The present invention relates generally to the machining of a three dimensional metal alloy object. More particularly, a method and an apparatus are described for machining an exterior surface of a metal alloy casing of a portable electronic device to form a combination of a flat top edge surface, a curved edge surface and a flat bottom surface.
The proliferation of high volume manufactured, portable electronic devices has encouraged innovation in both functional and aesthetic design practices for enclosures that encase such devices. Manufactured devices can include a casing that provides an ergonomic shape and aesthetically pleasing visual appearance desirable to the user of the device. Exterior surfaces of metal alloy casings of portable electronic devices can be shaped by computer numerically controlled machinery and can include combinations of flat regions and curved regions. To minimize weight of the portable electronic device, the metal alloy casing can be shaped to a minimal thickness while maintaining sufficient mechanical rigidity to avoid minor impact damage. As the thickness of the metal alloy casing can be quite thin, for example fractions of a millimeter, the shaping of the exterior casing can require precise and repeatable results to minimize surface variation on the exterior of the casing. Irregularities in the surface can result in a metal alloy casing having an unacceptable appearance or compromised mechanical integrity. In addition, high volume manufacturing can require minimal time for shaping of the metal alloy casing. Multiple separate tools to shape different regions of the metal alloy casing can require additional manufacturing time than machining using a single cutting tool along a single continuous path. Thus there exists a need for a method and an apparatus for machining a three dimensional top surface, edge surface and bottom surface of a metal alloy casing resulting in a surface with a consistent surface variation within a tolerance required to achieve a desired minimal thickness casing and preferred surface appearance upon finishing.
In one embodiment, an apparatus for shaping an exterior surface of a metal alloy casing of a portable electronic device is disclosed. The apparatus includes a cutting tool having at least three cutting surfaces for abrading regions of the metal alloy casing. The apparatus also includes a computer numerically controlled (CNC) positioning assembly configured to rotate the cutting tool at a constant rotational velocity and to contact the rotating cutting tool along a pre-determined continuous path at a constant translational velocity to abrade the metal alloy casing. The at least three cutting surfaces of the cutting tool include a first flat cutting surface, a curved convex shaped cutting surface and a second flat cutting surface. The first flat cutting surface is nearest a neck of the cutting tool and shapes a flat edge region on the top of the metal alloy casing. The curved convex shaped cutting surface is adjacent to the first flat cutting surface and shapes a curved edge region of the metal alloy casing. The second flat cutting surface is on the bottom of the cutting tool adjacent to the curved convex shaped cutting surface and shapes a flat bottom region of the metal alloy casing. The pre-determined continuous path includes a continuous spiral path to shape the flat edge region of the metal alloy casing and a continuous zigzag path used to shape the flat bottom region of the metal alloy casing. The spacing between adjacent circuits of the continuous spiral path varies based on a curvature of a cross section of the surface of the metal alloy casing.
In one embodiment, an apparatus for shaping an exterior surface of a metal alloy casing of a portable electronic device includes a bell shaped cutting tool and a computer numerically controlled (CNC) positioning assembly. The bell shaped cutting tool includes multiple cutting surfaces for abrading different regions of the metal alloy casing. The CNC positioning assembly is configured to rotate the bell shaped cutting tool at a constant rotational velocity and to contact the rotating bell shaped cutting tool along a pre-determined path to abrade the metal alloy casing. Adjacent cutting surfaces of the cutting tool are used to shape adjacent regions on the exterior surface of the metal alloy casing.
In one embodiment, a non-transitory computer readable medium for storing non-transitory computer program code executed by a processor for controlling a computer aided manufacturing operation for shaping an exterior surface of a metal alloy casing is disclosed. The non-transitory computer readable medium includes at least the following non-transitory computer program code. Non-transitory computer program code arranged to abrade an edge surface of the metal alloy casing by contacting a rotating cutting tool along a first pre-determined continuous spiral path along the edge surface. Additional non-transitory computer program code arranged to adjust the vertical movement of the cutting tool in a direction perpendicular to a bottom surface of the metal alloy casing for each circuit of the continuous spiral path. Further non-transitory computer program code arranged to abrade the bottom surface of the metal alloy casing by contacting the rotating cutting tool along a second pre-determined zigzag path against the bottom surface.
In one embodiment, a method for machining an edge surface and a bottom surface of a metal alloy casing of a portable electronic device includes at least the following steps. A first step includes abrading the edge surface of the metal alloy casing by contacting a rotating cutting tool along a first pre-determined continuous spiral path against the edge surface. A second step includes adjusting the pitch of vertical movement of the cutting tool for each circuit of the continuous spiral path based on a resulting curvature of the metal alloy casing perpendicular to the direction of the continuous spiral path along the surface of the metal alloy casing. A third step includes abrading the bottom surface of the metal alloy casing by contacting the rotating cutting tool along a second pre-determined alternating direction linear path against the bottom surface.
The invention and the advantages thereof may best be understood by reference to the following description taken in conjunction with the accompanying drawings.
The present invention relates generally to the machining of a three dimensional metal alloy object. More particularly, a method and an apparatus are described for machining an exterior surface of a metal alloy casing of a portable electronic device to form a combination of a flat top edge surface, a curved edge surface and a flat bottom surface.
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the present invention.
High volume manufactured portable electronics devices can include computer numerically controlled (CNC) machined metal alloy parts with various geometrically shaped surfaces. Representative portable electronic devices can include portable media players, portable communication devices, and portable computing devices, such as an iPod®, iPhone® and iPad® manufactured by Apple, Inc. of Cupertino, Calif. Both the tactile and visual appearance of a portable electronics device can enhance the desirability of the portable electronic device to the consumer. Metal alloys can provide a lightweight material that exhibits desirable properties, such as strength and heat conduction well suited for casings of portable electronic devices. A representative metal alloy can include an aluminum alloy. Both the tactile and visual appearance of a portable electronics device can enhance the desirability of the device to the consumer. A cosmetic outer layer machined from a metal alloy can be cut to a desired shape and polished to a desired reflective and/or matte appearance. In some embodiments, a continuously smooth shape having a uniformly visually smooth appearance can be desired.
High volume manufacturing can also require minimal processing time. Machining an aluminum billet to form the exterior surface of a casing of a portable electronic device using a single cutting tool can reduce the processing time required. Machining with a single continuous optimized path can result in a “rough” cut surface that can require minimal sanding and polishing to produce a visually smooth finish with no visually discernible breaks between regions having different cross sections. Curved regions can transition smoothly into flat regions including along corner areas without any visual change in surface appearance.
The path of the cutting tool 200 can be chosen to provide transitions between different regions of the casing 100 without abrupt changes in a frictional force of contact between the cutting tool 200 and the casing 100. By ensuring a uniform smoothly changing frictional load and constant force of contact between the cutting tool 200 and the casing 100 during the transition between regions, the surface of the casing 100 can be shaped without irregular cuts, such as gouges, indentations or surface warps that can mar the finish of the surface of the casing 100. A continuous spiral path for the cutting tool 200 can maintain a smooth transition between different regions. The frictional load experienced by the cutting tool 200 can vary with the amount of surface area contacted between the cutting tool 200 and the casing 100. Critical regions of the surface of the casing 100 at which special care can be taken to determine the cutting tool path include the transition regions between different shapes of the cross section of the surface of the casing 100. Narrowing the spacing between successive circuits for a continuous spiral path taken by the cutting tool 200 can minimize abrupt changes in the frictional load thereby ensuring a uniform cut surface of the casing 100. Transition regions can include the transition from the flat top edge region 102 to the arc region 104, the arc region 104 to the spline region 106, and the spline region 106 to the flat bottom region 108.
The narrow spacing of successive circuits of the cutting tool 200 can minimize and avoid abrupt changes in friction between the cutting tool 200 and the surface of the casing 100.
In addition to fine spacing in transition regions, the CNC machining through the high curvature region 406 of the arc region 104 can use a fine pitch 504 “z” spacing between successive circuits of the continuous spiral path. Spacing the circuits close together can avoid sharp transitions in frictional contact and provide a smooth even cutting in the arc region 104. Similar to the fine spacing in the transition between the flat top edge region 102 to the arc region 104, the cutting tool path 402 can also be spaced with a fine pitch 504 in the “z” direction throughout the transition region 404 from the spline region 106 to the flat bottom region 108. The surface area of the cutting tool 200 in contact with the surface of the casing 100 can increase substantially from the spline region 106 to the flat bottom region 108, and by spacing the circuits closer together the transition from minimal contact to broader contact can proceed smoothly to avoid gouging the casing 100 while machining. Close spacing of the paths in the transition region 404 can also eliminate visible transitions between the curved surface of the spline region 106 and the flat surface of the flat bottom region 108. After cutting, sanding and polishing, the casing 100 of the mobile device can have a uniform smooth appearance without noticeable differences between the curved edge surfaces and the flat bottom surface and no visible joins. Once the flat bottom section 206 of the cutting tool 200 is completely within the flat bottom region 108 of the casing 100, the continuous path taken by the cutting tool 200 can change from a spiral path to a zigzag path, i.e. a path with alternating linear paths, across the flat bottom region 108. The zigzag path can minimize warping that can occur due to temperature changes in the metal alloy on the surface of the casing 100 during machining. With the careful placement of the tool path 502 using fine pitch spacing along select regions, the sanded and polished surface of the casing 100 can have a visually continuous surface without edges or corners when viewed from the back.
As the spline region 106 joins up to the flat bottom region 108, the cutting tool 200 can transition from using the curved section 204 to using the flat bottom section 206. The amount of contact between the cutting tool 200 and the surface of the casing 100 can increase substantially throughout the transition in a region C 612 that spans from the spline region 106 to the flat bottom region 108. The spacing between successive circuits of the continuous spiral path can be spaced with a fine pitch 606 within region C 612 in order to increase the contact slowly and to avoid a sudden change in frictional force encountered by the cutting tool 200 while shaping the surface of the casing 100 in region C 612. Within region D 610 of the flat bottom region 108, the spacing between adjacent paths can increase gradually from the fine pitch used in region C 612 to a wider pitch suitable for the flat bottom region 108. After reaching approximately one quarter of the distance into the flat bottom region 108, the CNC machinery can execute a large radius turn to transition from the continuous spiral path used for the curved edge regions 104/106 of the casing 100 to a continuous zigzag path used for the bottom region 108 of the casing 100. The large radius turn can avoid a sharp turn transition that can affect the shaped surface of the casing 100. As shown by the bottom view diagram 700 in
In one embodiment, the rotational speed and the translational speed along the continuous path of the cutting tool 200 can be fixed. In some embodiments, one or more properties of the cutting tool 200 can be selected (fixed or variable along the cutting path) from the following: the properties can include but can be not limited to (1) feed rate (translational speed in one or more of the x-axis, y-axis and/or z-axis directions), (2) spindle speed (rotational speed), (3) pitch (spacing between adjacent cutting paths), (4) cutting tool 200 shape and size, e.g. diameter, (5) cutting tool 200 cutting material and (6) cutting tool 200 rake angle (angular orientation of cutting tool 200 with respect to casing 100 surface). The properties of the cutting tool 200 can be chosen to affect the machining time and resulting properties of the cut surface of the machined casing 100. The rotational and translational speeds can be selected to minimize machining time while ensuring a quality of surface cut by the machining tool that can result in a preferred surface finish. A fine and tight control of the variation in pitch between circuits of the continuous spiral path can be used in areas with higher curvature, in areas with a higher rate of change in curvature and/or in areas of transition between regions of the surface having different curvatures. A coarser control of the spacing between adjacent paths can be used in flat regions, in regions with low curvature and in regions with a low rate of change in curvature. A medium control can be used in areas of moderate curvature, and the pitch can change continuously and smoothly between regions of fine narrower pitch and regions of coarse wider pitch. While using a fine control of pitch throughout the continuous path can provide a finished surface having a desired uniformity, the time for machining can be longer. Instead the pitch can be controlled to finely step where required to ensure smooth transitions between regions with different cross sectional shapes.
In one embodiment, a single cutting tool 200 can be used to shape the entire exterior surface of the metal alloy casing 100 rather than multiple separate tools to shape the flat and curved regions. The single cutting tool 200 can transition smoothly between different sections on the cutting tool 200 to shape different regions of the metal alloy casing 100 while maintaining continuous contact with the surface of the casing 100. Multiple cutting tools can require additional time to mount and dismount them on the CNC machinery. In addition different cutting tools can result in a mismatch in surface elevation across the shaped casing 100 with undesirable step transitions that can be difficult to remove during the final finishing of the surface of the casing 100. The shaped casing 100 when sanded and polished to a final exterior finish can have a more uniform and seamless appearance using the single cutting tool 200 with a single continuous path as described herein.
The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line used to fabricate thermoplastic molded parts. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This patent application is related to and incorporates by reference in their entireties for all purposes the following co-pending patent applications filed concurrently herewith: (i) U.S. patent application Ser. No. ______ (APL1P799/P10574US1) entitled “FLAT OBJECT EJECTOR ASSEMBLY” by Jules Henry et al.(ii) U.S. patent application Ser. No. ______ (APL1P802/P10574US2) entitled “HANDHELD PORTABLE DEVICE” by Stephen R. McClure et al.;(iii) U.S. patent application Ser. No. ______ (APL1P803/P10574US3) entitled “ANTENNA, SHIELDING AND GROUNDING” by Erik A. Uttermann et al.;(iiv) U.S. patent application Ser. No. ______ (APL1P804/P10574US4) entitled “COMPONENT ASSEMBLY” by Stephen R. McClure et al.