the ultraviolet region of the electromagnetic spectrum and is present in the form of a binary code. Two means for authentication are offered by the inventive optical security device of this embodiment, namely, the characteristic UV signature and the UV binary code.


In another exemplary embodiment, the UV-absorbing component is observable in both the ultraviolet and the visible regions of the electromagnetic spectrum and is present in the form of a binary code. Four means for authentication are offered by this embodiment, namely, the characteristic UV signature, the UV binary code, the visible appearance, and the visible binary code.


In yet another exemplary embodiment, a combination of IR-absorbing and UV-absorbing components are present in the MrOSD. One or both of these components may also be observable in the visible region and may be present in either a continuous or intermittent pattern.


The MrOSD may be used in the form of, for example, a security strip, thread, patch, or overlay and mounted to a surface of, or partially embedded within a fibrous or non-fibrous (e.g., polymer) sheet material (e.g., banknote, passport, ID card, credit card, label), or commercial product (e.g., optical disks, CDs, DVDs, packages of medical drugs), etc., for authentication purposes. The inventive device may also be used in the form of a standalone product (e.g., substrate for subsequent printing or personalization), or in the form of a non-fibrous sheet material for use in making, for example, banknotes, passports, and the like, or it may adopt a thicker, more robust form for use as, for example, a base platform for an ID card, high value or other security document.


When used in the form of a security strip, thread, patch, or overlay, the total thickness of the inventive device is preferably less than about 50 microns (more preferably, less than about 45 microns, and most preferably, from about 10 to about 40 microns).


The security strips, threads, patches and overlays may be partially embedded within or mounted on a surface of a document. For partially embedded strips and threads, portions thereof are exposed at the surface of the document at spaced intervals along the length of the strip or thread at windows or apertures in the document.


The inventive optical security devices may be at least partially incorporated in security papers during manufacture by techniques commonly employed in the papermaking industry. For example, the inventive security device in the form of a strip or thread may be fed into a cylinder mould papermaking machine, cylinder vat machine, or similar machine of known type, resulting in partial embedment of the strip or thread within the body of the finished paper.


The security strips, threads, patches and overlays may also be adhered or bonded to a surface of a document with or without the use of an adhesive. Bonding without the use of an adhesive may be achieved using, for example, thermal welding techniques such as ultrasonic welding, vibration welding, and laser fusing. Adhesives for adhering the inventive devices to a surface of a document may be one of hot melt adhesives, heat activatable adhesives, water-activated adhesives, pressure sensitive adhesives, and polymeric laminating films. These adhesives are preferably crosslinkable in nature, such as UV cured acrylic or epoxy, with crosslinking achieved while the adhesive is in the melt phase.


Suitable documents into which the MrOSD may be integrated or otherwise embedded include those of any kind having financial value, such as banknotes or currency, bonds, checks, traveler's checks, lottery tickets, postage stamps, stock certificates, title deeds and the like, or identity documents, such as passports, ID cards, driving licenses and the like, or non-secure documents, such as labels. The MrOSD is also contemplated for use with consumer goods as well as bags or packaging used with consumer goods.


In another contemplated embodiment, the inventive device forms part of a label construction. The inventive device may be placed on the inside of a package, so that the synthetic image(s) remains visible.


When used in the form of a base platform for an ID card, high value or other security document, the total thickness of the inventive device is preferably less than or equal to about 1 millimeter (mm) including (but not limited to) thicknesses: ranging from about 200 to about 500 microns; ranging from about 50 to about 199 microns; and of less than about 50 microns.


While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the exemplary embodiments.


The invention will be further clarified by reference to certain specific drawings reflecting certain specific embodiments of the present invention.


The Mr-component may be present in a continuous manner or in the form of an intermittent pattern. As best shown in FIG. 1, the intermittent pattern may be in the form of similar or different size horizontal bars (see FIGS. 1a, 1d, 1e), chevrons or zig zags (see FIG. 1c), angled bars (see FIG. 1b), shapes, indicia (see FIG. 1f), or the like, or combinations thereof.


In one embodiment, as illustrated in FIG. 2, the Mr-component (210) of the MrOSD (200) is a patterned layer integrated into the image layer (205), where the MrOSD comprises a focusing layer of focusing elements (201) disposed over the image layer (205) of image elements (202) and surrounding solid regions (203). A spacer layer (204) is disposed between the focusing elements (201) and the image elements (202). Here the image elements are voids partially filled with a contrasting element.


In a further exemplary embodiment, as depicted in FIG. 3, the Mr-component (310) of the MrOSD (300) is a discrete layer disposed between an image layer (305) of image elements (302) and an opacifying layer (306). The MrOSD (300) comprises a spacer layer (304) disposed between a focusing layer of focusing elements (301) and an image layer (305) of image elements (302) (filled voids) and surrounding solid regions (303).


In another exemplary embodiment, as depicted in FIG. 4, the Mr-component (410) of the MrOSD (400) is integrated with the MrOSD as a patterned layer disposed between the MrOSD's spacer layer (404) and image layer. Here the image elements (402) are protrusions (402), which may be printed onto the spacer layer (404). Here the MrOSD comprises a spacer (404), which is disposed between a focusing layer of focusing elements (401) and an array of image elements (402). The MrOSD (400) also includes an additional layer (406) which functions as an adhesive layer.


In another exemplary embodiment, as depicted in FIG. 5, the MrOSD (500) is as described in FIG. 4. The MrOSD (500) comprises a spacer layer (504), which is disposed between a focusing layer of focusing elements (501) and an array of image elements (502). Here the Mr-component (510) is integrated into the OSD by being distributed in an additional layer (506).


The MrOSD, in one embodiment, is illustrated by FIG. 6, wherein the image elements (602) of MrOSD (600) are dollar signs arranged in an array in the image layer beneath the spacer layer (604). The spacer layer (604) is disposed between the image elements (602) and the focusing layer of focusing elements (601). Here, the Mr-component (610) is a discrete layer of an IR-absorber having very little absorption in the visible spectral range, but is detectable in the IR spectral range such that at least two Mr-signals are detectable in the invisible spectral range.


A secured product prepared using the MrOSD of FIG. 6 (marked with reference number (712)) is exemplified in FIG. 7. Here, the synthetic image (720) of MrOSD (600) projected by the image elements, when viewed through the focusing elements (601) of FIG. 6, is a dollar sign. The MrOSD (600) is coupled to a substrate (711) of the high security product (700). The high security product (700) is a banknote having the MrOSD (712) coupled to the banknote substrate as a partially embedded (e.g., windowed) thread, where the thread weaves in and out of the paper.


Presence of an authentic MrOSD can be confirmed by a signature detector. An authentic MrOSD will indicate a predetermined characteristic Mr-signature. An exemplary predetermined characteristic Mr-signature (800) is depicted by FIG. 8, wherein the top curve indicates a thread, such as an OSD without an Mr-component, while the bottom curve indicates a thread, such as an OSD with the Mr-component shown by the presence of the characteristic Mr-signature. As noted in the spectrograph of FIG. 8, the slope of the Mr-signals in the wavelength range of from 800 to 900 nm increases when the Mr-component is missing and decreases when the Mr-component is present as you increase the wavelength.


It should be understood that the Mr-component may alternatively be integrated into multiple layers of the OSD. Moreover, it is also contemplated herein that the focusing elements are reflective or a combination of refractive and reflective. Alternative predetermined Mr-signatures are also contemplated, including specific absorption or, emission at specific wavelengths.

Claims
  • 1. A machine-readable optical security device (MrOSD) comprising: a multi-layer optical security device (OSD) comprising:a spacer layer comprising a first side and a second side;a layer of focusing elements disposed on the first side of the spacer layer;an array of image elements disposed on the second side of the spacer layer, wherein a synthetic image is projected by the array of image elements when viewed through the layer of focusing elements; anda machine-readable component (Mr-component) coupled to the spacer layer on the second side of the spacer layer at a density between 0.5 grams per square meter (“g/sm”) to 5 gsm,wherein the array of image elements comprises a cured radiation curable polymer mixture,wherein the Mr-component comprises at least one of a machine readable phthalocyanine taggant added to the cured radiation curable polymer mixture prior to curing, wherein the machine readable phthalocyanine taggant comprises 30-70% by weight of an ink vehicle added to the radiation curable polymer mixture,wherein the Mr-component does not interfere with the synthetic image, andwherein the Mr-component absorbs light at a first wavelength in a non-visible spectrum, and emits light at a second wavelength in the non-visible spectrum.
  • 2. The MrOSD of claim 1, wherein the Mr-component is a first IR-component imparting an Mr-signature which includes at least two Mr-signals within an IR spectral range.
  • 3. The MrOSD of claim 1, wherein the Mr-component is a first UV-component imparting an Mr-signature which includes at least two Mr-signals within a UV spectral range.
  • 4. The MrOSD of claim 1, wherein the Mr-component provides at least two Mr-signals within an invisible spectral range.
  • 5. The MrOSD of claim 4, wherein the at least two Mr-signals are within an infrared spectral range.
  • 6. The MrOSD of claim 4, wherein the at least two Mr-signals are within an ultraviolet spectral range.
  • 7. The MrOSD of claim 1, wherein the Mr-component provides a machine-readable signal in a near infrared spectral range.
  • 8. The MrOSD of claim 1, wherein the Mr-component imparts an Mr-signature that includes a first absorption at the first wavelength in the non-visible spectrum and a second absorption at a third wavelength in the non-visible spectrum where the first absorption is lower than the second absorption and the first wavelength is lower than the third wavelength.
  • 9. The MrOSD of claim 1, wherein image elements of the array of image elements comprise voids filled or coated with a contrasting material.
  • 10. The MrOSD of claim 1, wherein the MR-component comprises an IR-taggant selected from a substituted phthalocyanine, a naphthalocyanine, a metal-containing phthalocyanine or a poly-substituted phthalocyanine.
  • 11. The MrOSD of claim 1, wherein the MR-component is an IR-taggant comprising a benzenethiol-substituted copper-phthalocyanine that is added to the cured radiation curable polymer mixture prior to curing.
  • 12. The MrOSD of claim 1, wherein the Mr-component comprises an IR taggant which absorbs infrared light of the first wavelength in the non-visible spectrum and emits light at the second wavelength in the non-visible spectrum.
  • 13. The MrOSD of claim 1, wherein the Mr-component comprises a UV taggant which absorbs ultraviolet light of the first wavelength in the non-visible spectrum and emits light at the second wavelength in the non-visible spectrum.
RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application Serial No. 62/457,226, filed Feb. 10, 2017, which is incorporated herein in its entirety by reference.

US Referenced Citations (321)
Number Name Date Kind
992151 Berthon May 1911 A
1824353 Jensen Sep 1931 A
1849036 Ernst Mar 1932 A
1942841 Shimizu Jan 1934 A
2268351 Tanaka Dec 1941 A
2355902 Berg Aug 1944 A
2432896 Hotchner Dec 1947 A
2888855 Tanaka Jun 1959 A
2992103 Land et al. Jul 1961 A
3122853 Koonz et al. Mar 1964 A
3241429 Rice et al. Mar 1966 A
3264164 Jerothe et al. Aug 1966 A
3312006 Rowland Apr 1967 A
3357772 Rowland Dec 1967 A
3357773 Rowland Dec 1967 A
3463581 Clay Aug 1969 A
3609035 Ataka Sep 1971 A
3643361 Eaves Feb 1972 A
3704068 Waly Nov 1972 A
3801183 Sevelin et al. Apr 1974 A
3811213 Eaves May 1974 A
3887742 Reinnagel Jun 1975 A
4025673 Reinnagel May 1977 A
4073650 Yevick Feb 1978 A
4082426 Brown Apr 1978 A
4185191 Stauffer Jan 1980 A
4345833 Siegmund Aug 1982 A
4417784 Knop et al. Nov 1983 A
4498736 Griffin Feb 1985 A
4507349 Fromson et al. Mar 1985 A
4519632 Parkinson et al. May 1985 A
4534398 Crane Aug 1985 A
4634220 Hockert et al. Jan 1987 A
4645301 Orensteen et al. Feb 1987 A
4662651 Mowry, Jr. May 1987 A
4688894 Hockert Aug 1987 A
4691993 Porter et al. Sep 1987 A
4756972 Kloosterboer et al. Jul 1988 A
4765656 Becker et al. Aug 1988 A
4814594 Drexler Mar 1989 A
4892336 Kaule et al. Jan 1990 A
4892385 Webster, Jr. et al. Jan 1990 A
4920039 Fotland et al. Apr 1990 A
4935335 Fotland Jun 1990 A
4988126 Heckenkamp et al. Jan 1991 A
5044707 Mallik Sep 1991 A
5074649 Hamanaka Dec 1991 A
5085514 Mallik et al. Feb 1992 A
5135262 Smith et al. Aug 1992 A
5142383 Mallik Aug 1992 A
5211424 Bliss May 1993 A
5215864 Laakmann Jun 1993 A
5232764 Oshima Aug 1993 A
5254390 Lu Oct 1993 A
5282650 Smith et al. Feb 1994 A
5359454 Steenblik et al. Oct 1994 A
5384861 Mattson et al. Jan 1995 A
5393099 D'Amato Feb 1995 A
5393590 Caspari Feb 1995 A
5413839 Chatwin et al. May 1995 A
5433807 Heckenkamp et al. Jul 1995 A
5438928 Chatwin et al. Aug 1995 A
5442482 Johnson et al. Aug 1995 A
5449200 Andric et al. Sep 1995 A
5460679 Abdel-Kader Oct 1995 A
5461495 Steenblik et al. Oct 1995 A
5464690 Boswell Nov 1995 A
5468540 Lu Nov 1995 A
5479507 Anderson Dec 1995 A
5492370 Chatwin et al. Feb 1996 A
5503902 Steenblik et al. Apr 1996 A
5538753 Antes et al. Jul 1996 A
5543942 Mizuguchi et al. Aug 1996 A
5555476 Suzuki et al. Sep 1996 A
5567276 Boehm et al. Oct 1996 A
5568313 Steenblik et al. Oct 1996 A
5574083 Brown et al. Nov 1996 A
5575507 Yamauchi et al. Nov 1996 A
5598281 Zimmerman et al. Jan 1997 A
5623347 Pizzanelli Apr 1997 A
5623368 Calderini et al. Apr 1997 A
5626969 Joson May 1997 A
5631039 Knight et al. May 1997 A
5639126 Dames et al. Jun 1997 A
5642226 Rosenthal Jun 1997 A
5643678 Boswell Jul 1997 A
5670003 Boswell Sep 1997 A
5670096 Lu Sep 1997 A
5674580 Boswell Oct 1997 A
5688587 Burchard et al. Nov 1997 A
5695346 Sekiguchi et al. Dec 1997 A
5712731 Drinkwater et al. Jan 1998 A
5723200 Oshima et al. Mar 1998 A
5731064 Suss Mar 1998 A
5737126 Lawandy Apr 1998 A
5753349 Boswell May 1998 A
5759683 Boswell Jun 1998 A
5763349 Zandona Jun 1998 A
5783017 Boswell Jul 1998 A
5783275 Muck et al. Jul 1998 A
5800907 Yumoto Sep 1998 A
5810957 Boswell Sep 1998 A
5812313 Johansen et al. Sep 1998 A
5886798 Staub et al. Mar 1999 A
5933276 Magee Aug 1999 A
5949420 Terlutter Sep 1999 A
5995638 Amidror et al. Nov 1999 A
6030691 Burchard et al. Feb 2000 A
6036230 Farber Mar 2000 A
6036233 Braun et al. Mar 2000 A
6060143 Tompkin et al. May 2000 A
6084713 Rosenthal Jul 2000 A
6089614 Howland et al. Jul 2000 A
6106950 Searle et al. Aug 2000 A
6144795 Dawes et al. Nov 2000 A
6176582 Grasnick Jan 2001 B1
6177953 Vachette et al. Jan 2001 B1
6179338 Bergmann et al. Jan 2001 B1
6195150 Silverbrook Feb 2001 B1
6249588 Amidror et al. Jun 2001 B1
6256149 Rolfe Jul 2001 B1
6256150 Rosenthal Jul 2001 B1
6283509 Braun et al. Sep 2001 B1
6288842 Florczak et al. Sep 2001 B1
6297911 Nishikawa et al. Oct 2001 B1
6301363 Mowry, Jr. Oct 2001 B1
6302989 Kaule Oct 2001 B1
6328342 Belousov et al. Dec 2001 B1
6329040 Oshima et al. Dec 2001 B1
6329987 Gottfried et al. Dec 2001 B1
6345104 Rhoads Feb 2002 B1
6348999 Summersgill et al. Feb 2002 B1
6350036 Hannington et al. Feb 2002 B1
6369947 Staub et al. Apr 2002 B1
6373965 Liang Apr 2002 B1
6381071 Dona et al. Apr 2002 B1
6396636 Sawaki et al. May 2002 B2
6404555 Nishikawa Jun 2002 B1
6405464 Gulick, Jr. et al. Jun 2002 B1
6414794 Rosenthal Jul 2002 B1
6424467 Goggins Jul 2002 B1
6433844 Li Aug 2002 B2
6450540 Kim Sep 2002 B1
6467810 Taylor et al. Oct 2002 B2
6473238 Daniell Oct 2002 B1
6483644 Gottfried et al. Nov 2002 B1
6500526 Hannington Dec 2002 B1
6521324 Debe et al. Feb 2003 B1
6542646 Bar-Yona Apr 2003 B1
6558009 Hannington et al. May 2003 B2
6587276 Daniell Jul 2003 B2
6616803 Isherwood et al. Sep 2003 B1
6618201 Nishikawa et al. Sep 2003 B2
6641270 Hannington et al. Nov 2003 B2
6671095 Summersgill et al. Dec 2003 B2
6712399 Drinkwater et al. Mar 2004 B1
6721101 Daniell Apr 2004 B2
6724536 Magee Apr 2004 B2
6726858 Andrews Apr 2004 B2
6751024 Rosenthal Jun 2004 B1
6761377 Taylor et al. Jul 2004 B2
6795250 Johnson et al. Sep 2004 B2
6803088 Kaminsky et al. Oct 2004 B2
6819775 Amidror et al. Nov 2004 B2
6833960 Scarbrough et al. Dec 2004 B1
6856462 Scarbrough et al. Feb 2005 B1
6870681 Magee Mar 2005 B1
6900944 Tomczyk May 2005 B2
6926764 Bleikolm Aug 2005 B2
6935756 Sewall et al. Aug 2005 B2
7030997 Neureuther et al. Apr 2006 B2
7058202 Amidror Jun 2006 B2
7068434 Florczak et al. Jun 2006 B2
7114750 Alasia et al. Oct 2006 B1
7194105 Hersch et al. Mar 2007 B2
7246824 Hudson Jul 2007 B2
7254265 Naske et al. Aug 2007 B2
7255911 Lutz et al. Aug 2007 B2
7288320 Steenblik et al. Oct 2007 B2
7333268 Steenblik et al. Feb 2008 B2
7336422 Dunn et al. Feb 2008 B2
7359120 Raymond et al. Apr 2008 B1
7372631 Ozawa May 2008 B2
7389939 Jones et al. Jun 2008 B2
7422781 Gosselin Sep 2008 B2
7457038 Dolgoff Nov 2008 B2
7457039 Raymond et al. Nov 2008 B2
7468842 Steenblik et al. Dec 2008 B2
7504147 Hannington Mar 2009 B2
7545567 Tomczyk Jun 2009 B2
7609450 Niemuth Oct 2009 B2
7630954 Adamczyk et al. Dec 2009 B2
7686187 Pottish et al. Mar 2010 B2
7712623 Wentz et al. May 2010 B2
7719733 Schilling et al. May 2010 B2
7738175 Steenblik et al. Jun 2010 B2
7744002 Jones et al. Jun 2010 B2
7751608 Hersch et al. Jul 2010 B2
7762591 Schilling et al. Jul 2010 B2
7763179 Levy et al. Jul 2010 B2
7812935 Cowburn et al. Oct 2010 B2
7820269 Staub et al. Oct 2010 B2
7830627 Commander et al. Nov 2010 B2
7849993 Finkenzeller et al. Dec 2010 B2
8027093 Commander et al. Sep 2011 B2
8057980 Dunn et al. Nov 2011 B2
8111463 Endle et al. Feb 2012 B2
8149511 Kaule et al. Apr 2012 B2
8241732 Hansen et al. Aug 2012 B2
8284492 Crane et al. Oct 2012 B2
8367452 Soma et al. Feb 2013 B2
8514492 Schilling et al. Aug 2013 B2
8528941 Dorfler et al. Sep 2013 B2
8537470 Endle et al. Sep 2013 B2
8557369 Hoffmuller et al. Oct 2013 B2
8693101 Tomczyk et al. Apr 2014 B2
8739711 Cote Jun 2014 B2
8867134 Steenblik et al. Oct 2014 B2
8908276 Holmes Dec 2014 B2
9019613 Raymond et al. Apr 2015 B2
9132690 Raymond et al. Sep 2015 B2
9592700 Raymond et al. Mar 2017 B2
9701150 Raymond et al. Jul 2017 B2
9802437 Holmes Oct 2017 B2
20010048968 Cox et al. Dec 2001 A1
20020014967 Crane et al. Feb 2002 A1
20020114078 Halle et al. Aug 2002 A1
20020167485 Hedrick Nov 2002 A1
20020185857 Taylor et al. Dec 2002 A1
20030031861 Reiter et al. Feb 2003 A1
20030112523 Daniell Jun 2003 A1
20030157211 Tsunetomo et al. Aug 2003 A1
20030179364 Steenblik et al. Sep 2003 A1
20030183695 Labrec et al. Oct 2003 A1
20030228014 Alasia et al. Dec 2003 A1
20030232179 Steenblik et al. Dec 2003 A1
20030234294 Uchihiro et al. Dec 2003 A1
20040020086 Hudson Feb 2004 A1
20040022967 Lutz et al. Feb 2004 A1
20040065743 Doublet Apr 2004 A1
20040100707 Kay et al. May 2004 A1
20040140665 Scarbrough et al. Jul 2004 A1
20040209049 Bak Oct 2004 A1
20050094274 Souparis May 2005 A1
20050104364 Keller et al. May 2005 A1
20050161501 Giering et al. Jul 2005 A1
20050247794 Jones et al. Nov 2005 A1
20060003295 Hersch et al. Jan 2006 A1
20060011449 Knoll Jan 2006 A1
20060017979 Goggins Jan 2006 A1
20060018021 Tomkins et al. Jan 2006 A1
20060061267 Yamasaki et al. Mar 2006 A1
20060227427 Dolgoff Oct 2006 A1
20070058260 Steenblik et al. Mar 2007 A1
20070092680 Chaffins et al. Apr 2007 A1
20070164555 Mang et al. Jul 2007 A1
20070183045 Schilling et al. Aug 2007 A1
20070183047 Phillips et al. Aug 2007 A1
20070246543 Jones et al. Oct 2007 A1
20070273143 Crane Nov 2007 A1
20070284546 Ryzi et al. Dec 2007 A1
20070291362 Hill et al. Dec 2007 A1
20080116272 Giering May 2008 A1
20080130018 Steenblik et al. Jun 2008 A1
20080143095 Isherwood et al. Jun 2008 A1
20080160226 Kaule et al. Jul 2008 A1
20080182084 Tompkin et al. Jul 2008 A1
20090008923 Kaule et al. Jan 2009 A1
20090045617 Lawandy et al. Feb 2009 A1
20090061159 Staub et al. Mar 2009 A1
20090243278 Camus et al. Oct 2009 A1
20090261572 Bleikolm et al. Oct 2009 A1
20090290221 Hansen Nov 2009 A1
20090310470 Yrjonen Dec 2009 A1
20090315316 Staub et al. Dec 2009 A1
20100001508 Tompkin et al. Jan 2010 A1
20100018644 Sacks et al. Jan 2010 A1
20100045024 Attner et al. Feb 2010 A1
20100068459 Wang et al. Mar 2010 A1
20100084851 Schilling Apr 2010 A1
20100103528 Endle et al. Apr 2010 A1
20100109317 Hoffmuller et al. May 2010 A1
20100177094 Kaule et al. Jul 2010 A1
20100182221 Kaule et al. Jul 2010 A1
20100194532 Kaule Aug 2010 A1
20100208036 Kaule Aug 2010 A1
20100277805 Schilling et al. Nov 2010 A1
20100308571 Steenblik et al. Dec 2010 A1
20100328922 Peters et al. Dec 2010 A1
20110017498 Lauffer et al. Jan 2011 A1
20110019283 Steenblik et al. Jan 2011 A1
20110045255 Jones et al. Feb 2011 A1
20110056638 Rosset Mar 2011 A1
20110179631 Gates et al. Jul 2011 A1
20120019607 Dunn et al. Jan 2012 A1
20120033305 Moon et al. Feb 2012 A1
20120091703 Maguire et al. Apr 2012 A1
20120098249 Rahm et al. Apr 2012 A1
20120105928 Camus et al. May 2012 A1
20120153607 Rahm et al. Jun 2012 A1
20120194916 Cape et al. Aug 2012 A1
20120243744 Camus et al. Sep 2012 A1
20130003354 Meis et al. Jan 2013 A1
20130010048 Dunn et al. Jan 2013 A1
20130038942 Holmes Feb 2013 A1
20130044362 Commander et al. Feb 2013 A1
20130154250 Dunn et al. Jun 2013 A1
20130154251 Jolic Jun 2013 A1
20140174306 Wening et al. Jun 2014 A1
20140175785 Kaule et al. Jun 2014 A1
20140353959 Lochbihler Dec 2014 A1
20140367957 Jordan Dec 2014 A1
20140376091 Jordan et al. Dec 2014 A1
20150152602 Blake et al. Jun 2015 A1
20160101643 Cape et al. Apr 2016 A1
20160176221 Holmes Jun 2016 A1
20160257159 Attner et al. Sep 2016 A1
20160325577 Jordan Nov 2016 A1
20170015129 Jordan Jan 2017 A1
20170173990 Cape Jun 2017 A1
20180178577 Lister Jun 2018 A1
Foreign Referenced Citations (165)
Number Date Country
2009278275 Jul 2012 AU
2741298 Apr 2010 CA
1102865 May 1995 CN
1126970 Nov 2003 CN
1578817 Feb 2005 CN
1799072 Jul 2006 CN
1950570 Apr 2007 CN
101076835 Nov 2007 CN
101443692 May 2009 CN
101678664 Mar 2010 CN
103228458 Jul 2013 CN
106163822 Nov 2016 CN
19804858 Aug 1999 DE
19932240 Jan 2001 DE
10100692 Aug 2004 DE
102011115125 Apr 2013 DE
90130 Oct 1983 EP
92691 Nov 1983 EP
118222 Sep 1984 EP
156460 Oct 1985 EP
203752 Dec 1986 EP
253089 Jan 1988 EP
318717 Jun 1989 EP
415230 Mar 1991 EP
439092 Jul 1991 EP
319157 Jul 1992 EP
801324 Oct 1997 EP
887699 Dec 1998 EP
930174 Jul 1999 EP
1356952 Oct 2003 EP
1002640 May 2004 EP
997750 May 2005 EP
1538554 Jun 2005 EP
1354925 Apr 2006 EP
1659449 May 2006 EP
1743778 Jan 2007 EP
1801636 Jun 2007 EP
1876028 Jan 2008 EP
1897700 Mar 2008 EP
1931827 Apr 2009 EP
2335937 Jun 2011 EP
2338682 Jun 2011 EP
2162294 Mar 2012 EP
2803939 Jul 2001 FR
2952194 May 2011 FR
3018474 Sep 2015 FR
1095286 Dec 1967 GB
2103669 Feb 1983 GB
2168372 Jun 1986 GB
2227451 Aug 1990 GB
2362493 Nov 2001 GB
2395724 Jun 2004 GB
2433470 Jun 2007 GB
2490780 Nov 2012 GB
S41-4953 Mar 1966 JP
S46-22600 Aug 1971 JP
H04-234699 Aug 1992 JP
H05-508119 Nov 1993 JP
H10-35083 Feb 1998 JP
H10-39108 Feb 1998 JP
H11-501590 Feb 1999 JP
H11-189000 Jul 1999 JP
2000-056103 Feb 2000 JP
2000-233563 Aug 2000 JP
2000-256994 Sep 2000 JP
2001-055000 Feb 2001 JP
2001-516899 Oct 2001 JP
2001-324949 Nov 2001 JP
2002-169223 Jun 2002 JP
2003-039583 Feb 2003 JP
2003-165289 Jun 2003 JP
2003-528349 Sep 2003 JP
2003-326876 Nov 2003 JP
2004-163530 Jun 2004 JP
2004-262144 Sep 2004 JP
2004-317636 Nov 2004 JP
2005-193501 Jul 2005 JP
2009-536885 Oct 2009 JP
2009-262375 Nov 2009 JP
2009-274293 Nov 2009 JP
2011-502811 Jan 2011 JP
2012-073897 Apr 2012 JP
2016-085760 May 2016 JP
10-0194536 Jun 1999 KR
20-0217035 Mar 2001 KR
20-0311905 May 2003 KR
10-0544300 Jan 2006 KR
10-0561321 Mar 2006 KR
10-2007-0064611 Jun 2007 KR
10-2008-0048578 Jun 2008 KR
10-2009-0028523 Mar 2009 KR
10-2012-0094743 Aug 2012 KR
2111125 May 1998 RU
2245566 Jan 2005 RU
2292370 Jan 2007 RU
2010101854 Jul 2011 RU
575740 Feb 2004 TW
WO92008998 May 1992 WO
WO92019994 Nov 1992 WO
WO93024332 Dec 1993 WO
WO96035971 Nov 1996 WO
WO97019820 Jun 1997 WO
WO97044769 Nov 1997 WO
WO98013211 Apr 1998 WO
WO98015418 Apr 1998 WO
WO98026373 Jun 1998 WO
WO99014725 Mar 1999 WO
WO99023513 May 1999 WO
WO99026793 Jun 1999 WO
WO99066356 Dec 1999 WO
WO01007268 Feb 2001 WO
WO01011591 Feb 2001 WO
WO01039138 May 2001 WO
WO01053113 Jul 2001 WO
WO01063341 Aug 2001 WO
WO01071410 Sep 2001 WO
WO02040291 May 2002 WO
WO02043012 May 2002 WO
WO02101669 Dec 2002 WO
WO03005075 Jan 2003 WO
WO03007276 Jan 2003 WO
WO03022598 Mar 2003 WO
WO03053713 Jul 2003 WO
WO03061980 Jul 2003 WO
WO03061983 Jul 2003 WO
WO03082598 Oct 2003 WO
WO03098188 Nov 2003 WO
WO2004022355 Mar 2004 WO
WO2004036507 Apr 2004 WO
WO2004087430 Oct 2004 WO
WO2005052650 Jun 2005 WO
WO2005106601 Nov 2005 WO
WO2006029744 Mar 2006 WO
WO2007076952 Jul 2007 WO
WO2007133613 Nov 2007 WO
WO2008049632 May 2008 WO
WO2009000527 Dec 2008 WO
WO2009000528 Dec 2008 WO
WO2009000529 Dec 2008 WO
WO2009000530 Dec 2008 WO
2009049562 Apr 2009 WO
WO2009118946 Oct 2009 WO
WO2009121784 Oct 2009 WO
WO2010015383 Feb 2010 WO
WO2010094691 Aug 2010 WO
WO2010099571 Sep 2010 WO
WO2010113114 Oct 2010 WO
WO2010136339 Dec 2010 WO
WO2011012460 Feb 2011 WO
WO2011015384 Feb 2011 WO
WO2011019912 Feb 2011 WO
WO2011044704 Apr 2011 WO
WO2011051669 May 2011 WO
WO2011107791 Sep 2011 WO
WO2011107793 Sep 2011 WO
WO2011122943 Oct 2011 WO
WO2012027779 Mar 2012 WO
WO2012103441 Aug 2012 WO
WO2012121622 Sep 2012 WO
WO2013028534 Feb 2013 WO
WO2013093848 Jun 2013 WO
WO2013098513 Jul 2013 WO
WO2015148878 Oct 2015 WO
WO2016063050 Apr 2016 WO
WO2016149760 Sep 2016 WO
Non-Patent Literature Citations (49)
Entry
Phthalocyanine: Applications https://en.wikipedia.org/wiki/Phthalocyanine (13): Dahlen, Miles A. (Sep. 1, 1939). The Phthalocyanines A New Class of Synthetic Pigments and Dyes (Year: 1939).
https://www.fujifilminkjet.com/uv-ink-part-1-uv-curable-ink-works/ (Year: 2017).
Amidror, “A Generalized Fourier-Based Method for the Analysis of 2D Moiré Envelope-Forms in Screen Superpositions”, Journal of Modern Optics (London, GB), vol. 41, No. 9, Sep. 1, 1994, pp. 1837-1862, ISSN: 0950-0340.
Article: “Spherical Lenses” (Jan. 18, 2009); pp. 1-12; retrieved from the Internet: URL:http://www.physicsinsights.org/simple_optics_spherical_lenses-l.html.
Drinkwater, K. John, et al., “Development and applications of Diffractive Optical Security Devices for Banknotes and High Value Documents”, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 66-79, SPIE vol. 3973, San Jose, CA.
Dunn, et al., “Three-Dimensional Virtual Images for Security Applications”, Optical Security and Counterfeit Deterrence Techniques V, (published Jun. 3, 2004), pp. 328-336, Proc. SPIE 5310.
Fletcher, D.A., et al., “Near-field infrared imaging with a microfabricated solid immersion lens”, Applied Physics Letters, Oct. 2, 2000, pp. 2109-2111, vol. 77, No. 14.
Gale, M. T., et al., Chapter 6—Replication, Micro Optics: Elements, Systems and Applications, 1997, pp. 153-177.
Hardwick, Bruce and Ghioghiu Ana, “Guardian Substrate as an Optical Medium for Security Devices”, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 176-179, SPIE vol. 3973, San Jose, CA.
Helmut Kipphan (ed.), “Section 2.2 Gravure Printing”, Handbook of Print Media: Technologies and Production Methods, 2001, pp. 369-371, Heidelberger Druckmaschinen AG, Germany.
Hutley, M.C., et al., “The Moiré Magnifier”, Pure Appl. Opt. 3, 1994, pp. 133-142, IOP Publishing Ltd., UK.
Hutley, M.C., “Integral Photography, Superlenses and the Moiré Magnifier”, European Optical Society, 1993, pp. 72-75, vol. 2, UK.
Hutley, M., et al., “Microlens Arrays”, Physics World, Jul. 1991, pp. 27-32.
Kamal, H., et al., “Properties of Moiré Magnifiers”, Opt. Eng., Nov. 1998, pp. 3007-3014, vol. 37, No. 11.
Leech, Patrick W., et al., Printing via hot embossing of optically variable images in thermoplastic acrylic lacquer, Microelectronic Engineering, 2006, pp. 1961-1965, vol. 83, No. 10, Elsevier Publishers BV, Amsterdam, NL.
Lippmann, G., “Photgraphie—Épreuves Réversibles, Photographies Intégrals”, Académie des Sciences, 1908, pp. 446-451, vol. 146, Paris.
Liu, S., et al., “Artistic Effects and Application of Moiré Patterns in Security Holograms”, Applied Optics, Aug. 1995, pp. 4700-4702, vol. 34, No. 22.
Muke, “Embossing of Optical Document Security Devices”, Optical Security and Counterfeit Deterrence Techniques V, (published Jun. 3, 2004), pp. 341-349, Proc. SPIE 5310.
Phillips, Roger W., et al., Security Enhancement of Holograms with Interference Coatings, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 304-316, SPIE vol. 3973, San Jose, CA.
Steenblik, Richard A., et al., UNISON Micro-optic Security Film, Optical Security and Counterfeit Deterrence Techniques V, 2004, pp. 321-327, SPIE vol. 5310, San Jose, CA.
Van Renesse, Rudolf L., Optical Document Security, 1993, Artech House Inc., Norwood, MA.
Van Renesse, Rudolf L., Optical Document Security, 1998, 2nd edition, pp. 232-235, 240-241 and 320-321, Artech House Inc., Norwood, MA (ISBN 0-89006-982-4).
Van Renesse, Rudolf L., Optical Document Security, 2005, 3rd edition, pp. 62-169, Artech House Inc., Norwood, MA (ISBN 1-58053-258-6).
Wolpert, Gary R., Design and development of an effective optical variable device based security system incorporating additional synergistic security technologies, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 55-61, SPIE vol. 3973, San Jose, CA.
Zhang, X., et al., “Concealed Holographic Coding for Security Applications by Using a Moiré Technique”, Applied Optics, Nov. 1997, pp. 8096-8097, vol. 36, No. 31.
European Patent Office, “Communication pursuant to Rules 161(1) and 162 EPC,” Application No. EP18703110.9, dated Sep. 19, 2019, 4 pages.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2018/013348, dated Mar. 29, 2018, 10 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2018/013348, dated Aug. 13, 2019, 6 pages.
European Patent Office, “Communication pursuant to Rule 94(3) EPC,” Application No. EP18703110.9, dated May 20, 2020, 3 pages.
First Office Action dated Oct. 10, 2020 in connection with Chinese Application No. 201880011091.5, 28 pages.
Communication pursuant to Article 94(3) EPC dated Feb. 12, 2021 in connection with European Application No. 18703110.9, 3 pages.
China National Intellectual Property Administration, “The Second Office Action” Application No. CN201880011091.5, dated Jun. 2, 2021, 31 pages.
Intellectual Property India, “Examination report under sections 12 & 13 of the Patents Act, 1970 and the Patents Rules, 2003,” Application No. IN201927024749, dated Jun. 30, 2021, 6 pages.
Russian Federation Federal Service for Intellectual Property (ROSPATENT), “Official Action,” Application No. 2019128202/03(055424), dated May 25, 2021, 18 pages.
European Patent Office, “Communication under Rule 71(3) EPC,” Application No. EP18703110.9, dated Oct. 12, 2021, 37 pages.
Russian Federal Service for Intellectual Property (ROSPATENT), “Decision to Grant,” Application No. RU 2019128202/03(055424), dated Sep. 27, 2021, 16 pages.
Japan Patent Office, “Notice of Reasons for Refusal,” Application No. JP 2019-543361, dated Nov. 3, 2021, 13 pages.
IP Australia, “Examination report,” Application No. AU 2018218937, dated Jan. 25, 2022, 3 pages.
China National Intellectual Property Administration, “The Third Office Action,” Application No. CN 201880011091.5, dated Jan. 6, 2022, 10 pages.
USPTO, “Non-final Office Action,” U.S. Appl. No. 17/304,446, dated Feb. 7, 2022, 9 pages.
Korean Intellectual Property Office, “Notification of Reason for Refusal,” Application No. KR 10-2019-7024515, dated Mar. 2, 2022, 19 pages.
European Patent Office, “Communication pursuant to Article 94(3) EPC,” Application No. EP 18703110.9, dated Feb. 12, 2021, 3 pages.
IP Australia, “Examination report,” Application No. AU 2018218937, dated Jun. 6, 2022, 3 pages.
China National Intellectual Property Administration, “Notification to Grant Patent Rights for Invention,” Application No. CN 201880011091.5, dated Jun. 6, 2022, 6 pages.
European Patent Office, “European Search Report” Application No. 22159102.7, dated Jun. 7, 2022, 7 pages.
Japan Patent Office, “Decision of Refusal,” Application No. JP 2019-543361, dated May 10, 2022, 10 pages.
Notice of acceptance of patent application dated Aug. 30, 2022 in connection with Australian Patent Application No. 2018218937, 3 pages.
Notice of Allowance dated Oct. 12, 2022 in connection with Korean Patent Application No. 10-2019-7024515, 3 pages.
Substantive Requirement dated Nov. 9, 2022, in connection with Mexican Application No. MX/a/2019/009459, 6 pages.
Related Publications (1)
Number Date Country
20180229536 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62457226 Feb 2017 US