Antioxidants are employed to prevent oxidation in a wide range of materials, for example, plastics, elastomers, lubricants, petroleum based products (lubricants, gasoline, aviation fuels, and engine oils), cooking oil, cosmetics, processed food products, and the like. While many small molecule antioxidants exist, there is a continuing need for new antioxidants that have improved properties.
The commercial use of triaryl phophites in latex is well known. Triaryl phophites containing alkyl-substituted phenyl rings have been found to be effective synthetic latex stabilizers. However, there is a continuing need for antioxidants with higher antioxidant activity and higher thermal stability.
The present invention relates to high performance, sterically hindered, phenol and phosphite based macromolecular antioxidants. In certain embodiments, the sterically hindered, phenol and phosphite based macromolecules of the present invention have enhanced antioxidant activity and better thermal stability compared to commercially available antioxidants.
In particular, the present invention pertains to sterically hindered phenol and phosphite based compounds represented by a formula selected from I-III:
R is:
R1 and R2 in each occurrence, independently is an optionally substituted alkyl, an optionally substituted aryl or an optionally substituted aralkyl.
X and Y in each occurrence, independently is a bond, —O—, —NH—, —C(O)NH—, —NHC(O)—, —C(O)O—, —OC(O)— or —CH2—.
n and m in each occurrence, is independently 0 or a positive integer.
i and j in each occurrence, independently is 0, 1, 2, 3 or 4.
R″ is an optionally substituted alkyl.
In another embodiment, the present invention pertains to methods of preventing oxidation. The method comprises combining an oxidizable material with a compound represented by a structural formula selected from I-III.
In yet another embodiment, the present invention pertains to methods for preparing sterically hindered phenol and phosphite based compound, having a formula selected from I-III. The method comprises combining a phenol containing compound with a phosphorous containing compound, such as, phosphorous trichloride in a suitable solvent under conditions suitable for reaction of the phenol containing compound with the phosphorous containing compound.
In yet another embodiment the present invention pertains to the use of the disclosed compounds as antioxidants in a wide range of materials including, but not limited to, food, plastics, elastomers, composites and petroleum based products.
The compounds of the invention provide significant oxidative resistance and thermal stability. The compounds of the invention generally have higher oxidative induction time, higher thermal stability and lower change of Melt flow or viscosity than commercially available antioxidants Without wishing to be bound by theory it is believed that the enhanced molecular activity comes from the synergistic chemistry between the two main integral components (phenolic and phosphite components) of these macromolecular antioxidants.
In certain embodiments, the compounds disclosed herein, do not discolor the substance to which they are added. In certain other embodiments the compounds disclosed herein impart fewer odors to the substance to which they are added than currently available antioxidants. In certain other embodiments, the disclosed compounds provide enhanced oven aging properties to organic materials subject to attack by heat and oxygen. In certain other embodiments the disclosed compounds have higher antioxidant activity and higher thermal stability than antioxidants which are currently known or used in the art.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
In one embodiment, the present invention pertains to sterically hindered phenol and phosphite based compounds, represented by a formula selected from I-III:
R is:
R1 and R2 in each occurrence, independently is an optionally substituted alkyl, optionally substituted aryl or optionally substituted aralkyl. In one embodiment, each R1 and R2 are independently an optionally substituted alkyl. In another embodiment, each R1 and R2 are independently a C1-C6 alkyl.
In one embodiment R is:
In another embodiment R is:
In yet another embodiment R is:
X and Y in each occurrence independently is a bond, —O—, —NH—, —C(O)NH—, —NHC(O)—, —C(O)O—, —OC(O)— or —CH2—. In one embodiment, X and Y in each occurrence independently is a bond or —CH2—. In another embodiment. X and Y in each occurrence independently is a bond, —O— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —NH— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —C(O)NH— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —NHC(O)—, or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —C(O)O— or —CH2—. In yet another embodiment, X and Y in each occurrence independently is a bond, —OC(O)— or —CH2—.
n and m in each occurrence independently is 0 or a positive integer. In one embodiment, n and m in each occurrence independently is 0 to 18. In another embodiment, n and m in each occurrence independently is 0 to 12. In yet another embodiment, n and m are in each occurrence independently is 0 to 6.
i and j in each occurrence independently is 0, 1, 2, 3 or 4. In one embodiment i and j in each occurrence independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment j is 2.
R″ is an optionally substituted alkyl. In one embodiment R″ is C1-C6 alkyl.
In one embodiment the present invention pertains to compounds represented by structural formula I.
In one embodiment the present invention pertains to compounds represented by structural formula II.
In one embodiment the present invention pertains to compounds represented by structural formula III.
In a particular embodiment, for compounds of the present invention represented by structural formulas I-III, R is:
and n and m in each occurrence independently is 0 to 12, and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R, n and m are as described immediately above, and R1 and R2 in each occurrence, independently is an optionally substituted alkyl; i and j in each occurrence independently is 0, 1 or 2; and the remainder of the variables are as described above for structural formulas I-III.
In yet another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i and j are as described immediately above, and R is:
n and m in each occurrence, independently is 0 to 6; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —O— or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —NH— or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —C(O)NH— or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —NHC(O)—, or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —C(O)O— or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In another particular embodiment, for compounds of the present invention represented by structural formulas I-III, R1, R2, i, j, R, n and m are as described immediately above, and X and Y in each occurrence, independently is a bond, —OC(O)— or —CH2—; and the remainder of the variables are as described above for structural formulas I-III.
In an additional embodiment, for formulas I-III R is:
n and m in each occurrence, independently is 0 or a positive integer. In one embodiment, n and m in each occurrence, independently is 0 to 18. In another embodiment, n and m in each occurrence, independently is 0 to 12. In yet another embodiment, n and m in each occurrence, independently is 0 to 6.
i and j in each occurrence, independently is 0, 1, 2, 3 or 4. In one embodiment, i and j in each occurrence, independently is 0, 1 or 2. In a particular embodiment, i is 0. In another particular embodiment, j is 2.
Z′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment, Z′ is —C(O)O—. In another embodiment, Z′ is —OC(O)—. In yet another embodiment, Z′ is —C(O)NH—. In yet another embodiment, Z′ is —NHC(O)—. In yet another embodiment, Z′ is —NH—. In yet another embodiment, Z′ is —CH═N—. In yet another embodiment, Z′ is —C(O)—. In yet another embodiment, Z′ is —O—. In yet another embodiment, Z′ is —S—. In yet another embodiment, Z′ is —C(O)OC(O)—. In yet another embodiment, Z′ is a bond.
R′ is an optionally substituted C1-C6 alkyl, —OH, —NH2, —SH, an optionally substituted aryl, an ester or
wherein at least one R′ adjacent to the —OH group is an optionally substituted bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).
R′1 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or C1-C6 alkyl ester wherein at least one R1 adjacent to the —OH group is a bulky alkyl group (e.g., butyl, sec-butyl, tert-butyl, 2-propyl, 1,1-dimethylhexyl, and the like).).
R′2 is an optionally substituted C1-C6 alkyl, an optionally substituted aryl, an optionally substituted aralkyl, —OH, —NH2, —SH, or ester.
X′ is —C(O)O—, —OC(O)—, —C(O)NH—, —NHC(O)—, —NH—, —CH═N—, —C(O)—, —O—, —S—, —C(O)OC(O)— or a bond. In one embodiment X′ is —C(O)O—. In another embodiment X′ is —OC(O)—. In yet another embodiment X′ is —C(O)NH—. In yet another embodiment X′ is —NHC(O)—. In yet another embodiment X′ is —NH—. In yet another embodiment X′ is —CH═N—. In yet another embodiment X′ is —C(O)—. In yet another embodiment X′ is —O—. In yet another embodiment X′ is —S—. In yet another embodiment X′ is —C(O)OC(O)—. In yet another embodiment X′ is a bond.
M′ is H, an optionally substituted aryl, an optionally substituted C1-C20 linear or branched alkyl chain with or without any functional group anywhere in the chain, or
o is 0 or a positive integer. Preferably o is 0 to 18. More preferably o is 0 to 12. Even more preferably o is 0 to 6.
In yet another embodiment, for formulas I-III R is:
R′2 is C1-C6 alkyl, —OH, —NH2, —SH, aryl, ester, aralkyl or
wherein at least one R′2 is —OH, and the values and preferred values for the remainder of the variables for R are as described immediately above.
In yet another embodiment, the present invention relates to a compound of formula I-III, wherein M is
Wherein p is 0, 1, 2, 3 or 4; and the values and preferred values for the remainder of the variables are as described above for formulas I-III.
The term “alkyl” as used herein means a saturated straight-chain, branched or cyclic hydrocarbon. When straight-chained or branched, an alkyl group is typically C1-C8, more typically C1-C6; when cyclic, an alkyl group is typically C3-C12, more typically C3-C7 alkyl ester. Examples of alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl and tert-butyl and 1,1-dimethylhexyl.
The term “alkoxy” as used herein is represented by —OR**, wherein R** is an alkyl group as defined above.
The term “acyl” as used herein is represented by —C(O)R**, wherein R** is an alkyl group as defined above.
The term “alkyl ester” as used herein means a group represented by —C(O)OR**, where R** is an alkyl group as defined above.
The term “aromatic group” used alone or as part of a larger moiety as in “aralkyl”, includes carbocyclic aromatic rings and heteroaryl rings. The term “aromatic group” may be used interchangeably with the terms “aryl”, “aryl ring” “aromatic ring”, “aryl group” and “aromatic group”.
Carbocyclic aromatic ring groups have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which two or more carbocyclic aromatic rings are fused to one another. Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl and 2-anthracyl. Also included within the scope of the term “carbocyclic aromatic ring”, as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), such as in an indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, where the radical or point of attachment is on the aromatic ring.
The term “heteroaryl”, “heteroaromatic”, “heteroaryl ring”, “heteroaryl group” and “heteroaromatic group”, used alone or as part of a larger moiety as in “heteroaralkyl” refers to heteroaromatic ring groups having five to fourteen members, including monocyclic heteroaromatic rings and polycyclic aromatic rings in which a monocyclic aromatic ring is fused to one or more other aromatic ring. Heteroaryl groups have one or more ring heteroatoms. Examples of heteroaryl groups include 2-furanyl, 3-furanyl, N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-oxadiazolyl, 5-oxadiazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-triazolyl, 5-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, carbazolyl, 2-benzothienyl, 3-benzothienyl, 2-benzofuranyl, 3-benzofuranyl, 2-indolyl, 3-indolyl, 2-quinolinyl, 3-quinolinyl, 2-benzothiazole, 2-benzooxazole, 2-benzimidazole, 2-quinolinyl, 3-quinolinyl, 1-isoquinolinyl, 3-quinolinyl, 1-isoindolyl and 3-isoindolyl. Also included within the scope of the term “heteroaryl”, as it is used herein, is a group in which an aromatic ring is fused to one or more non-aromatic rings (carbocyclic or heterocyclic), where the radical or point of attachment is on the aromatic ring.
The term “heteroatom” means nitrogen, oxygen, or sulfur and includes any oxidized form of nitrogen and sulfur, and the quaternized form of any basic nitrogen. Also the term “nitrogen” includes a substitutable nitrogen of a heteroaryl or non-aromatic heterocyclic group. As an example, in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur or nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR″ (as in N-substituted pyrrolidinyl), wherein R″ is a suitable substituent for the nitrogen atom in the ring of a non-aromatic nitrogen-containing heterocyclic group, as defined below.
An “aralkyl group”, as used herein is an alkyl groups substituted with an aryl group as defined above.
An optionally substituted aryl group as defined herein may contain one or more substitutable ring atoms, such as carbon or nitrogen ring atoms. Examples of suitable substituents on a substitutable ring carbon atom of an aryl group include —OH, C1-C3 alkyl, C1-C3 haloalkyl, —NO2, C1-C3 alkoxy, C1-C3 haloalkoxy, —CN, —NH2, C1-C3 alkylamino, C1-C3 dialkylamino, —C(O)NH2, —C(O)NH(C1-C3 alkyl), —C(O)(C1-C3 alkyl), —NHC(O)H, —NHC(O)(C1-C3 alkyl), —C(O)N(C1-C3 alkyl)2, —NHC(O)O—(C1-C3 alkyl), —C(O)OH, —C(O)O—(C1-C3 alkyl), —NHC(O)NH2, —NHC(O)NH(C1-C3 alkyl), —NHC(O)N(C1-C3 alkyl)2, —SO2NH2—SO2NH(C1-C3alkyl), —SO2N(C1-C3alkyl)2, NHSO2H or NHSO2(C1-C3 alkyl). Preferred substituents on aryl groups are as defined throughout the specification. In certain embodiments optionally substituted aryl groups are unsubstituted.
Examples of suitable substituents on a substitutable ring nitrogen atom of an aryl group include C1-C3 alkyl, NH2, C1-C3 alkylamino, C1-C3 dialkylamino, —C(O)NH2, —C(O)NH(C1-C3 alkyl), —C(O)(C1-C3 alkyl), —CO2R**, —C(O)C(O)R**, —C(O)CH3, —C(O)OH, —C(O)O—(C1-C3 alkyl), —SO2NH2—SO2NH(C1-C3alkyl), —SO2N(C1-C3alkyl)2, NHSO2H, NHSO2(C1-C3 alkyl), —C(═S)NH2, —C(═S)NH(C1-C3 alkyl), —C(═S)N(C1-C3 alkyl)2, —C(═NH)—N(H)2, —C(═NH)—NH(C1-C3 alkyl) and —C(═NH)—N(C1-C3 alkyl)2,
An optionally substituted alkyl group as defined herein may contain one or more substituents. Examples of suitable substituents for an alkyl group include those listed above for a substitutable carbon of an aryl and the following: ═O, ═S, ═NNHR**, ═NN(R**)2, ═NNHC(O)R**, ═NNHCO2 (alkyl), ═NNHSO2 (alkyl), ═NR**, Spiro cycloalkyl group or fused cycloalkyl group. R** in each occurrence, independently is —H or C1-C6 alkyl. Preferred substituents on alkyl groups are as defined throughout the specification. In certain embodiments optionally substituted alkyl groups are unsubstituted.
A “Spiro cycloalkyl” group is a cycloalkyl group which shares one ring carbon atom with a carbon atom in an alkylene group or alkyl group, wherein the carbon atom being shared in the alkyl group is not a terminal carbon atom.
Without wishing to be bound by any theory or limited to any mechanism it is believed that macromolecular antioxidants of the present invention exploit the differences in activities (ks, equilibrium constant) of, for example, homo- or hetero-type antioxidant moieties. Antioxidant moieties include, for example, hindered phenolic groups, unhindered phenolic groups, aminic groups and thioester groups, etc. of which there can be one or more present in each macromolecular antioxidant molecule. As used herein a homo-type antioxidant macromolecule comprises antioxidant moieties which are all same, for example, hindered phenolic, —OH groups. As used herein a hetero-type antioxidant macromolecule comprises at least one different type of moiety, for example, hindred phenolic and aminic groups in the one macromolecule.
This difference in activities can be the result of, for example, the substitutions on neighboring carbons or the local chemical or physical environment (for example, due to electrochemical or stereochemical factors) which can be due in part to the macromolecular nature of molecules.
In one embodiment of the present invention, a series of macromolecular antioxidant moieties of the present invention with different chemical structures can be represented by W1H, W2H, W3H, . . . to WnH. In one embodiment of the present invention, two types of antioxidant moieties of the present invention can be represented by: W1H and W2H. In certain embodiments W1H and W2H can have rate constants of k1 and k2 respectively. The reactions involving these moieties and peroxyl radicals can be represented as:
where ROO. is a peroxyl radical resulting from, for example, initiation steps involving oxidation activity, for example:
RH→R.+H. (3)
R.+O2→ROO. (4)
In one particular embodiment of the present invention k1>>k2 in equations (1) and (2). As a result, the reactions would take place in such a way that there is a decrease in concentration of W1. free radicals due their participation in the regeneration of active moiety W2H in the molecule according equation (5):
W1.+W2H→W1H+W2. (5) (transfer equilibrium)
This transfer mechanism may take place either in intra- or inter-molecular macromolecules. The transfer mechanism (5) could take place between moieties residing on the same macromolecule (intra-type) or residing on different macromolecules (inter-type).
In certain embodiments of the present invention, the antioxidant properties described immediately above (equation 5) of the macromolecular antioxidants of the present invention result in advantages including, but not limited to:
In certain embodiments of the present invention, the following items are of significant interest for enhanced antioxidant activity in the design of the macromolecular antioxidants of the present invention:
In certain embodiments of the present invention, more than two types of antioxidant moieties with different rate constants are used in the methods of the present invention.
In certain embodiments, the present invention pertains to the use of the disclosed compounds to inhibit oxidation in an oxidizable material.
For purposes of the present invention, a method of “inhibiting oxidation” is a method that inhibits the propagation of a free radical-mediated process. Free radicals can be generated by heat, light, ionizing radiation, metal ions and some proteins and enzymes. Inhibiting oxidation also includes inhibiting reactions caused by the presence of oxygen, ozone or another compound capable of generating these gases or reactive equivalents of these gases.
As used herein the term “oxidizable material” is any material which is subject to oxidation by free-radicals or oxidative reaction caused by the presence of oxygen, ozone or another compound capable of generating these gases or reactive equivalents thereof.
Antioxidant compounds of the present invention can be used to prevent oxidation in a wide variety of compositions where free radical mediated oxidation leads to deterioration of the quality of the composition, including edible products such as oils, foods (e.g., meat products, dairy products, cereals, etc.), and other products containing fats or other compounds subject to oxidation. Antioxidant compounds can also be present in plastics and other polymers, elastomers (e.g., natural or synthetic rubber), petroleum products (e.g., fossil fuels such as gasoline, kerosene, diesel oil, heating oil, propane, jet fuel), lubricants, paints, pigments or other colored items, soaps and cosmetics (e.g., creams, lotions, hair products). The antioxidant compounds can be used to coat a metal as a rust and corrosion inhibitor. Antioxidant compounds additionally can protect antioxidant vitamins (Vitamin A, Vitamin C, Vitamin E) and pharmaceutical products from degradation. In food products, the antioxidant compounds can prevent rancidity. In plastics, the antioxidant compounds can prevent the plastic from becoming brittle and cracking.
Antioxidant compounds of the present invention can be added to oils to prolong their shelf life and properties. These oils can be formulated as vegetable shortening or margarine. Oils generally come from plant sources and include cottonseed oil, linseed oil, olive oil, palm oil, corn oil, peanut oil, soybean oil, castor oil, coconut oil, safflower oil, sunflower oil, canola (rapeseed) oil and sesame oil. These oils contain one or more unsaturated fatty acids such as caproleic acid, palmitoleic acid, oleic acid, vaccenic acid, elaidic acid, brassidic acid, erucic acid, nervonic acid, linoleic acid, eleosteric acid, alpha-linolenic acid, gamma-linolenic acid, and arachidonic acid, or partially hydrogenated or trans-hydrogenated variants thereof. Antioxidant compounds of the present invention are also advantageously added to food or other consumable products containing one or more of these fatty acids.
The shelf life of many materials and substances contained within the materials, such as packaging materials, are enhanced by the presence of an antioxidant compound of the present invention. The addition of an antioxidant compound to a packaging material is believed to provide additional protection to the product contained inside the package. In addition, the properties of many packaging materials themselves, particularly polymers, are enhanced by the presence of an antioxidant regardless of the application (i.e., not limited to use in packaging). Common examples of packaging materials include paper, cardboard and various plastics and polymers. A packaging material can be coated with an antioxidant compound (e.g., by spraying the antioxidant compound or by applying as a thin film coating), blended with or mixed with an antioxidant compound, or otherwise have an antioxidant compound present within it.
The entire teachings of each of the following applications are incorporated herein by reference:
In another particular embodiment, the present invention relates to a process for preparing compounds of the present invention. Compounds of the present invention can be prepared by a one pot process, comprising the step of combining a phenol containing compound with a suitable phosphorous containing compound in a suitable solvent under conditions suitable for the reaction of the phenol containing compound with the phosphorous containing compound.
Suitable phenol containing compounds include:
where the vales and preferred values for the variables are as described above.
Suitable phosphorous containing compounds are those which are capable of reacting with phenol containing compounds to produce compounds represented by Structural Formula I-III, including, for example, phosphorous trichloride, phosphorous pentachloride, phosphoric acid and phosphoryl trichloride.
Suitable solvents are those which do not contain any acidic protons and dissolve the starting material and the side products, but do not dissolve the end product. Examples of suitable solvents include, for example, dichloromethane, toluene, tetrahydrofuran, dichloromethane, chloroform, dioxane and acetonitrile.
In certain embodiments, the reaction of the phenol containing compound with the phosphorous containing compound occurs at 25° C. In other embodiments, the reaction of the phenol containing compound with the phosphorous containing compound occurs below 25° C. In other embodiments, the reaction of the phenol containing compound with the phosphorous containing compound occurs at a temperature between 25° C. and 0° C. In other embodiments, the reaction of the phenol containing compound with the phosphorous containing compound occurs at a temperature between 15° C. and 0° C. In other embodiments, the reaction of the phenol containing compound with the phosphorous containing compound occurs at a temperature between 5° C. and 0° C. In other embodiments, the reaction of the phenol containing compound with the phosphorous containing compound occurs at 0° C.
In certain embodiment, the reaction of the phenol containing compound with the phosphorous containing compound takes place under a nitrogen atmosphere.
In certain embodiments the reaction takes place over 5 hours. In certain other embodiment the reaction takes place in less than 5 hours. In certain other embodiments the reaction takes place in one hour. In certain other embodiment the reaction takes place in less than one hour. In certain other embodiments the reaction takes place for a period of 30 to 40 minutes.
In certain embodiment after completion of the reaction the suitable solvent is removed by distillation
In certain other embodiments after the suitable solvent is distilled off, the compound of the present invention are purified via crystallization using techniques known in the art.
In certain embodiments, after crystallization, the crystals are further filtered and washed using techniques known in the art.
Scheme 1 is a representative example of the synthesis of a compound of the present invention.
Scheme 1, shows the synthesis of a sterically hindered phenol and phosphite based compound of structural formula I.
The macromolecular antioxidant S was synthesized by one pot reaction of phenol with phosphorous trichloride using dichloromethane as a solvent at 0° C. The yield of the title compound was more than 95%.
Scheme 2, shows the synthesis of a sterically hindered phenol and phosphite based compound of structural formula II.
Scheme 3, shows the synthesis of a sterically hindered phenol and phosphite based compound of structural formula III.
The following is an example of one embodiment of the invention and is not to be considered limiting in any way.
In one embodiment the sterically hindered phenol and phosphate based antioxidant is:
A 1 L two-necked round bottom flask equipped with a thermometer, a dropping funnel and a nitrogen inlet was charged with 100 g (0.271 mole) of N-(4-hydroxyphenyl)-3-(2,6-di-tert-butyl, 4-hydroxy phenyl)propionamide, 22 ml (0.271 mole) pyridine in 200 ml of dichloromethane. 7.86 ml (9.033 mmol) of phosphorous trichloride was then added dropwise at a temperature of 0 to 5° C. under nitrogen atmosphere for a period of 30 to 40 minutes. After the addition, the funnel was removed and completion of the reaction was checked by TLC/HPLC. After completion, the dichloromethane was distilled out at 40° C. To the residue was added 100 ml of methanol to get white crystalline precipitate, which was then filtered and washed several times with cold methanol. The product was characterized by spectroscopic techniques. The melting point is in the range of 224-245° C.
1000 ppm of S was added to unstabilized polypropylene powder and extruded with single screw extruder in the form wires which was then palletized using a pelletizer. The pelltized sample of polypropylene was subjected to an accelerated oxidative stability test using differential scanning calorimetry (DSC) (ASTM D3895 method).
The results are shown in
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a continuation of U.S. application Ser. No. 13/109,800, filed May 17, 2011 now U.S. Pat. No. 8,242,230, which is a divisional of U.S. application Ser. No. 12/789,843, filed May 28, 2010 now U.S. Pat. No. 7,956,153, which is a continuation of U.S. application Ser. No. 11/293,844, filed Dec. 2, 2005 now U.S. Pat. No. 7,902,317, which claims the benefit of U.S. Provisional Application No. 60/633,196, filed on Dec. 3, 2004. The entire teachings of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3116305 | Morris et al. | Dec 1963 | A |
3294836 | Peterson et al. | Dec 1966 | A |
3441545 | Blatz et al. | Apr 1969 | A |
3459704 | Peterson et al. | Aug 1969 | A |
3557245 | Phillips et al. | Jan 1971 | A |
3632785 | Bornstein | Jan 1972 | A |
3645970 | Kleiner | Feb 1972 | A |
3649667 | Song et al. | Mar 1972 | A |
3655831 | Friedman | Apr 1972 | A |
3870680 | Schurdak | Mar 1975 | A |
3907939 | Robin et al. | Sep 1975 | A |
3953402 | Kline | Apr 1976 | A |
3965039 | Chaplits et al. | Jun 1976 | A |
3983091 | Gloth et al. | Sep 1976 | A |
3994828 | Zaffaroni | Nov 1976 | A |
3996160 | Dale et al. | Dec 1976 | A |
3996198 | Wang et al. | Dec 1976 | A |
4054676 | Weinshenker et al. | Oct 1977 | A |
4094857 | Wolfe, Jr. | Jun 1978 | A |
4096319 | Willette et al. | Jun 1978 | A |
4097464 | Kline | Jun 1978 | A |
4098829 | Weinshenker et al. | Jul 1978 | A |
4107144 | Russell et al. | Aug 1978 | A |
4136055 | Lyons | Jan 1979 | A |
4202816 | Moser et al. | May 1980 | A |
4205151 | Dale et al. | May 1980 | A |
4213892 | Scott | Jul 1980 | A |
4219453 | Sakurai et al. | Aug 1980 | A |
4267358 | Hechenbleikner et al. | May 1981 | A |
4281192 | Jacquet et al. | Jul 1981 | A |
4283572 | Klicker | Aug 1981 | A |
4317933 | Parker | Mar 1982 | A |
4341879 | Sugio et al. | Jul 1982 | A |
4355148 | Layer et al. | Oct 1982 | A |
4377666 | Farrar | Mar 1983 | A |
4380554 | Serres, Jr. | Apr 1983 | A |
4447657 | Firth et al. | May 1984 | A |
4465871 | Firth et al. | Aug 1984 | A |
4510296 | Hergenrother | Apr 1985 | A |
4511491 | Ishii et al. | Apr 1985 | A |
4634728 | Dunski et al. | Jan 1987 | A |
4690995 | Keskey et al. | Sep 1987 | A |
4761247 | Rei et al. | Aug 1988 | A |
4824929 | Arimatsu et al. | Apr 1989 | A |
4849503 | Cotter et al. | Jul 1989 | A |
4855345 | Rosenberger et al. | Aug 1989 | A |
4857596 | MacLeay et al. | Aug 1989 | A |
4870214 | Mina et al. | Sep 1989 | A |
4894263 | Dubois et al. | Jan 1990 | A |
4897438 | Kikuchi et al. | Jan 1990 | A |
4900671 | Pokora et al. | Feb 1990 | A |
4925591 | Nakauchi et al. | May 1990 | A |
4968759 | Kikuchi et al. | Nov 1990 | A |
4977004 | Bettle, III et al. | Dec 1990 | A |
4981917 | MacLeay et al. | Jan 1991 | A |
4994628 | Goddard et al. | Feb 1991 | A |
5013470 | Benfaremo | May 1991 | A |
5017727 | Olivier | May 1991 | A |
5082358 | Tabata et al. | Jan 1992 | A |
5102962 | Kikuchi et al. | Apr 1992 | A |
5117063 | Stern et al. | May 1992 | A |
5143828 | Akkara et al. | Sep 1992 | A |
5155153 | Neri et al. | Oct 1992 | A |
5185391 | Stokich, Jr. | Feb 1993 | A |
5185407 | Wong | Feb 1993 | A |
5188953 | Johnson et al. | Feb 1993 | A |
5191008 | Frost et al. | Mar 1993 | A |
5196142 | Mollet et al. | Mar 1993 | A |
5206303 | Tse et al. | Apr 1993 | A |
5207939 | Farng et al. | May 1993 | A |
5274060 | Schadeli | Dec 1993 | A |
5278055 | Cyrus, Jr. et al. | Jan 1994 | A |
5304589 | Davidson et al. | Apr 1994 | A |
5320889 | Bettle, III | Jun 1994 | A |
5449715 | Plochocka et al. | Sep 1995 | A |
5498809 | Emert et al. | Mar 1996 | A |
RE35247 | Cyrus, Jr. et al. | May 1996 | E |
5516856 | Sanchez | May 1996 | A |
5541091 | Wheeler et al. | Jul 1996 | A |
5565300 | Uenishi et al. | Oct 1996 | A |
5574118 | Olivier | Nov 1996 | A |
5652201 | Papay et al. | Jul 1997 | A |
5739341 | Dubs et al. | Apr 1998 | A |
5834544 | Lin et al. | Nov 1998 | A |
5837798 | Hutchings et al. | Nov 1998 | A |
5869592 | Gagne et al. | Feb 1999 | A |
5911937 | Hekal | Jun 1999 | A |
5994498 | Tripathy et al. | Nov 1999 | A |
6018018 | Samuelson et al. | Jan 2000 | A |
6046263 | Rasberger et al. | Apr 2000 | A |
6096695 | Lam et al. | Aug 2000 | A |
6096859 | Akkara et al. | Aug 2000 | A |
6150491 | Akkara | Nov 2000 | A |
6232314 | Jarrott et al. | May 2001 | B1 |
6342549 | Hirose et al. | Jan 2002 | B1 |
6444450 | Akkara et al. | Sep 2002 | B2 |
6646035 | Koch et al. | Nov 2003 | B2 |
6723815 | Callaghan et al. | Apr 2004 | B2 |
6743525 | Berntsen et al. | Jun 2004 | B2 |
6770785 | Desai et al. | Aug 2004 | B1 |
6794480 | Goto et al. | Sep 2004 | B2 |
6800228 | Semen | Oct 2004 | B1 |
6828364 | Gugumus | Dec 2004 | B2 |
7132496 | Kerres et al. | Nov 2006 | B2 |
7169844 | Inokami | Jan 2007 | B2 |
7205350 | Thibaut | Apr 2007 | B2 |
7223432 | Cholli et al. | May 2007 | B2 |
7262319 | Rehm et al. | Aug 2007 | B2 |
7705176 | Cholli et al. | Apr 2010 | B2 |
7956153 | Cholli et al. | Jun 2011 | B2 |
8008423 | Kumar et al. | Aug 2011 | B2 |
8080689 | Kumar | Dec 2011 | B2 |
8242230 | Cholli et al. | Aug 2012 | B2 |
8252884 | Kumar et al. | Aug 2012 | B2 |
20010041203 | Uno et al. | Nov 2001 | A1 |
20020007020 | Higashimura et al. | Jan 2002 | A1 |
20020128493 | Romanczyk, Jr. et al. | Sep 2002 | A1 |
20020143025 | Pratt et al. | Oct 2002 | A1 |
20020183470 | Tripathy et al. | Dec 2002 | A1 |
20030030033 | Duyck et al. | Feb 2003 | A1 |
20030078346 | Nakamura et al. | Apr 2003 | A1 |
20030091837 | Aoki | May 2003 | A1 |
20030176620 | Romanczyk, Jr. et al. | Sep 2003 | A1 |
20030191242 | Zedda et al. | Oct 2003 | A1 |
20030229196 | Braat et al. | Dec 2003 | A1 |
20030230743 | Cholli et al. | Dec 2003 | A1 |
20040015021 | Adams et al. | Jan 2004 | A1 |
20040164279 | Stevenson et al. | Aug 2004 | A1 |
20040180994 | Pearson et al. | Sep 2004 | A1 |
20040186167 | Dou et al. | Sep 2004 | A1 |
20040186214 | Li et al. | Sep 2004 | A1 |
20040198875 | Kaprinidis et al. | Oct 2004 | A1 |
20040214935 | Cholli et al. | Oct 2004 | A1 |
20050170978 | Migdal et al. | Aug 2005 | A1 |
20050209379 | Botkin et al. | Sep 2005 | A1 |
20050238789 | Cholli et al. | Oct 2005 | A1 |
20050242328 | Baranski | Nov 2005 | A1 |
20060029706 | Cholli et al. | Feb 2006 | A1 |
20060040833 | Al-Akhdar et al. | Feb 2006 | A1 |
20060041087 | Cholli | Feb 2006 | A1 |
20060041094 | Cholli | Feb 2006 | A1 |
20060128929 | Yang et al. | Jun 2006 | A1 |
20060128930 | Dhawan et al. | Jun 2006 | A1 |
20060128931 | Kumar et al. | Jun 2006 | A1 |
20060128939 | Kumar et al. | Jun 2006 | A1 |
20060154818 | Destro et al. | Jul 2006 | A1 |
20060189820 | Rehm et al. | Aug 2006 | A1 |
20060189824 | Kumar et al. | Aug 2006 | A1 |
20060208227 | Shiraki | Sep 2006 | A1 |
20060233741 | Kumar et al. | Oct 2006 | A1 |
20070010632 | Kaplan et al. | Jan 2007 | A1 |
20070106059 | Cholli et al. | May 2007 | A1 |
20070135539 | Cholli et al. | Jun 2007 | A1 |
20070149660 | Kumar et al. | Jun 2007 | A1 |
20070154430 | Cholli et al. | Jul 2007 | A1 |
20070154608 | Cholli et al. | Jul 2007 | A1 |
20070154720 | Cholli et al. | Jul 2007 | A1 |
20070161522 | Cholli et al. | Jul 2007 | A1 |
20080249335 | Cholli et al. | Oct 2008 | A1 |
20080293856 | Kumar et al. | Nov 2008 | A1 |
20080311065 | Cholli | Dec 2008 | A1 |
20090184294 | Cholli et al. | Jul 2009 | A1 |
20110040125 | Kumar et al. | Feb 2011 | A1 |
20110282098 | Cholli et al. | Nov 2011 | A1 |
20120004150 | Cholli et al. | Jan 2012 | A1 |
20120071596 | Kumar et al. | Mar 2012 | A1 |
20120123145 | Cholli et al. | May 2012 | A1 |
20120142968 | Kumar et al. | Jun 2012 | A1 |
20130072586 | Kumar et al. | Mar 2013 | A1 |
20130130955 | Cholli et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
111291 | Jun 1964 | CS |
197 47 644 | May 1999 | DE |
198 43 875 | Mar 2000 | DE |
0 181 023 | May 1986 | EP |
0 289 077 | Nov 1988 | EP |
0 358 157 | Mar 1990 | EP |
0 404 039 | Dec 1990 | EP |
0 618 203 | Oct 1994 | EP |
0 688 805 | Dec 1995 | EP |
1 067 144 | Jan 2001 | EP |
1 468 968 | Oct 2004 | EP |
2 183 973 | Jan 1974 | FR |
1 042 639 | Aug 1964 | GB |
1 283 103 | Jul 1972 | GB |
1 320 169 | Jun 1973 | GB |
1 372 042 | Oct 1974 | GB |
1 389 442 | Apr 1975 | GB |
1 469 245 | Apr 1977 | GB |
1 482 649 | Aug 1977 | GB |
69002715 | Jan 1966 | JP |
43016392 | Jul 1968 | JP |
44024274 | Oct 1969 | JP |
44028850 | Nov 1969 | JP |
45 2980 | Jan 1970 | JP |
49 29339 | Mar 1974 | JP |
57085366 | May 1982 | JP |
59025814 | Feb 1984 | JP |
59197447 | Nov 1984 | JP |
60-199832 | Oct 1985 | JP |
05 199858 | Aug 1993 | JP |
06135876 | May 1994 | JP |
06 247959 | Sep 1994 | JP |
08027226 | Jan 1996 | JP |
09262069 | Oct 1997 | JP |
09 328519 | Dec 1997 | JP |
09 328521 | Dec 1997 | JP |
9322784 | Dec 1997 | JP |
11-80063 | Mar 1999 | JP |
11-158103 | Jun 1999 | JP |
2003138258 | May 2003 | JP |
7 905 000 | Mar 1980 | NL |
WO 9220734 | Nov 1992 | WO |
WO 0039064 | Jul 2000 | WO |
WO 0118125 | Mar 2001 | WO |
WO 0148057 | Jul 2001 | WO |
WO 02079130 | Oct 2002 | WO |
WO 03087260 | Oct 2003 | WO |
WO 03102004 | Dec 2003 | WO |
WO 2004024070 | Mar 2004 | WO |
WO 2004050795 | Jun 2004 | WO |
WO 2005025513 | Mar 2005 | WO |
WO 2005025646 | Mar 2005 | WO |
WO 2005060500 | Jul 2005 | WO |
WO 2005070974 | Aug 2005 | WO |
WO 2005071005 | Aug 2005 | WO |
WO 2006018403 | Feb 2006 | WO |
WO 2006060801 | Jun 2006 | WO |
WO 2006104957 | Oct 2006 | WO |
WO 2008005358 | Jan 2008 | WO |
Entry |
---|
Irganox 126, BASF publication, Jul. 2010. |
USPTO search report, Mar. 2013. |
http://www.machinerylubrication.com/Read/1028/Oxidation-Lubricant (Mar. 29, 2010, pp. 1-7). |
Akkara, J.A., et al., “Hematin-Catalyzed Polymerization of Phenol Compounds,” Macromolecules, 33(7):2377-2382 (2000). |
Akkara, J.A., et al., “Synthesis and Characterization of Polymers Produced by Horseradish Peroxidase in Dioxane,” J. of Polymer Science: Part A: Polymer Chemistry, 29(11):1561-1574 (1991). |
Al-Malaika, S and Suharty, N., “Reactive Processing of Polymers: Mechanisms of Grafting Reactions of Functional Antioxidants on Polyolefins in the Presence of a Coagent,” Polymer Degradation and Stability 49: 77-89 (1995). |
Armengol, E., et al., “Acid Zeolites as Catalysts in Organic Reactions, tert-Butylation of Anthracene, Naphthalene and Thianthrene,” Appl. Catal. A 149:411-423 (1997). |
Ayyagari, M.S., et al., “Controlled Free-Radical Polymerization of Phenol Derivatives by Enzyme-Catalyzed Reactions in Organic Solvents,” Macromolecules, 28(15):5192-5197 (1995). |
Badamali, S.K., et al., “Influence of Aluminium Sources on the Synthesis and Catalytic Activity of Mesoporous A1MCM-41 Molecular Sieves,” Catal. Today 63:291-295 (2000). |
Belyaev, A., et al., “Structure-Activity Relationship of Diaryl Phosphonate Esters as Potent Irreversible Dipeptidyl Peptidase IV Inhibitors,” J. Med. Chem., 42(6):1041-1052 (1998). |
Blokhin, Y.I, et al., “Phosphorylation of Dihydric Phenols with Amides of Phosphorous Acid,” Russian Chem. Bulletin, 45(9):2250-2251 (1996). |
Bruno, F.F., et al., “Enzymatic Template Synthesis of Polyphenol,” Materials Research Society Symposium Proceedings vol. 600, Electroactive Polymers (EAP):255-259 (1999). |
Chandra, K.G. and Sharma, M.M., “Alkylation of Phenol with MTBE and Other tert-butyl-ethers:Cation Exchange Resins as Catalysts,” Catal. Lett. 19(4):309-317 (1993). |
Ciric-Marjanovic, et al., Chemical Oxidative Polymerization of Aminodiphenylamines, Journal of Physical Chemistry B, 112, 23: 6976-6987 (2008). |
Coppinger, G.B., et al., “Photo-Fries Rearrangement of Aromatic Esters. Role of Steric and Electronic Factors” J. of Phy. Chem., 70(11):3479-3489 (1966). |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420027, Beilstein Registry No. 3517906. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420028, Beilstein Registry No. 5840042. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420029, Beilstein Registry No. 2311871. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420030, Beilstein Registry No. 8876646. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420031, Beilstein Registry No. 2271400. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420032, Beilstein Registry No. 2212095. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420033, Beilstein Registry No. 8941955. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420034, Database Accession No. 2312425. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420035, Beilstein Registry No. 905950. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420036, Beilstein Registry No. 2140308. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420037, Beilstein Registry No. 134886. |
Database Beilstein [online] Beilstein Institut Zur Förderung Der Chemischen Wissenschaften; XP002420038, Beilstein Registry No. 1961007. |
Database CA [online] Chemical Abstracts Service, Columbus, Ohio, US, XP-002429584, Database Accession No. 81::153647, Organic Phosphate Stabilizers for Polyamides and Polyurethanes, abstract, Minagawa, M. (1974). |
Database Caplus [online] Chemical Abstracts Service, Columbus, Ohio, US, XP-002387095, Database Accession No. 1981:572206, Effectiveness of Inhibitors in the Oxidation of Jet Fuel with an Initiator, abstract, Kovalev, et al. |
Devassy, B.M., et al., “Zirconia Supported Phosphotungstic Acid as an Efficient Catalyst for Resorcinol tert-Butylation and n-Heptane Hydroisomerization,” J. Mol. Catalysis A: Chemical 221:113-119 (2004). |
Ding, et al., “Chemical Trapping Experiments Support a Cation-Radical Mechanism for the Oxidative Polymerization of Aniline,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 37: 2569-2579 (1999). |
Dordick, J.S., “Enzymatic Catalysis in Monophasic Organic Solvents,” Enzyme Microb. Technol., 11(4):194-211 (1989). |
Dordick, J.S., et al., “Polymerization of Phenols Catalyzed by Peroxidase in Nonaqueous Media,” Biotechnology and Bioengineering, 30(1):31-36 (1987). |
English Abstract of Kovalev, G. I., et al., “Study of the Effectiveness of Inhibitors in Oxidation of Jet Fuel in a Closed Volume, ” Deposited Doc., VINITI: 443-82 (1981). |
English Abstract of Kovalev, G.I., et al., “Effectiveness of Inhibitors in the Oxidation of Jet Fuel With an Initiator,” J. Neftekhimiya (Petroleum Chemistry), 21(2): 287-298 (1981). |
Examiner's Report No. 1 for related foreign application AU 2005269754 dated Apr. 1, 2008. |
Examiner's Report No. 1 for related foreign application AU 2005269780 dated Apr. 2, 2008. |
Examiner's Report No. 2 for related foreign application AU 2005269754 dated Jan. 5, 2010. |
Examiner's Report No. 3 for related foreign application AU 2005269754 dated Jan. 12, 2010. |
Faber, K., “Biotransformations in Organic Chemistry,” A Textbook, Fourth Completely Revised and Extended Edition, Springer-Verlag pp. 347-349 (1953). |
FS&T 821 “Antioxidant,” [online], [retrieved on Oct. 29, 2002]. Retrieved from the Internet <URL: http://class.fst.ohio-state.edu/fst/lect/aa.pdf. |
FS&T 821 “Food Lipids,” [online], Oct. 2001 [retrieved on Oct. 29, 2002]. Retrieved from the Internet <URL: http://class.fst.ohio-state.edu/fst821/>. |
FST 821 “Course Schedule,” [online], [retrieved on Oct. 29, 2002]. Retrieved from the Internet <URL: http://class.fst.ohio-state.edu/fst821/>. |
Hatayama, K., et al., “Anti-ulcer Effect of Isoprenyl Flavonoids. III.1) Synthesis and Anti-ulcer Activity of Metabolites of 2′-Carboxymethoxly-4,4′-bis(3-methy1-2-butenyloxy)chalcone2) ,” Chemical & Pharmaceutical Bulletin, 33(4), 1327-1333(Apr. 1985). |
Heidekum, A., et al., “Nafion/Silica Composite Material Reveals High Catalytic Potential in Acylation Reactions,” J. Catal. 188:230-232 (1999). |
Hidalgo, M.E., et al., “Antioxidant Activity of Depsides and Depsidones,” Phytochemistry, 37(6):1585-1587 (1994). |
Hofer, K., et al., “[[(Anilinooxalyl)amino]phenyl] Phosphite Stabilizers for Polypropylene,” Chemical Abstracts Service, ZCAPLUS, document No. 77:62780 (1972). |
Ikeda, R., et al., “Novel Synthetic Pathway to a Poly(phenylene oxide). Laccase-Catalyzed Oxidative Polymerization of Syringic Acid,” Macromolecules, 29:3053-3054 (1996). |
International Preliminary Report on Patentability for PCT/US2005/001946, issued Jul. 24, 2006. |
International Search Report for related foreign application PCT/US2007/015177, mailed on Jun. 13, 2008. |
International Search Report for related foreign application PCT/US2005/044021, mailed on May 22, 2006. |
International Search Report for related foreign application PCT/US2005/044022, mailed on May 2, 2006. |
International Search Report for related foreign application PCT/US2005/044023, mailed on Nov. 3, 2006. |
International Search Report for related foreign application PCT/US2005/044019, mailed on Apr. 28, 2006. |
International Search Report for related foreign application PCT/US2005/025646, mailed on Mar. 13, 2006. |
International Search Report for related foreign application PCT/US2005/025513, mailed on Mar. 13, 2006. |
International Search Report for related foreign application PCT/US2006/006355, mailed on Jul. 31, 2006. |
International Search Report for related foreign application PCT/US2006/010985, mailed on Dec. 19, 2006. |
International Search Report for related foreign application PCT/US2006/042240, mailed on May 3, 2007. |
International Search Report for related foreign application PCT/US2006/042235, mailed on Apr. 27, 2007. |
International Search Report for related foreign application PCT/US2006/045929, mailed on Apr. 20, 2007. |
Ismail, M.N. and Wazzan, A.A., “Evaluation of New Thermal Stabilizers and Antifatigue Agents for Rubber Vulcanizates,” Polymer-Plastics Tech. and Eng., 45:751-758 (2006). |
Jayaprakasha, G.K., et al., “Antioxidant Activity of Grape Seed (Vitis vinifera) Extracts on Peroxidation Models in Vitro,” Food Chemistry, 73:285-290 (2001). |
Jialanella, G. and Pilrma, I., “Synthesis of Poly(vinyl alcohol-co-vinyl gallate) by the Chemical Modification of Poly(vinyl alcohol),” Polymer Bulletin 18:385-389 (1987). |
Joossens, J., et al., “Diphenyl Phosphonate Inhibitors for the Urokinase-Type Plasminogen Activator: Optimization of the P4 Position,” J. Med. Chem., 49:5785-5793 (2006). |
Kamitori, Y., et al., “Silica Gel as an Effective Catalyst for the Alkylation of Phenols and Some Heterocylic Aromatic Compounds,” J. Org. Chem. 49: 4161-4165 (1984). |
Kazandjian, R.Z., et al., “Enzymatic Analyses in Organic Solvents,” Biotechnology and Bioengineering, XXVIII:417-421 (1986). |
Khan, K.M., et al., “An Expedient Esterification of Aromatic Carboxylic Acids Using Sodium Bromate and Sodium Hydrogen Sulfite,” Tetrahedron 59(29):5549-5554 (2003). |
Kim, T. H., et al., “Melt Free-Radical Grafting of Hindered Phenol Antioxidant onto Polyethylene,” J. Applied Polymer Science, 77:2968-2973 (2000). |
Klibanov, A.M., et al., “Enzymatic Removal of Toxic Phenols and Anilines from Waste Waters,” J. of Applied Biochemistry, 2(5):414-421 (1980). |
Koshchii, V.A., et al. “Alkylation of Phenol by Alcohols in the Presence of Alumium Phenolate,” Org. Chem. 24(7):1358-1361 (1988). |
Lalancette, J.M., et al.,, “Metals Intercalated in Graphite. II. The Friedel-Crafts Reactions with ALCL3-Graphite,” Can. J. Chem. 52:589-591 (1974). |
Li, et al., “Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations,” Chemical Reviews, vol. 102(9): pp. 2925-2943 (2002). |
Maki, M., et al., “Weather-Resistant Colored Polypropylene,” Chemical Abstracts Service, ZCAPLUS, document No. 89:111364 (1978). |
March, J., Advanced Organic Chemistry, McGraw Hill Book Company, New York, pp. 251-259 (1977). |
Masada, H. and Oishi, Y., “A New Synthesis of aryl t-butyl Ethers,” Chem. Letters, 57-58 (1978). |
Masada, H. et al., “A New Heterogeneous Williamson Synthesis of Ethers Using t-alkyl Substrates,” The Chemical Society of Japan 3:275-282 (1996). |
Masada, H., et al., “A New Method for the Williamson Ether Synthesis Using t-alkyl Halides in Nonpolar Solvents,” The Chemical Society of Japan, 2:164-166 (1995). |
Mehdipour-Ataei, S., et al., “Novel Diols Containing Ester and Amide Groups and Resulting Poly(ester amide ester)s,” J. Applied Polymer Sci., 93:2699-2703 (2004), XP002420014. |
Mcjias, L., et al.,, “New Polymers From Natural Phenols Using Horseradish or Soybean Peroxidase,”Macromol Biosci., 2:24-32 (2002). |
Notification Concerning Transmittal of International Preliminary Report and Written Opinion of the International Searching Authority, or the Declaration for application PCT/US2006/042251, mailed on Feb. 22, 2007. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for related foreign application PCT/US2007/015177, mailed on Jan. 15, 2009. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for application PCT/US2006/042251, mailed on May 8, 2008. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for related foreign application PCT/US2005/025646, mailed on Dec. 20, 2006. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for related foreign application PCT/US2007/015177, mailed on Jun. 13, 2008. |
Office Action for related foreign application EP05773305.7 dated Apr. 24, 2008. |
Office Action for related foreign application EP06720996.5-2103 dated Mar. 23, 2009. |
Office Action for related foreign application EP06720996.5-2103 dated Apr. 21, 2008. |
Ol'dekop, Yu. A., et al. “Simple Synthesis of the tent-butyl Ether of Phenol” Inst. Fiz-Org. Khim., Minsk, USSR. Zhurnal Obshchei Khimii, 50(2):475-6 (1980). |
Overgaag, M., et al., “Rearrangement of Alkyl Phenyl Ethers Over Dealuminated HY Zeolites Under Liquid-Phase Conditions,” Applied Catalysis A: General, Elsevier Sci., 175(1-2):139-146 (1998). |
Pätoprstý, V., et al., “13C NMR Study of 3,9-Di(alkylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecanes,” Magnetic Resonance in Chem, 23(2):122-126 (1985). |
Pirozhenko, V.V., et al., “NMR Study of Topomerization of N-Aroyl-p-Benzoquinonemonoimines,” Russian J. of Organic Chem., 31(11):1514-1519 (1995). |
Preliminary Report on Patentability and Written Opinion for related foreign application PCT/US2005/025513, issued Jan. 23, 2007. |
Quaschning, V., et al., “Properties of Modified Zirconia Used as Friedel-Crafts-Acylation Catalysts,” J. Catal. 177:164-174 (1998). |
RN 85650-63-1, 1984. |
Ryu, K., et al., “Peroxidase-Catalyzed Polymerization of Phenols,” Biocatalysis in Agricultural Biotechnology, Chapter10:141-157 (1988). |
Sakthivel, A., et al., “Vapour Phase Tertiary Butylation of Phenol Over Sulfated Zirconia Catalyst,” Catal. Lett., 72(3-4):225-228 (2001). |
Sartori G., el al., “Highly Selective Mono-tert-butylation of Aromatic Compounds,” Chem. Ind., (London), (22):762-763 (1985). |
Scharpe, S.L., et al., “Serine Peptidase Modulators, Their Preparation, and Their Therapeutic Use,” Chemical Abstracts Service, ZCAPLUS, document No. 131:223514 (1999). |
Singh, A. and Kaplan, D. L., “Biocatalytic Route to Ascorbic Acid-Modified Polymers for Free-Radical Scavenging,” Adv. Matter., 15(15):1291-1294 (2003). |
Spano, R., et al., “Substituted Anilides of 3-Monoethyl Ester of 4 Hydroxyisophthalic Acid,” J. of Med. Chein., 15(5):552-553. |
Thompson, C. Ray, “Stability of Carotene in Alfalfa Meal: Effect of Antioxidants,” Industrial & Engineering Chemistry, 24(5): 922-925 (1950). |
Tsvetkov, O.N., et al., “Alkylation of Phenols with Higher Olefins. Part I,” Int. Chem. Eng. 7(1):104-121 (1967). |
Written Opinion for related foreign application PCT/US2005/025646, mailed on Nov. 14, 2006. |
XP-002419239, “Discover Our World of Effects for Polyolefins,” Ciba Speciality Chemicals, (2003). |
Irgafos® 126, BASF publication, pp. 1-3, Jul. 2010. |
USPTO Search Report for U.S. Appl. No. 13/572,884, Mar. 20, 2013. |
Number | Date | Country | |
---|---|---|---|
20130041171 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
60633196 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12789843 | May 2010 | US |
Child | 13109800 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13109800 | May 2011 | US |
Child | 13572884 | US | |
Parent | 11293844 | Dec 2005 | US |
Child | 12789843 | US |