The invention described and claimed hereinbelow is also described in PCT/EP2006/068270, filed on Nov. 9, 2006 and DE 102005054128.3, filed on Nov. 14, 2005. This German Patent Application, whose subject matter is incorporated here by reference, provides the basis for a claim of priority of invention under 35 U.S.C. 119(a)-(d).
The invention is based on a power tool monitoring device.
DE 102 61 791 A1 has disclosed a power tool monitoring device for a circular saw. The device has a sensor unit, which is for generating and detecting an electromagnetic signal and is situated in the vicinity of a saw blade. The approach of a body part to the saw blade can be detected by monitoring the signal spectrum. A public band is used as the frequency band for the signal.
The invention is based on a power tool monitoring device.
According to one proposal of the present invention, the power tool monitoring device has a signal unit provided for an ultra-broad-band operation. Through the use of ultra-broad-band signals, it is possible to achieve a high information density and thus an effective monitoring. In particular, a plurality of working parameters can be simultaneously monitored during the use of a power tool, thus permitting the achievement of safe, convenient working conditions. The expression “a signal unit provided for an ultra-broad-band operation” is understood in particular to mean a unit with which an ultra-broad-band signal can be generated, received, and/or evaluated. An “ultra-broad-band signal” is understood in particular to be a signal that has a frequency spectrum with a center frequency and a frequency bandwidth of at least 500 MHz. The center frequency is preferably selected to be in the frequency range from 1 GHz to 15 GHz.
According to another proposal of the present invention, the signal unit is provided for processing a signal that contains a sequence of pulses. It is thus possible to produce large frequency bandwidths. In the processing of the signal, the signal can in particular be generated, received, and/or evaluated. A “sequence” of pulses is in particular understood to be a series of pulses in chronological sequence with one another. In a representation of the signal amplitude in relation to time, a pulse can be of a certain pattern such as a rectangular wave, a Gaussian profile, etc. A pulse duration or a value that characterizes the transmission time of the pattern is preferably selected to be in the range from 0.1 ns (nanoseconds) to 2 ns. Within the sequence, the pulses can follow one another in a chronologically regular fashion in that the time interval between each pair of pulses in direct sequence is constant. Alternatively, the pulses can follow one another in a chronologically irregular fashion. In this case, the time interval between two pulses in direct sequence can be embodied as a random variable. For example, the sequence can be embodied in the form of a PN sequence (pseudo-noise sequence). Alternatively or in addition, the signal unit can be provided for processing a signal that is modulated in its frequency, e.g. an FMCW signal (frequency modulated continuous wave signal).
The signal unit advantageously includes an arithmetic-logic unit that is provided for associating a detected signal with a particular use situation by means of a fuzzy logic-based and/or neural logic-based signal processing. Using fuzzy logic, the arithmetic-logic unit can quickly evaluate a large and complex quantity of information based on the detected signal. This allows the power tool monitoring device to react within a very short timeframe to situations that appear to be critical to a user's safety. By contrast with capacitance sensors, it is thus possible to react to a critical use situation before a physical contact occurs between the user and the power tool. By means of a neural logic, it is possible to achieve advantageous self-learning functions of the power tool monitoring device.
According to a proposal in an advantageous modification of the present invention, the signal unit has a data base in which a use situation is associated with at least one signal pattern. A particularly rapid identification process of a use situation can be advantageously achieved by searching for a correlation between a detected signal and a signal pattern. In this instance, it is advantageously possible to use a fuzzy logic-based correlation method.
According to a proposal in another embodiment of the invention, the signal unit has a programmable data base in which a use situation in a machining process is associated with a procedure for changing the machining process. If a certain use situation has been identified, it is therefore possible to react to this use situation within a very short timeframe. The data base is programmable, in particular by a user of the power tool, preferably when the power tool is in the assembled state. It is thus possible to advantageously expand the factory settings of the data base, e.g. when a user equips the power tool with additional tools or accessories.
Preferably, the signal unit is provided for determining a work progress in a machining of a work piece. It is thus possible to achieve a high level of operating convenience when using a power tool. It is advantageously possible to define various work phases in the machining of a work piece; a safety level of the monitoring of the work piece machining is adapted to these work phases.
If the signal unit is provided for determining a distance, then it is advantageously possible to monitor a position of a tool or the work piece during a machining of a work piece. It is thus possible, for example, to quickly identify abnormal positions, e.g. when there is an imbalance of the tool or an incorrect positioning of a work piece. It is also possible to determine a dimension of a work piece. It is advantageously possible to monitor a work progress.
Preferably, the signal unit is provided for determining a speed of a work piece to be machined. It is thus advantageously possible to monitor a work progress. The signal unit is preferably provided for determining a translation and/or rotation speed of the work piece in relation to a stationary element of a power tool, e.g. a housing.
In another embodiment variant of the present invention, the power tool monitoring device has an electronic output device that is provided for informing a user of a particular piece of monitoring information, thus making it possible to further increase the safety and operating convenience during use. The output device can be embodied in the form of a display, e.g. an LED or LCD display. Alternatively or in addition, it is possible for the output device to be provided for emitting an acoustic signal, for example.
If the power tool monitoring device has an electronic input device, which is provided for inputting at least one piece of monitoring information, then this allows a user to conveniently carry out a configuration of monitoring functions.
If the power tool monitoring device has a regulating device, which is provided for regulating at least one parameter of the work piece machining process, then it is advantageously possible to increase work quality.
Other advantages ensue from the following description of the drawings. The drawings show an exemplary embodiment of the invention. The drawings, the description, and the claims contain numerous defining characteristics in combination. Those skilled in the art will also suitably consider the defining characteristics individually and unite them into other meaningful combinations.
The signal unit 24 can be used to implement a variety of monitoring functions during a machining of a work piece. The design and function of the signal unit 24 are explained in conjunction with
The generation of an ultra-broad-band signal will be explained in conjunction with
It is assumed that a user wishes to saw a work piece 50, which is shown with dashed lines in
Let us then assume that a finger of the user is approaching the saw blade 16. This is reflected in the spectrum of the reception signal 34 by multiple resonance frequencies that characterize human tissue. This use situation is identified as use situation 58, which the arithmetic-logic unit 40 identifies from the dictated reception signal 34 by determining a correlated signal pattern 59. In the data base 44, the use situation 58 is associated with a procedure 60 in which the operation of the circular saw 10 is switched off. Furthermore, additional signal patterns can be taken into account for the identification of use situations. For example, a certain shifting speed of a resonance frequency in the spectrum of the reception signal 34 can be taken into account as a signal pattern; a “slow” shift and a “fast” shift can each be associated with a respective use situation.
The input device 20 allows a user to carry out a configuration of the data base 44. In particular, the user can adapt the data base 44 to new uses of the circular saw 10, e.g. the use of additional sawing means or a newly developed accessory, and/or the user can set a new procedure that is associated with certain use situations. Entries in the allocation tables 53 and 55 can be modified, and/or new allocation tables 53′ and 55′ can be created. In order to expand the data base 44 with new use situations and new procedures for these use situations, the circular saw 10 is provided with a learning mode. In this mode, the user can intentionally create use situations; the arithmetic-logic unit 40 can automatically learn to identify these use situations and learn to determine which procedures are adapted to these use situations. In this instance, the arithmetic-logic unit 40 learns to correlate each of these use situations with one or more signal patterns. To this end, the arithmetic-logic unit 40 functions in this mode on the basis of neural logic, which permits such a self-learning function. At any time, the user can set a safety level until a desired procedure for a certain use situation is reached. This can be automatically stored in the data base 44.
The arithmetic-logic unit 40 can also be used to determine a distance. To this end, the arithmetic-logic unit 40 can detect a travel time between the generation of the transmission signal 32 and the receipt of the reception signal 34, e.g. by carrying out a phase comparison between the transmission signal 32 and the reception signal 34. During the machining of the work piece, a distance 62 from the work piece 50 and a distance 64 from the saw blade 16 are determined. By determining the distance 62, it is possible to monitor a work progress in the machining of the work piece 50. By monitoring the distance 64, bodily injuries due to an imbalance of the saw blade 16 can be avoided through an identification of abnormal vibrations of the saw blade 16 and through a reduction in the speed of the saw blade 16 by the control unit 28. Through an evaluation of frequency and/or phase shifts between the transmission signal 32 and the reception signal 34, it is possible to monitor a speed V with which the work piece 50 is being slid in the working direction 66. This information can likewise be used to monitor the work piece machining progress. In addition, it is possible to define various work phases in the machining of a work piece, with particular monitoring functions being adapted to these work phases. During the starting phase after the work piece 50 has been set into place, it is possible in particular to monitor the position of the work piece 50 in relation to the saw blade 16. At the end of the work piece machining, it is possible in particular to focus the monitoring criteria on the position of a finger in relation to the saw blade 16.
In addition, the input device 20 can be used to set working parameters for a work piece machining, e.g. a speed of the saw blade, a sawing depth 68 (
The power tool monitoring device can advantageously be used in other stationary power tools such as band saws, cross-cut saws, planers, etc. In addition, it is also conceivable for the power tool monitoring device to be used in hand-guided power tools such as circular saws, jigsaws, chainsaws, etc. In this case, the power tool monitoring device can, by means of the signal unit, offer an advantageous protection in critical use situations such as a kick back of a hand-held circular saw.
Reference Numerals
Number | Date | Country | Kind |
---|---|---|---|
10 2005 054 128 | Nov 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/068270 | 11/9/2006 | WO | 00 | 1/17/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/054529 | 5/18/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4634968 | Aslan | Jan 1987 | A |
5361070 | McEwan | Nov 1994 | A |
5446461 | Frazier | Aug 1995 | A |
5870351 | Ladabaum et al. | Feb 1999 | A |
6717517 | Przygoda, Jr. | Apr 2004 | B2 |
6778097 | Kajita et al. | Aug 2004 | B1 |
6959631 | Sako | Nov 2005 | B2 |
7102537 | Inoue et al. | Sep 2006 | B2 |
7132975 | Fullerton et al. | Nov 2006 | B2 |
7173537 | Voigtlaender | Feb 2007 | B2 |
7221169 | Jean et al. | May 2007 | B2 |
7339526 | Zimmerman | Mar 2008 | B2 |
7380213 | Pokorny et al. | May 2008 | B2 |
7446861 | Ouchi | Nov 2008 | B2 |
7725252 | Heddebaut et al. | May 2010 | B2 |
7750841 | Oswald et al. | Jul 2010 | B2 |
7809077 | Ikramov et al. | Oct 2010 | B2 |
20070282781 | Mathiesen et al. | Dec 2007 | A1 |
20100018830 | Krapf et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
40 20 551 | Jan 1992 | DE |
198 13 041 | Oct 1999 | DE |
102 61 791 | Jul 2004 | DE |
1 422 022 | May 2004 | EP |
1422022 | May 2004 | EP |
2003-121537 | Apr 2003 | JP |
2003-185735 | Jul 2003 | JP |
2004-160822 | Jun 2004 | JP |
2004-283991 | Oct 2004 | JP |
2007054529 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100114358 A1 | May 2010 | US |