Machining tools which comprise a cutting strand and a cutting strand guide unit are already known.
The invention is based on a machining tool, in particular a rotating cutter machining tool, having at least one cutting strand and having at least one cutting strand guide unit.
It is proposed that the machining tool comprises at least one cutting edge guide unit arrangeable on the cutting strand guide unit and having a maximum transverse extent which is equal to or greater than a maximum cutting width of the cutting strand. Preferably, the cutting edge guide unit in this case has a maximum transverse extent which corresponds in particular to at least 1.1 times, preferably at least 1.5 times, particularly preferably at least 1.8 times the maximum cutting width of the cutting strand. It is also conceivable, however, for the cutting edge guide unit to have a maximum transverse extent which is less than 1.1 times the maximum cutting width of the cutting strand, or for the cutting edge guide unit to have a maximum transverse extent which is greater than 1.5 times the maximum cutting width of the cutting strand. By a “cutting strand” should here be understood, in particular, a unit which is designed to locally undo an atomic coherence of a workpiece to be machined, in particular by means of a mechanical separation and/or by means of a mechanical removal of material particles of the workpiece. Preferably, the cutting strand is designed to separate the workpiece into at least two physically mutually separate parts, and/or to at least partially separate and/or remove material particles of the workpiece, starting from a surface of the workpiece. The cutting width of the cutting strand extends preferably along a direction running at least substantially perpendicular to a cutting plane of the cutting strand. The cutting strand is particularly preferably configured as an endless cutting strand, in particular as a cutting chain, which can be rotatingly and/or oscillatingly driven along a periphery of the cutting strand guide unit.
Preferably, the cutting strand, viewed along a direction running at least substantially perpendicular to the cutting plane of the cutting strand, has a maximum dimension less than 4 mm. Preferably, the dimension is configured as the width, in particular as the cutting width, of the cutting strand. Particularly preferably, the cutting strand, viewed along the direction running at least substantially perpendicular to the cutting plane of the cutting strand, has an at least substantially constant maximum dimension. The maximum dimension corresponds along the total length of the cutting strand preferably to a value from within a range of values from 1 mm to 3 mm. Thus the cutting strand is preferably designed to create a cutting gap which, viewed along the direction running at least substantially perpendicular to the cutting plane of the cutting strand, has a maximum dimension less than 4 mm. Particularly advantageously, cutting gaps of small dimensions can be created, by the cutting strand, viewed along the direction running at least substantially perpendicular to the cutting plane of the cutting strand, having a maximum dimension ranging between 1.3 mm and 2.2 mm. Thus the cutting strand is preferably designed to create a cutting gap which, viewed along the direction running at least substantially perpendicular to the cutting plane of the cutting strand, has a maximum dimension ranging between 1.3 mm and 2.2 mm. It is also conceivable, however, for the cutting strand, viewed along the direction running at least substantially perpendicular to the cutting plane of the cutting strand, to have a maximum dimension which is less than 1.3 mm.
By a “cutting strand guide unit” should here be understood, in particular, a unit which is designed to exert a constraining force on the cutting strand, at least along a direction perpendicular to a cutting direction of the cutting strand, in order to define a mobility of the cutting strand along the cutting direction. Preferably, the cutting strand guide unit has at least one guide element, in particular a guide groove, by which the cutting strand is guided. Preferably, the cutting strand, viewed in the cutting plane, along an at least substantially total periphery of the cutting strand guide unit, is guided through the cutting strand guide unit by means of the guide element, in particular the guide groove. Particularly preferably, the cutting strand and the cutting strand guide unit form a closed system. The term “closed system” is here intended to define, in particular, a system comprising at least two components, which, by means of an interaction, in a disassembled state of the system from a system (such as, for instance, of the portable power tool) that is superordinate to the system, maintain functionality, and/or which, in a state disassembled from the portable power tool, are captively connected to each other. Preferably, the cutting strand and the cutting strand guide unit are mutually connected in such a way that they are at least substantially non-releasable for a user. By “at least substantially non-releasable” should here be understood, in particular, a connection of at least two components which can be separated from each other only with the aid of parting tools, such as, for instance, a saw, etc., and/or chemical parting agents, such as, for instance, solvents etc.
The term “cutting plane” is here intended to define, in particular, a plane in which the cutting strand, in at least one operating state, is moved along a periphery of the cutting strand guide unit in at least two mutually oppositely directed cutting directions relative to the cutting strand guide unit. Preferably, the cutting plane, in a machining of a workpiece, is oriented at least substantially transversely to a workpiece surface to be machined. By “at least substantially transversely to” should here be understood, in particular, an orientation of a plane and/or of a direction relative to a further plane and/or a further direction, which orientation preferably differs from a parallel orientation of the plane and/or of the direction relative to the further plane and/or the further direction. It is also conceivable, however, for the cutting plane, in a machining of a workpiece, to be oriented at least substantially parallel to a workpiece surface to be machined, in particular where the cutting strand is configured as an abrasive, etc. By “at least substantially parallel” should here be understood, in particular, an orientation of a direction relative to a reference direction, wherein the direction and the reference direction, in particular viewed in a plane, form an angle of 90° and the angle has a maximum deviation of, in particular, less than 8°, advantageously less than 50, and particularly advantageously less than 2°. By a “cutting direction” should here be understood, in particular, a direction along which the cutting strand, for the creation of a cutting gap and/or for the separation and/or for the abrasion of workpiece particles of a workpiece to be machined, is moved in at least one operating state, as a result of a drive force and/or a drive torque, in particular in the guide groove of the cutting strand guide unit. Preferably, the cutting strand, in an operating state, is moved along the cutting direction relative to the cutting strand guide unit in the guide groove.
Particularly preferably, the machining tool has a total mass which is less than 500 g. Preferably, the machine tool parting device has a total mass which is less than 100 g, and particularly preferably less than 50 g. Moreover, the machining tool preferably has a maximum longitudinal extent which is less than 300 mm.
Preferably, the machining tool has a maximum longitudinal extent which is greater than 30 mm Advantageously, the cutting strand guide unit together with the mounted cutting strand, viewed along a direction running at least substantially parallel to the cutting plane of the cutting strand and at least substantially perpendicular to a direction of principal extent of the cutting strand guide unit, has a maximum dimension less than 50 mm. Preferably, the cutting strand guide unit together with the mounted cutting strand, viewed along the direction running at least substantially parallel to the cutting plane of the cutting strand and at least substantially perpendicular to the direction of principal extent of the cutting strand guide unit, has a dimension less than 30 mm, particularly preferably less than 25 mm. The dimension is preferably configured as the total height of the cutting strand guide unit together with the cutting strand mounted on the cutting strand guide unit. Thus the cutting strand is preferably designed to create, in particular as a result of a one-off intrusion of the machining tool into the workpiece, a cutting gap which, viewed along a direction running at least substantially parallel to the cutting plane of the cutting strand and at least substantially perpendicular to the direction of principal extent of the cutting strand, has a maximum dimension less than 50 mm. Preferably, the cutting strand is designed to create, in particular as a result of a one-off intrusion of the machining tool into the workpiece, a cutting gap which, viewed along the direction running at least substantially parallel to the cutting plane of the cutting strand and at least substantially perpendicular to the direction of principal extent of the cutting strand guide unit together with the mounted cutting strand, a dimension ranging between 10 mm and 30 mm, and particularly preferably a dimension ranging between 11 mm and 25 mm. By a “direction of principal extent” should here be understood, in particular, a direction along which the cutting strand guide unit together with the mounted cutting strand has a maximum extent.
By a “cutting strand guide unit” should here be understood, in particular, a unit which is designed to guide the machining tool, in particular by means of an interaction with a guide element of a cutting edge guiding device, along a cutting edge of a cut to be made by means of the machining tool into a workpiece to be machined, and to prevent drifting of the machining tool and/or deviation of the machining tool from a desired cutting line. The expression “designed” is intended to define specifically arranged and/or specifically equipped. By an object being designed for a particular function should be understood, in particular, that the object fulfils and/or performs this particular function in at least one application state and/or operating state. By means of the inventive design of the machining tool, a constructively simple and precise guidance during machining of a workpiece can advantageously be enabled. Precise work results can thus advantageously be enabled. Moreover, a particularly compact machining tool, which can be precisely guided by means of the machining tool guiding device, can advantageously be achieved.
Furthermore, it is proposed that the cutting edge guide unit has at least one fastening element for a positive and/or non-positive fastening to the cutting strand guide unit. The fastening element can in this case be configured as a threaded bolt, as a rivet, as a latching hook, etc. The fastening element is preferably arranged on a side wall element of the cutting strand guide unit. Thus the cutting edge guide unit is fastened preferably to the side wall element. In this case, the cutting strand guide unit is preferably of multipart configuration. It is also conceivable, however, for the cutting strand guide unit to have just a single component, to which the cutting edge guide unit is fastened by means of the fastening element. In an alternative embodiment, the cutting edge guide unit is configured at least partially in one piece with the cutting strand guide unit. By “in one piece” should be understood, in particular, at least integrally connected, for instance by a welding process, a bonding process, an injection process and/or another process which appears sensible to the person skilled in the art, and/or advantageously formed in one piece, such as, for instance, by production from one casting and/or by a production in a single-component or multi-component injection process, and advantageously from a single blank. By means of the inventive design, a simple fastening of the cutting edge guide unit to the cutting strand guide unit can advantageously be enabled. Thus the cutting edge guide unit can advantageously be removably arranged on the cutting strand guide unit. An arrangement of the cutting edge guide unit can thus advantageously be enabled in dependence on a field of application of the machining tool.
It is further proposed that the cutting edge guide unit has at least one cutting edge guide element, which is movably mounted on the cutting strand guide unit. The expression “movably mounted” is here intended to define, in particular, a mounting of a unit and/or of an element wherein the unit and/or the element, in particular decoupled from an elastic deformation of the unit and/or of the element, has a mobility along at least one path greater than 1 mm, preferably greater than 2 mm, and particularly preferably greater than 5 mm, and/or a mobility about at least one axis through an angle greater than 5°, preferably greater than 8°, and particularly preferably greater than 10°. The cutting edge guide element is preferably mounted on the cutting strand guide unit such that it is translatorily movable along a longitudinal axis of the cutting strand guide unit. It is also conceivable, however, for the cutting edge guide element to alternatively or additionally be mounted in a rotationally movable manner on the cutting strand guide unit. By means of the inventive design of the machining tool, an adaptation of the cutting edge guide unit to different workpiece thicknesses can advantageously be enabled.
In addition, it is proposed that the cutting edge guide unit has at least one stop element, which, viewed along at least one direction running at least substantially parallel to the cutting plane of the cutting strand, extends beyond the cutting strand. The stop element can in this case be arranged fixedly or movably on the cutting strand guide unit. The stop element is preferably designed to limit a motional path of the machining tool relative to a workpiece. Thus undesirable cutting gaps, or damage to the machining tool or to a support on which a workpiece to be machined is disposed, can at least be very largely prevented or be kept small.
Furthermore, it is proposed that the stop element is configured at least partially in one piece with a cutting edge guide element of the cutting edge guide unit. Preferably, the stop element is in this case disposed on a side wall element of the cutting strand guide unit. It is also conceivable, however, for the stop element to be disposed on another element of the cutting edge guide unit which appears sensible to a person skilled in the art. By means of the inventive design, a compact cutting edge guide unit can advantageously be realized. Moreover, the cutting edge guide unit can thus advantageously fulfill different functions.
It is further proposed that the stop element is of resilient configuration. By “resilient” should be understood, in particular, a property, in particular a material-related and/or a shape-related property of an element, which property enables repeated deformation without the element being thereby damaged or destroyed, wherein the element, as a result of this property, in particular following a deformation, independently strives to revert to a basic shape. Thus an automatic adaptation of a position of the stop element to, for instance, a workpiece thickness can advantageously take place. Moreover, a clamping of the workpiece by means of the stop element can advantageously be achieved.
Moreover, a portable power tool system having at least one portable power tool, having at least one machining tool according to the invention, and having at least one cutting edge guiding device, which latter comprises at least one guide element designed to interact with the cutting edge guide unit of the machining tool, is proposed. By a “portable power tool” should here be understood, in particular, a machine tool, in particular a portable power tool, which can be transported without a transport machine by a user. The portable power tool has, in particular, a mass which is less than 40 kg, preferably less than 10 kg, and particularly preferably less than 5 kg. By means of the inventive design of the portable power tool system, a precise machining of a workpiece can advantageously be enabled.
Furthermore, it is proposed that the guide element is configured as a guide rail, which has a guide geometry that varies along at least one direction. By a “varying guide geometry” should here be understood, in particular, a variation of a geometry of the guide element, in particular of a guide groove of the guide element, in at least one section, wherein the variation is configured, for instance, in the form of a taper, a step, etc. In this case, it is conceivable, moreover, that in the section of the guide geometry variation a wear element of the cutting edge guiding device is disposed on the guide element, which wear element is designed to be eroded by the cutting strand during machining of a workpiece. By means of the inventive design, a direct bearing of the machining tool, at least in the section of the guide geometry variation, against the guide element can advantageously be ensured. As a result, in a cut-in operation, in particular given a workpiece crack, a precise guidance can in particular advantageously be enabled by means of the cutting strand.
It is further proposed that the guide element comprises at least one maximum guide geometry extent which, viewed along a direction running at least substantially parallel to a cutting plane of the cutting strand, is equal to or greater than a maximum longitudinal extent of a cutting edge guide element of the cutting edge guide unit. Preferably, the guide element, in particular a guide groove of the guide element, in this case has a maximum guide geometry extent which corresponds in particular to at least 1.5 times, preferably at least 2 times, and particularly preferably at least 2.5 times the maximum longitudinal extent of the cutting edge guide element. The maximum guide geometry extent of the guide element runs, particularly preferably, along an at least substantially perpendicular to a workpiece bearing surface of the guide element. In this case, the workpiece bearing surface can be designed to be placed onto a workpiece during guidance or to receive a workpiece during guidance in order to support machining forces acting on the workpiece. By means of the inventive design of the portable power tool system, the cutting edge guide element can advantageously be connected to the guide element in a user-friendly, in particular clamp-free manner and, in particular, can advantageously be guided with low play.
In addition, it is proposed that the guide element comprises at least one guide groove, into which the machining tool during machining of a workpiece extends at least partially. In this case, the machining tool preferably extends into the guide groove at least with a section of the cutting strand guide unit on which the cutting edge guide unit is disposed. As a result, a particularly comfortable guidance can be enabled.
The machining tool according to the invention and/or the portable power tool system according to the invention should in this case not be confined to the above-described application(s) and embodiment(s). In particular, the machining tool according to the invention and/or the portable power tool system according to the invention can have, for fulfillment of a herein described working method, a number which deviates from a herein stated number of individual elements, components and units.
Further advantages emerge from the following drawing description. In the drawing, illustrative embodiments of the invention are represented. The drawing, the description and the claims contain numerous features in combination. The person skilled in the art will expediently view the features also individually and put them together them into sensible further combinations.
Furthermore, the portable power tool 26a comprises at least one bearing unit 60a for supporting the portable power tool 26a on a surface of the workpiece 34a to be machined, wherein the workpiece 34a, for machining by means of the machining tool 10a, is arrangeable between the bearing unit 60a of the portable power tool 26a and a guide element 30a of the cutting edge guiding device 28a. The bearing unit 60a is configured as a sliding block or as a base plate of the portable power tool 26a. The bearing unit 60a can in this case comprise a coated sliding surface, by means of which the portable power tool 26a can slide on the surface of the workpiece 34a during a movement along a motional direction of the machining.
The portable power tool 26a further has a machine tool housing 38a, which encloses a drive unit 40a and a transmission unit 42a of the portable power tool 26a. The drive unit 40a and the transmission unit 42a are functionally connected to each other, in a manner which is already known to a person skilled in the art, for the generation of a drive torque transmissible to the machining tool 10a. The transmission unit 42a is configured as an angular gear. The drive unit 40a is configured as an electric motor unit. It is also conceivable, however, for the drive unit 40a and/or the transmission unit 42a to have another embodiment which appears sensible to a person skilled in the art. The drive unit 40a is designed to drive a cutting strand 12a of the machining tool 10a in at least one operating state at a cutting speed less than 6 m/s. In this case, the portable power tool 26a has at least one operating mode in which a driving of the cutting strand 12a in a cutting strand guide unit 14a of the machining tool 10a along a cutting direction of the cutting strand 12a at a cutting speed less than 6 m/s is enabled.
The cutting strand 12a is guided by means of the cutting strand guide unit 14a. To this end, the cutting strand guide unit 14a has at least one cutting strand guide groove, which extends in a cutting plane of the cutting strand 12a along an at least substantially total periphery of the cutting strand guide unit 14a. In this case, the cutting strand 12a is guided by means of marginal regions of the cutting strand guide unit 14a, which marginal regions delimit the cutting strand guide groove. It is also conceivable, however, for the cutting strand guide unit 14a to have another embodiment which appears sensible to a person skilled in the art, for the guidance of the cutting strand 12a, such as, for instance, a rib-like molding on the cutting strand guide unit 14a, which molding engages in a recess on the cutting strand 12a, etc. The cutting strand 12a, viewed in a plane running perpendicular to the cutting plane, is surrounded from three sides by the marginal regions which delimit the cutting strand guide groove. The cutting strand 12a is moved during operation rotatingly along the periphery in the cutting strand guide groove relative to the cutting strand guide unit 14a.
Furthermore, the machining tool 10a comprises at least the cutting edge guide unit 16a arrangeable on the cutting strand guide unit 14a and having a maximum transverse extent 44a which is equal to or greater than a maximum cutting width 62a of the cutting strand 12a (
Furthermore, the cutting edge guide unit 16a has at least one fastening element 18a for a positive and/or non-positive fastening of the cutting edge guide unit 16a to the cutting strand guide unit 14a (
In an alternative embodiment (not represented here), it is also conceivable for the cutting edge guide element 20a and the further cutting edge guide element 48a to be arranged movably on the cutting strand guide unit 14a. In this case, the fastening element 18a could extend through an elongate recess disposed in the cutting strand guide unit 14a. As a result of a release of the fastening element 18a, a translatorily movable arrangement of the cutting edge guide element 20a and of the further cutting edge guide element 48a could hence be enabled. Other embodiments of the cutting edge guide unit 16a which appear sensible to a person skilled in the art, for a movable mounting of the cutting edge guide element 20a and of the further cutting edge guide element 48a, are likewise conceivable.
For guidance of the machining tool 10a as a cut is made in a workpiece 34a, the portable power tool system 24a has the cutting edge guiding device 28a. The cutting edge guiding device 28a is thus configured as a cutting strand tool guiding device. In this case, the cutting edge guiding device 28a comprises at least one guide element 30a for guidance of the machining tool 10a during a movement along a cutting edge. To this end, the guide element 30a comprises at least one guide groove 32a, into which the machining tool 10a during machining of a workpiece 34a extends at least partially (
The guide element 30a is configured as a guide rail. In this case, the guide element 30a has at least one workpiece support surface 54a, on which the workpiece 34a is arrangeable for machining by means of the machining tool 10a. The guide element 30a can be removably arranged on a work plate 56a of a machining table 58a of the cutting edge guiding device 28a. In this case, the guide element 30a is removably recessed in the work plate 56a, wherein a surface of the work plate 56a is arranged at least substantially flush with the workpiece support surface 54a. It is also conceivable, however, for the surface of the work plate 56a to be arranged relatively distant from the workpiece support surface 54a.
The guide element 30a comprises, furthermore, at least one constraining force transmission surface, which is designed to exert on the machining tool 10a, for guidance of the machining tool 10a, at least one constraining force along at least one direction running substantially transversely to the motional direction of the machining. To this end, the cutting edge guide unit 16a, in particular the cutting edge guide element 20a and/or the further cutting edge guide element 48a, during a movement along the motional direction of the machining, bears against the constraining force transmission surface. In addition, the guide element 30a has at least one further constraining force transmission surface, which is designed to exert on the machining tool 10a, for guidance of this same, at least one constraining force along at least one further direction running at least substantially transversely to the motional direction of the machining. The constraining force transmission surface and the further constraining force transmission surface extend in this case at least substantially in parallel. The constraining force transmission surface and the further constraining force transmission surface delimit the guide groove 32a. In this case, the guide groove 32a has at least in one section a design corresponding to an external geometry of the machining tool 10a, in particular to the external geometry of the cutting edge guide unit 16a. Further embodiments of the cutting edge guide unit 16a and/or of the cutting edge guiding device 28a, which embodiments appear sensible to a person skilled in the art, are likewise conceivable.
Furthermore, the guide element 30a′ alternatively or additionally comprises at least one wear element 64a′, which is disposed in the region of the varying guide geometry or on the forced guidance surface and/or on the further forced guidance surface. Thus the guide element 30a′ alternatively or additionally comprises at least two wear elements 64a′, 66a′. The wear elements 64a′, 66a′ are disposed on two mutually facing sides of the guide groove. It is also conceivable, however, for the guide element 30a′ alternatively or additionally to have a number of wear elements 64a′, 66a′ other than two.
In
Unlike the cutting edge guiding device 28a described in the description of
Unlike the machining tool 10a described in the description of
Furthermore, the cutting edge guide unit 16c has at least one stop element 22c, which, viewed along a direction running at least substantially parallel to a cutting plane of a cutting strand 12c of the machining tool 10c, extends beyond the cutting strand 12c. The stop element 22c is in this case configured at least partially in one piece with the cutting edge guide element 20c of the cutting edge guide unit 16c. The stop element 22c is thus of resilient configuration. In terms of further functions and features of the machining tool 10c and an interaction of the machining tool 10c and the cutting edge guiding device 28c, reference may be made to the description of
The portable power tool of the further alternative portable power tool system 24d has an at least substantially analogous design in comparison to the portable power tool 26a represented in
Furthermore, the cutting edge guide unit 16d has at least one stop element 22d, which, viewed along at least one direction running at least substantially parallel to a cutting plane of the cutting strand 12d, extends beyond the cutting strand 12d. In this case, the stop element 22d extends along at least two directions running at least substantially perpendicular to each other, which directions run at least substantially parallel to a cutting plane of the cutting strand 12d, beyond the cutting strand 12d (
Number | Date | Country | Kind |
---|---|---|---|
10 2013 212 604.2 | Jun 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/059450 | 5/8/2014 | WO | 00 |