This disclosure relates to jigs or fixtures for positioning, aligning, guiding, and/or holding a workpiece during a cutting or shaping operation.
Beaded face frames are face frames including molded features along interior edges of the frame, such as edges around openings of the face frame. One technique to produce beaded face frames is to build face frames with square stock and then apply separate bead molding to interior edges of the completed face frame. This technique requires the ends of the each molding piece to be miter cut to exact lengths according to the length of the corresponding edge of the face frame. The molding pieces may be secured to the face frames using nails, glue or both. If nails are used, nail holes are preferably filled and sanded after securing the molding to the face frame.
Alternatively, beaded stock can be used. However, assembling beaded stock pieces to create a beaded face frame requires precisely notching out the bead of a workpiece to receive abutting workpieces. In addition, the beads of the abutting workpieces must be miter cut to align with the beads of the workpiece including the corresponding notch.
In general, this disclosure relates to techniques for notching a workpiece for a beaded face frame using a rotary bit. In particular techniques include using a rotary bit having a profile of notch suitable for a beaded face frame with a machinery fence support system including a linear motion mechanism that facilitates motion of the fence in a direction substantially perpendicular to a length of the fence
In an example, a machinery fence support system comprises a base providing a substantially stationary position relative to a cutting tool; a moveable fence for guiding a workpiece relative to the cutting tool, and a linear motion mechanism between the base and the fence. The linear motion mechanism facilitates motion of the fence in a direction substantially perpendicular to a length of the fence.
In another example, a machinery fence support system comprises a worktable providing a substantially stationary support relative to a cutting tool, a track fixed to the worktable, a base adjustably mounted to the track, a fence configured to support a workpiece during a cutting operation, and a set of linear bearings between the base and the fence to facilitate motion of the fence in a direction substantially perpendicular to a length of the fence.
In another example, a rotary bit for cutting a workpiece for a beaded face frame comprises a shaft for securing the rotary bit, and a cutting element fixed to an end of the shaft, the cutting element having a symmetric trapezoidal profile. The side of the profile of the cutting element proximate to the shaft is longer than the distal side of the profile of the cutting element, and the profile of the cutting element corresponds to the shape of a notch in the workpiece for receiving an abutting workpiece.
In another example, a method of notching a workpiece for a beaded face frame comprises obtaining a machinery fence support system. The machinery fence support system comprises a worktable providing a substantially stationary support relative to a router, a track fixed to the worktable, a base adjustably mounted to the track, a moveable fence for guiding the workpiece relative to the router, and a linear motion mechanism between the base and the fence. The linear motion mechanism facilitates motion of the fence in a direction substantially perpendicular to a length of the fence. The method further comprises mounting a rotary bit for cutting the workpiece for the beaded face frame in the router, securing the workpiece to the fence, and using the linear motion mechanism to move the fence and the workpiece over the rotary bit to cut the notch in the workpiece.
The details of one or more examples of this disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of this disclosure will be apparent from the description and drawings, and from the claims.
Worktable 50 includes recess 52. Track 60 is securely mounted within recess 52 such that the top surface of track 60 is no higher than the work surface of worktable 50. Worktable 50 also includes insert plate 70, which may be suitable to provide precisely flat and level worksurface adjacent to rotatable bit 80. In addition, insert plate 70 is removable and facilitates access to the router mounted below worktable 50.
Fence 140 is configured to support workpiece 200 during a cutting operation using rotatable bit 80. Clamp 150 is secured to fence 140 opposite a workpiece support surface of fence 140 via bolt 154. Bolt 154 allows the position of clamp 150 relative to fence 140 to be adjusted. Clamp 150 includes a clamping face 152 (
Fence 140 is moveably secured to worktable 50 via base 110. As best illustrated in
Linear bearings 124 facilitate motion of fence 140 in a direction substantially perpendicular to a length of fence 140. Linear bearings 124 each include a set of ball bearings as well as a guide plate including a hole for each ball bearing in the set to hold the corresponding ball bearing in place relative to the guide plate (best shown in
Stationary bearing supports 120 each include two endcaps 122 to hold the guide plates of linear bearings 124 in place. Likewise, moveable bearing support 130 includes endcap 132, which prevents moveable bearing support 130 from traveling off one end of stationary bearing supports 120 such that any of the ball bearings of linear bearings 124 could fall out. On the other end of moveable bearing support 130, opposite endcap 132, mounting plate 134 performs the dual function of securing fence 140 to moveable bearing support 130 and as well as preventing the over travel of moveable bearing support 130 in the other direction.
The two linear bearings 124 combine to substantially limit the motion of moveable bearing support 130 and fence 140 relative to stationary bearing supports 120 and base 110 along a straight line. For example, the configuration of the linear bearings 124 and the width of moveable bearing support 130, i.e., the distance between linear bearing 124A and linear bearing 124B, allows moveable bearing support 130 to be tightly constrained rather than being able to wiggle relative to base 110. This is important because if fence 140 were instead allowed to move in any significant amount in a direction that was not perpendicular to its length, the location of a notch cut in workpiece 200 by rotatable bit 80 would not necessarily be accurate. In addition, the notch itself would not necessarily match the profile of rotatable bit 80. As will be discussed in greater detail below, these features are important for cutting the precise notch necessary for a beaded face frame.
Linear bearings 124 constitute a linear motion mechanism. Other examples may include a different linear motion mechanism to facilitate motion of fence 140 in a direction substantially perpendicular to a length of 140. For example, such examples may include linear motion mechanisms requiring manual actuation like linear bearings 124, while other examples may include mechanically powered linear actuators. Examples of suitable linear motion mechanisms include mechanical actuators, hydraulic pistons, pneumatic pistons, four-bar linkage assemblies, a single linear bearing, recirculating ball slide bearings, a track system with a rolling carriage, any combination of these mechanisms, or a different linear motion mechanism. Other techniques suitable for providing linear motion include linear shafting with polymer or bronze type bearings.
Optionally, machinery fence support system 100 may also include an adjustable stop (not shown) mounted to fence 140 to facilitate precise positioning of workpiece 200 as is necessary to produce an accurately positioned notch in workpiece 200 suitable for building a beaded face frame. As examples, the adjustable stop may be a flip-stop and/or include an indicator that interacts with a ruler on fence 140 to indicate a position of the stop relative to fence 140. Stops suitable for use in conjunction with fence 140 are disclosed in U.S. Pat. No. 7,464,737, titled, “WOODWORKING MACHINERY STOP AND TRACK SYSTEM,” the entire content of which is incorporated herein by reference.
While machinery fence support system 100 has been described as facilitating motion of fence 140 in a direction perpendicular to a length of fence 140, machinery fence support system 100 may optionally include a rotatable coupling mechanism between fence 140 and the linear motion mechanism. Such a rotatable coupling mechanism would combine with the linear motion mechanism to facilitate motion of fence 140 in multiple directions relative to the length of fence 140. This would allow angled notches with the profile of rotatable bit 80 to be cut in workpiece 200. In contrast, machinery fence support system 100 as shown in
Distal side 81 has a length 83. As an example, length 83 may be approximately equal to a width of a workpiece abutting a notch cut by rotary bit 80 in a beaded face frame, not including a width of beaded features along an edge of the abutting workpiece. As an example, length 83 may exceed 0.75 inches. As other examples, length 83 may exceed 1.0 inches, 1.5 inches, 2.0 inches, 2.5 inches or even 3.0 inches. For example, length 83 may be about 0.75 inches, 1.0 inches, 1.5 inches, 2.0 inches, 2.5 inches, 3.0 inches or 3.25 inches.
Proximate side 88 has a length 83. As an example, length 89 may be equal to or greater than the width of the abutting workpiece in a beaded face frame. As an example, length 89 may exceed 1.0 inches. As other examples length 89 may exceed 1.5 inches, 2.0 inches, 2.5 inches, 3.0 inches or even 3.5 inches. For example, length 89 may be about 1.0 inches, 1.5 inches, 2.0 inches, 2.5 inches, 3.0 inches, 3.5 inches or 3.75 inches.
Height 87 of cutting element is at least as high as the width of beaded features along an edge of a workpiece. As an example, height 87 may be between 0 and 2 inches. As other examples, height 87 may be approximately 0.125 inches, 0.25 inches, 0.375 inches, 0.5 inches, 0.75 inches, 1.0 inch, 1.5 inches, 2.0 inches or another height. As discussed in greater detail with respect to
Base 110 is mounted to track 60. Fence 140 is secured to base 110 via moveable bearing support 130 and a linear motion mechanism as previously described herein.
As shown in
While not directly shown in
In addition, rotary bit 80 may be set to a desired height prior to a cutting operation. As an example, the height of the rotary bit relative to worktable 50 may be about equal to a width of beaded features along an edge of workpiece 200. Indeed, the height of the rotary bit relative to worktable 50 should be precisely equal to a width of beaded features along an edge of workpiece 200, e.g., the height of the rotary bit relative to worktable 50 may be within 0.005 inches or even within 0.001 inches of the width of beaded features along an edge of workpiece 200 to facilitate precise alignment of workpiece 200 with other workpieces used to build a face frame.
Furthermore, the assembly of
Rail 302 includes pocket holes 303, which may be used for fastening rail 302 to stiles 304 (
Router bit 400 includes shaft 482, ball bearing guide 485 and cutting element 484. Cutting element 484 includes a cutting edge 486, which provides the profile of beaded features for workpieces of a beaded face frame.
Cutting edge 486 has a height 487. Height 487 may be configured to match height 87 of rotary bit 80, which facilitates simple positioning of rotary bit 80 relative to a beaded workpiece cut by router bit 400. As an example, height 487 may be between 0 and 2 inches. As other examples, height 487 may be approximately 0.125 inches, 0.25 inches, 0.375 inches, 0.5 inches, 0.75 inches, 1.0 inch, 1.5 inches, 2.0 inches or another height.
It can be particularly useful for height 487 to be a precise nominal value, such as 0.250 inches. For example, providing router bit 400 with a precise nominal height 487 of 0.250 inches facilitates the production of workpieces having beaded features with nominal widths of 0.250 inches. For rotary bit 80 (
In order to simply the production of beaded face frames, a rotary bit, such as rotary bit 80 may be included in a kit with a router bit suitable for cutting beaded features along an edge of a workpiece, such as router bit 400. Optionally, the kit may also include a machinery fence support facilitating fence movement in a direction perpendicular to a length of the fence. In such a kit, height 487 of router bit 400 may be substantially equal to height 87 of rotary bit 80. In addition, length 38 of rotary bit 80 may correspond to a standard nominal workpiece width, minus twice of height 487.
Other kit configurations may also be used. For example, a single rotary bit 80 may be included with a plurality of router bits configured to cut beaded features of different widths, e.g., 0.125 inches, 0.250 inches, 0.375 inches, 0.500 inches, 0.625 inches, 0.750 inches, 1.000 inches etc. In such an example, height 87 of rotary bit 80 should be at least as large as the height of the largest router bit. Prior to a cutting operation to form a notch, such as notch 340 (
Various examples of this disclosure have been described. These and other examples are within the scope of the following claims.
This application claims priority from U.S. Provisional Application Ser. No. 61/166,576, titled, “MACHINERY FENCE SUPPORT FACILITATING FENCE MOVEMENT IN A DIRECTION PERPENDICULAR TO A LENGTH OF THE FENCE,” and filed Apr. 3, 2009, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3737245 | Mater | Jun 1973 | A |
5097555 | Dwyer | Mar 1992 | A |
7226257 | Lowder et al. | Jun 2007 | B2 |
7464737 | Duginske | Dec 2008 | B2 |
7543661 | Griffo et al. | Jun 2009 | B2 |
7591616 | Kerner | Sep 2009 | B1 |
20090053002 | Kirby | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
61166576 | Apr 2009 | US |