Machines and Methods for Combined and Isolated Upper and Lower Body Workouts

Information

  • Patent Application
  • 20080070755
  • Publication Number
    20080070755
  • Date Filed
    September 17, 2007
    16 years ago
  • Date Published
    March 20, 2008
    16 years ago
Abstract
An elliptical exercise machine allowing a user to move between a first position (standing on a stationary platform and using the machine's exercise arms), a second position (using the machine's footskates and holding a stationary handlebar), and a third position (using the machine's footskates and exercise arms), or any variation thereon. The machine may include a computer that directs the user's movements between those positions and others.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a front angular perspective view of an embodiment of an exercise machine with a system for combined and isolated upper and lower body workouts with the frame cover in place.



FIG. 2 shows a front angular perspective view of an embodiment with the cover removed.



FIG. 3 shows a rear perspective view of the embodiment of FIG. 2.



FIG. 4 shows an overhead perspective view of the embodiment of FIG. 1, focused on the platforms and footskates.



FIG. 5 shows a side perspective view of a user using the embodiment of FIG. 1.



FIG. 6 shows a user on the embodiment of FIG. 1, employing the method for isolating upper and lower body workouts.



FIG. 7 shows a top partial view of an embodiment with a control panel and computer, focused on the control panel.





DESCRIPTION OF PREFERRED EMBODIMENT(S)

Although the machines, devices, and methods described below are discussed primarily in terms of their use with a particular layout of an elliptical exercise motion machine utilizing two rotational crankshafts and handgrip pendulum arms, one of ordinary skill in the art would understand that the principles, methods, and machines discussed herein could be adapted, without undue experimentation, to be useable on an elliptical motion machine which generates its elliptical motion through the use of other systems. It may also be used on any aerobic machine that encourages coordinated upper and lower body movements through mechanical linkage.


The embodiment disclosed herein primarily relates to elliptical exercise machines where a reciprocating footskate which traverses a fixed linear portion of a main drive link is replaced by a system where such a reciprocating footskate is supplemented by a stationary loadbearing platform adjacent to the reciprocating footskate, which permits the user to either stand on the platform and not move the feet in the traditional elliptical pattern, or on the reciprocating footskate while operating the pendulum arms; and which permits the user to step off the footskate onto the platform and step on again during the course of the workout; and where a fixed handlebar permits the user to use the reciprocating footskate with arms stationary or while moving the pendulum arms. In a further embodiment, a computer provides direction as to whether the user should stand on the footskate or platform, and grasp the handlebar or pendulum arms.


The machine provides for independent performance due to the presence of, firstly, a stationary, lateral foot platform from which the upper body movement may be performed while the feet remain fixed; and secondly, a stationary handlebar which the user may grasp to fix the arms while the lower body movement is performed.


For the purposes of this disclosure, the terms “horizontal” and “vertical” will be used when referring to the dimensions of the ellipse drawn by the user's feet. One of ordinary skill in the art will understand that depending on the arrangement of the parts and how the machine is used, the ellipse traversed by the user's feet may be at an angle to the vertical and horizontal. That is, a line connecting the two axes of the ellipse may not be completely horizontal or completely vertical, or in some cases it may be. For the purposes of this disclosure, when the horizontal dimension of the ellipse is referred to, it is referring to the longest dimension of the ellipse (line through both axes), and the vertical dimension is the shortest dimension of the ellipse (line evenly spaced between the two axes). These dimensions are not used to strictly mean horizontal and vertical relative to the earth. Further, while most of this discussion will refer to the operation of a single side of an exercise machine, one of ordinary skill in the art would understand that the other side will operate in a similar manner.


Further, while the system discusses “elliptical motion,” it should be recognized that that term, as is used in the art of exercise machines, does not require the foot of the user to traverse a true ellipse, but that the foot of the user traverses a generally elliptical or similar rotational shape. The shape will generally not be circular, but may be circular, oval, elliptical, in the shape of a racetrack, kidney-shaped, or in any other shape having a relatively smoothly curving perimeter with a horizontal and vertical component of movement.



FIG. 1 depicts an embodiment of an elliptical motion exercise machine (10) including a system for combining and isolating upper and lower body workouts. The exercise machine (10) is comprised of a frame (50) of generally rigid construction which will sit stably on a surface to provide for the general shape of the machine (10) as shown in FIG. 1. The frame (50) is generally constructed of strong rigid materials such as, but is not limited to, steel, aluminum, plastic, or any combination of the above. The frame (50) may be of any shape, but will generally be designed to provide a place to attach the remaining components and to provide a structure which can resist damage or breakage from repeated use by the individual exercising thereon. The frame (50) will also generally be designed so as to stably support a user utilizing the exercise machine (10) and prevent the machine from having undue sway or other undesirable motion while the user is exercising. In the depicted embodiment, frame (50) includes three major substructures: left and right main supports (52) and (53), crossbeams (54), and vertical riser beams (56) and (57).


The main supports (52) and (53) will generally rest on the surface upon which the exercise machine (10) is placed. This surface will generally be flat. One of ordinary skill in the art would understand that the surface need not be flat as the position of the machine is only important relative to the user but, for clarity, this disclosure will presume that the machine is placed on a generally flat surface. The main supports (52) and (53) are then held at a position spaced apart from each other by the crossbeams (54). There may be any number of crossbeams (54) and the depicted number of four is by no means required. The vertical riser beams (56) and (57) extend generally away from the surface on which the machine is resting and generally extend from the main supports (52) and (53) at a point around the front of the frame (50).


The vertical riser beams (56) and (57) are linked by a top crossbeam (58) which has attached thereto a centrally located handlebar (41) the user may grasp. The top crossbeam (58) also has attached thereto a computer control panel (72) for controlling the functions of the machine (10), particularly the location of the user's feet on the footskate (501) or platform (61), and the user's arms on the handlebar (41) or exercise arms (201), as well as other functions known to those of ordinary skill in the art.


In an embodiment, the frame (50) may include additional components, or not include any of the above components. Further, any portion of the frame (50) may be covered by a cover (13) as shown in FIG. 1 which may not provide for specific strength and support of the other components of the machine (10), but may serve to cover operating or moving parts of the machine (10) for aesthetic or safety purposes such as to keep an individual's clothing from becoming trapped in the machine (10) or simply to give the machine a particular “look.”



FIGS. 2 and 3 show various views of a frame (50) with the cover (not shown) removed so that internal parts are visible. Attached between the main support beams (52) and (53) is a device for transmitting rotational motion, such as a pair of crankshafts (101) and (103) or any other means known to those of ordinary skill in the art. In the depicted embodiment utilizing crankshafts, each crankshaft (101) and (103) rotates relative to the frame (50) about a central axis (102). On the front crankshaft (101), there is a wheel (121) attached at each end which will rotate in conjunction with the rotational motion of the front crankshaft (101). Each wheel (121) is attached via an offset pin (123) and drive link (125) to a rocker bar (127) such that the rocker bar (127) is caused to rock back and forth through a fixed portion of an arc.


Attached to the rocker bar (127) is an exercise arm (201). The exercise arm (201) will generally comprise two portions, the upper portion or handgrip (203) and the lower pendulum arm (252). Both portions will generally be rigidly attached both to each other and to the rocker bar (127) so as to move as a unit. The handgrip (203) at the top of the exercise arm (201) generally moves in a vertically arranged arc segment. This handgrip (203) is designed to be grasped by a user and can be used to help exercise the user's arms and to drive the motion of the crankshafts (101) and (103).


As the crankshafts (101) and (103) transcribe the circle moving the rails (401) through circles, the front crankshaft (101) will turn the wheels (121), which will, in turn, cause the pendulum arms (201) to reciprocate. By placing the user's feet directly on the rails (401), the user will be able to exercise with the machine (10) with their feet transcribing circular motion in a constantly parallel position. This circular motion may be made elliptical by providing a footskate (501) which will slide on the rail (401) at a particular rate related to the instantaneous position of the rail (401). Such sliding motion allows for alteration of the travel path from that of a circle to one approaching an ellipse. Traditionally, this elliptical motion was provided in a fixed fashion whereby the reciprocation of the rocker bars (127) was simply transferred to the footskates (501) by the distal end of the pendulum arms (252). One such arrangement of components is shown in U.S. Pat. No. 6,835,166, the entire disclosure of which is herein incorporated by reference.


There may also be included a variety of other components as is known to those of ordinary skill in the art for improving exercise motion upon which at least one of the crankshafts (101) or (103) interacts. For example, the front crankshaft (101) may drive a synchronization device, such as, but not limited to, a connecting rod. Another improvement may be a flywheel (not shown) connected to the wheel (121) or another wheel on either crankshaft (101) or (103) by means of a belt (not shown) so as to provide for more fluid and smooth motion of the rails (401).


Further, there may be one or more resistance devices (not shown) included to provide for resistance to the motion of the wheel (121) and therefore to increase the difficulty of the exercise. The resistance device may comprise a friction belt which serves to resist the rotation of the wheel (121). This design of resistance device is by no means required, however, and any type of resistance device, including but not limited to, friction devices, electromechanical devices, pneumatic or hydraulic devices, or a combination of devices may be used to provide resistance. The devices may apply to the user's entire upper and lower body experience, or may be specifically targeted at the resistance the user encounters in the upper or lower body independently.


Further, there may be a device (90) with associated structures included to permit the user to adjust the length of the stride of the exercise via the inclusion of an adjustment arm connected via a transfer arm attached toward the distal end of the adjustment arm to the front of the footskate (501). The adjustment arm (251) is rocked in a pendulum motion by the action of a coupler (261) which is located a first distance from the first axis of rotation (221) of the pendulum arm (125). The coupler (261) is also attached a second distance from the second axis of rotation (225) about which the adjustment arm (251) rotates. So as to provide for adjustment to the stride distance during the exercise, at least one of the first distance and second distance is adjustable.


While not shown, the exercise machine (10) may also include an electric drive or electric assist mechanism for users lacking the requisite strength to commence the exercise or to comfortably perform it. Such an assistance mechanism for use in conjunction with arm driven treadmills, which could be adapted for use with this elliptical machine (10), is shown in U.S. patent application Ser. No. 11/234,614, the entire disclosure of which is herein incorporated by reference.


As discussed above, so as to provide for elliptical instead of circular motion of the user's foot, each of the rails (401) has located thereon a footskate (501) which is arranged to reciprocate on a foot track (503) which is located on the rail (401). The reciprocating relationship may be accomplished by any mechanism known to those of ordinary skill in the art including sliding or rolling relationships. In the depicted embodiment, the footskate (501) includes a series of wheels (511) which roll on the foot track (503) as depicted.


Adjacent to each footskate (501) and attached to the frame (53, 54) is a stationary loadbearing platform (61), which may also take the form of a step, ledge, or any other loadbearing area. While the depicted embodiment shows the platform (61) attached flush with the frame (53, 54), any orientation and/or point of attachment may be used. The platform (61) is of such a length and width as to accommodate both the user's foot and the space requirements of the location in which the machine is to be used. A focused view of embodiments of these platforms (61) and footskates (501) is provided in FIG. 4. They are also depicted in FIGS. 1-6.


The platform's (61) spatial attributes, including vertical height, horizontal distance, and planar orientation relative to the footskate (501), are such that users may move from a position in which their feet are on the platform (61) to a different position in which their feet are on the footskate (501) during the course of the workout, which hereinafter will be called “stepping off,” and back again, which hereinafter will be called “stepping on.” Stepping off includes, but is not limited to, the movement of a user's foot from the footskate (501) to any embodiment of the platform (61), whether one or both platforms (61) is utilized. The platform (61) is at an operative distance and angle from the handgrip (203) and footskate (501) that permits users to continue to utilize the handgrip (203) and handlebar (41) after stepping off, and that renders the user safely clear of any continued movement of the footskate (501). Users engaging in such stepping off are depicted in FIGS. 5 and 6. Thus, by stepping off onto the platform (61), users may enjoy a stationary lower body position, and may concentrate their efforts solely on their upper bodies by moving the exercise arm (201), and selecting any available resistance and/or stance. Upon stepping off, only the user's upper body is engaged with the machine's movable parts; by moving the exercise arm (201), the user continues to cause the footskate (501) to move synchronously, but the user's lower body is no longer contributing to that movement. Any applied resistance is encountered solely by the user's upper body through the exercise arm (201). Stepping on returns the user to using his or her entire body to cause the machine's movement.


The handlebar (41) permits similar isolation of the lower body. The handlebar (41) is positioned at an operative distance and angle from the footskates (501) and exercise arm (201) that permits users grasping the handlebar (41) to continue to move their feet along the ellipse traced by the footskates (501), and that renders the user safely clear of any continued movement of the exercise arms (201). Thus, by grasping the handlebar (41), users may enjoy a stationary upper body stance and may concentrate their efforts solely on their lower bodies by moving the footskate (501) and selecting any available resistance and/or stance. Upon grasping the handlebar (41), only the user's lower body is engaged with the machine's movable parts; by moving the footskate (501), the user continues to cause the exercise arm (201) to move synchronously, but the user's upper body is no longer causing that movement. Any applied resistance is encountered solely by the user's lower body through the footskate (501).


Thus, the combination of the platform (61) with the handlebar (41) permits the user to move between three different positions: (1) standing on the footskate (501) and grasping the exercise arm (201); (2) standing on the platform (61) and grasping the exercise arm (201); and (3) standing on the footskate (501) and grasping the handlebar (41). The user may step on and off, moving among these positions or any others permitted by the disclosed hardware. Thus, the user may combine and isolate upper and lower body workouts within one machine's workout session and in different sessions. The fixed nature of the platform (61) and the handlebar (41) provides an anchor for the lower and upper body, respectively, leaving the unanchored part of the user's body solely responsible, for generating all of the machine's motion and overcoming all of its resistance. This places a greater burden on the isolated muscle group than is placed during a combined workout of the same speed and resistance, which facilitates achieving fitness goals specific to that muscle group without having to use a different machine. Isolation of the upper or lower body, and combination of those movements, may thus be achieved through the course of a workout and among workouts by moving among positions: stepping off and on, and alternating arm position between the handgrip (203) and handlebar (41).


Beyond merely permitting the combination and isolation of independent upper and lower body workouts, the platforms (61) and handlebars (41) moreover permit users to tailor these isolated workout segments as desired. For example, they may change the resistance encountered by the targeted part of their body to be more or less than the resistance encountered during the full-body workout. Users seeking to increase upper body strength, for example, may step off and increase the resistance encountered by their upper bodies to achieve a strength-related goal, which may be more than they wished to encounter with their full bodies when working towards a cardiovascular goal.


Due to the platform (61) and handlebar (41), users may also adopt a stance that targets a particular muscle group that was not possible during the more confining full-body workout. For example, users may crouch on the platform (61) while moving the exercise arm (201) to employ the shoulder and back muscles in pulling the exercise arm (201) rather than the bicep and chest muscles employed in the traditional stance. Users may also use only one platform (61) while moving the handgrip (203) to work on balance and core muscles. Other stances that work muscles that are not primarily active during traditional full-body motion include, but are not limited to, standing facing the back of the machine on the platform (61) while grasping the handgrip (203) or on the footskate (501) while grasping the handlebar (41); or standing on their toes on the footskate (501) while grasping the handlebar (41).


Finally, a workout incorporating stepping on and off or moving among positions may improve coordination and balance more than a straightforward cardiovascular workout. Users may step on and off in rapid succession or according to cues, such as musical, video, or computer-directed cues (the latter of which will be addressed below). Thus, the multiplicity of positions presented by the platform (61) and handlebar (41) affords a more complex workout than current elliptical machines.


Thus, the ability to step on and off, and to grasp either the handlebar (41) or handgrip (203), permits a single machine to provide a vastly more varied and tailored workout than current elliptical machines provide. The ability to isolate muscle groups and engage them in specific and higher-resistance exercise through stepping off and on, grasping either the handlebar (41) or handgrip (203), and assuming nontraditional stances enabled by the platform (61) and handlebar (41), frees users from the boredom and limited cardiovascular benefits of current elliptical machines. Rather than having to use a machine in addition to an elliptical machine in order to obtain fitness goals specific to a certain part of the body, users may obtain cardiovascular and specific muscle group fitness on the same machine, within the same workout.


For example, the user may start off grasping the exercise arm (203) and standing on the footskate (501), so as to engage in the maximum amount of motion to raise his or her heartrate. Then, the user may grasp the handlebar (41) and increase the resistance encountered while moving the footskate (501), so that the user may target his or her lower body musculature while still engaging in cardiovascular activity. The user may then step off onto the platform (61) and switch to grasping the handgrip (203), with decreased resistance to accommodate the machine's use by a weaker muscle group. On the platform (61), the user may crouch while moving the exercise arms (201), thus exercising a different upper body muscle group than employed during full-body movement. Finally, to cool down, the user may grasp the handgrip (203) and stand on the footskate (501) at low resistance.


In an embodiment, the platform's (61) spatial attributes are adjustable, including vertical height and/or planar orientation. The platform (61) may be adjusted for the user's comfort, fitness goals, or any other reason. In a variance on this embodiment, there are multiple steps or platforms (61) of different vertical heights, horizontal distances, and/or planar orientations relative to the footskate (501) from among which the user or directed workout can choose. In an embodiment, the handlebar's (41) spatial attributes are adjustable, including vertical height and angle relative to the frame. The handlebar (41) may be adjusted to the user's comfort, fitness goals, or any other reason. The platform (61) and/or handlebar (41) may be adjusted during the course of a workout.


In an embodiment, the machine (10) will utilize the platform (61) and/or the handlebar (41) via the control panel (72) or computer which may be used to select exercise characteristics or provide exercise oversight. An embodiment of a control panel (72) is depicted in FIG. 7. Generally, the user will preselect a program of exercise which corresponds to various different types of motion to be performed in a sequence, over time. The computer will indicate or direct, through the control panel (72), at what point in time in the exercise program the user should assume different positions, i.e., step on or off the platform (61), and grasp the handlebar (41) or exercise arm (203). Thus, the computer (72) permits the user to select a directed workout that provides a combined workout, an isolated upper body workout, an isolated lower body workout, or a workout that incorporates more than one type of workouts within a single machine, by directing the user to step on and off the platform (61) and alternate between the handlebar (41) and handgrip (203). In an embodiment wherein the machine has an adjustable handlebar (41) and/or platform (61), the exercise characteristics may include the position of these components. In an embodiment with multiple platforms (61), the directed workout may direct the user to move among platforms (51) or specify a certain platform (61). The benefits of directed workouts, including their variety, set nature, and direction to specific parts of the body, are thus applied to the embodiment's capacity to provide combined and isolated upper and body workouts.


In an embodiment, the computer and/or control panel (72) may also alter the resistance the user encounters in his or her upper and lower body, in combination or in isolation. In an embodiment, the user may also use the control panel (72) and computer to alter characteristics of the directed workout, including durations of time; whether segments are to be isolated or combined, and if isolated, whether they are to be upper or lower body segments; and resistance.


In an example of the operation of the computer (72), the user would select a directed workout, including combined and isolated segments, that meets any fitness goals the user may have, such as increased upper body strength. The computer (72) may, for example, provide direction to the user to begin operating the footskate (501) and exercise arm (201) in the combined upper and lower body workout, and would set low resistance, simply to increase the user's heartrate. Once achieved, or once the programmed amount of time had passed, the computer (72) may direct the user to step off onto the platform (61) and continue operating the exercise arm (201) in an isolated upper body workout, for which the computer (72) would increase the resistance by controlling a resistance device. The computer (72) may also direct the user to assume a variety of stances over the course of the upper body workout segment in order to maintain the user's interest and target different muscle groups. After the programmed amount of time had passed, the computer (72) may direct the user to step on to the footskate (501) and continue operation of the exercise arm (201) in a combined workout at the same high level of resistance, to engage the user in a high level of activity. To bring the user's heart rate back down and rest the upper body, the computer (72) may then direct the user to grasp the handlebar (41) and continue operation of the footskate (501) in an isolated lower body workout at low resistance.


While the invention has been disclosed in connection with certain preferred embodiments, this should not be taken as a limitation to all of the provided details. Modifications and variations of the described embodiments may be made without departing from the spirit and scope of the invention, and other embodiments should be understood to be encompassed in the present disclosure as would be understood by those of ordinary skill in the art.

Claims
  • 1. A method of using a cardiovascular exercise machine, comprising: supplying a cardiovascular exercise machine to a user, wherein said machine comprises a frame, a rail movably connected to said frame and also connected to a crankshaft such that said rail traverses a path in conjunction with said crankshaft's rotation relative to said frame, a pendulum arm connected to said frame that reciprocates as said crankshaft rotates, a footskate capable of reciprocating movement on said rail, a stationary loadbearing platform functionally separated from said crankshaft but rigidly connected to said frame at an operative distance and angle from said pendulum arm and sized and shaped to support a user, and a handlebar fixedly connected to said frame at an operative distance and angle from said footskate and separated from said crankshaft;providing a first position wherein said user stands on said platform and moves said exercise arm;providing a second position wherein said user moves said footskate and grasps said handlebar;providing a third position wherein said user moves said footskate and said exercise arm; andhaving said user move among said first position, said second position, and said third position.
  • 2. The method of claim 1 wherein said step of having is performed within a single workout session.
  • 3. The method of claim 1 further comprising a step of adjusting said platform.
  • 4. The method of claim 1 further comprising a step of adjusting said handlebar.
  • 5. The method of claim 1 wherein said first position is one of a plurality of first positions, wherein each of said first positions utilizes a distinguishable platform from each other of said first positions.
  • 6. The method of claim 1 wherein said moving said exercise arm or said moving said footskate is affected by a resistance device.
  • 7. The method of claim 1 wherein said machine further comprises a computer, wherein said computer directs said steps of providing and having.
  • 8. The method of claim 7 further comprising a step of selecting a computer-directed workout, wherein said workout directs said user's movement among said first position, said second position, and said third position.
  • 9. An elliptical exercise machine comprising: a frame;a rail movably connected to said frame and also connected to a crankshaft such that said rail traverses a path in conjunction with said crankshaft's rotation relative to said frame;a pendulum arm connected to said frame that reciprocates as said crankshaft rotates;a footskate capable of reciprocating movement on said rail;a stationary loadbearing platform functionally separated from said crankshaft but rigidly connected to said frame at an operative distance and angle from said pendulum arm and sized and shaped to support a user; anda handlebar fixedly connected to said frame at an operative distance and angle from said footskate and separated from said crankshaft.
  • 10. The machine of claim 9 wherein said platform's spatial attributes are adjustable.
  • 11. The machine of claim 9 wherein said handlebar's spatial attributes are adjustable.
  • 12. The machine of claim 9 wherein said platform is one of a plurality of said platforms.
  • 13. The machine of claim 9 further comprising a computer capable of directing a user's use of said footskate, said platform, said pendulum arm, and said handlebar.
  • 14. The machine of claim 9 further comprising a device for adjusting the size of the stride, including but not limited to: an adjustment arm, said adjustment arm connected to said frame at a second rotational axis, spaced from said first rotational axis;said adjustment arm being operationally attached to said footskate via an interface located toward said distal end of said adjustment arm so that reciprocation of said adjustment arm through a second arc segment is translated into said reciprocating movement of said footskate;a coupler connecting said adjustment arm to said pendulum arm so that when said pendulum arm reciprocates about said first rotational axis, said adjustment arm is forced to reciprocate about said second rotational axis;said coupler being spaced a first distance from said first axis and a second distance from said second axis;wherein, at least one of said first distance and said second distance is variable, such that said stride of said machine may be altered while said machine is in use to permit stride adjustment for comfort or to generate a particular type of exercise.
  • 15. The machine of claim 9 wherein at least one of said crankshafts is attached to a flywheel or a resistance device.
  • 16. The machine of claim 15 wherein said flywheel or said resistance device is controlled by a computer.
CROSS REFERENCE TO RELATED APPLICATION(S)

This application claims benefit of U.S. Provisional Patent Application Ser. No. 60/825,797 filed Sep. 15, 2006, the entire disclosure of which is herein incorporated by reference.

Provisional Applications (1)
Number Date Country
60825797 Sep 2006 US