Macrophage nuclear receptors, metabolism and immune effectors during health and M. tuberculosis infection

Information

  • Research Project
  • 10450960
  • ApplicationId
    10450960
  • Core Project Number
    R01AI136831
  • Full Project Number
    3R01AI136831-03S1
  • Serial Number
    136831
  • FOA Number
    PA-18-484
  • Sub Project Id
  • Project Start Date
    3/24/2020 - 4 years ago
  • Project End Date
    7/31/2023 - a year ago
  • Program Officer Name
    EICHELBERG, KATRIN
  • Budget Start Date
    8/1/2021 - 3 years ago
  • Budget End Date
    7/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
    S1
  • Award Notice Date
    7/30/2021 - 3 years ago

Macrophage nuclear receptors, metabolism and immune effectors during health and M. tuberculosis infection

Project Summary/Abstract Human lungs, while mediating air exchange in the alveoli, are constantly exposed to pollutants, allergens, and microbes. Resident alveolar macrophages (AMs) must clear insults without damaging the alveoli. Thus, AMs possess a unique, highly regulated immune response that results in inefficient clearance of some airborne microbes, especially host-adapted pathogens like Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), a top 10 cause of death worldwide. AM development, maintenance and biology are poorly understood, especially for human macrophages and in regards to the effect of the local environment, e.g. surfactant, which lines the alveoli, and locally produced cytokines such as TGF?. Failure to completely understand the molecular events underlying AM development and biology creates a critical barrier to developing new treatment strategies that target the lung. The long-term objective of this ongoing research program is to identify signaling pathways associated with transcriptional regulators and inflammatory metabolites that dictate AM biology and how these are co-opted by the host-adapted intracellular pathogen M.tb, to enhance its growth. New data in the laboratory indicate that M.tb, surfactant proteins and TGF? regulate expression of the nuclear receptors (NRs) peroxisome proliferator-activated receptor gamma (PPAR?), Rev-erb?, Nur77, and Nurr1. NRs are a large family of structurally conserved, ligand activated transcription factors, which enable macrophages to sense their local environment and shape immune responses. In this regard, NRs sit at the interface of metabolism (particularly lipid and eicosanoid) and immunity, and are increasingly recognized as relevant to M.tb pathogenesis, yet are unexplored in the context of the lung and M.tb. It is critical to understand if/how NRs cooperate to regulate AM biology in ways that impact responses to M.tb. Expression and function of NRs are tightly regulated to provide a balanced immune response. The hypothesis for this proposal is that NRs modify eicosanoid metabolism and protective immune responses, thereby making AMs more susceptible to M.tb and that M.tb augments select endogenous pathways to further dampen the AM immune response to enhance its survival. The Specific Aims are to: 1) determine the effect of surfactant and local cytokines on human macrophage NR expression and activity and how this is modulated by M.tb, 2) characterize newly discovered PPAR? effectors and their regulation of lipid metabolism during M.tb infection, and 3) determine whether PPAR?, Rev-erb?, Nur77 and Nurr1, as well as PPAR? effectors, are viable host-directed therapeutic targets for TB. Human AMs and the tractable model of human blood monocyte-derived macrophages (MDMs), biochemical and genetic techniques, and mouse models will be used to study the role of NRs, and their effectors, in TB. Since NRs regulate metabolism and inflammation in a tissue, gene and signal-specific manner, these findings open the door to a completely new set of biological pathways likely to be critical to host responses in the lung, during health and M.tb infection.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    3
  • Direct Cost Amount
    47054
  • Indirect Cost Amount
    37230
  • Total Cost
    84284
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:84284\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    HIBP
  • Study Section Name
    Host Interactions with Bacterial Pathogens Study Section
  • Organization Name
    TEXAS BIOMEDICAL RESEARCH INSTITUTE
  • Organization Department
  • Organization DUNS
    007936834
  • Organization City
    SAN ANTONIO
  • Organization State
    TX
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    782275302
  • Organization District
    UNITED STATES