The present invention generally relates to firearms, and more particularly to magazine disconnect mechanisms suitable for auto-loading pistols of a compact size.
Compact firearms, such as semiautomatic auto-loading pistols for concealed carry applications, present numerous design challenges due to the need to provide essentially the same functionality as full-size pistols, but in a relatively smaller physical package. Some compact pistols may have typical lengths between about 5-6 inches and weigh less than one pound in contrast to their longer and heavier full-size counterparts. Accordingly, it is desirable to minimize size and weight of these subcompact pistols to facilitate concealed carry by keeping the number of components required for a fully-functional pistol to a minimum without sacrificing functionality. Therefore, efficient use of limited available space which is at a premium is essential to providing lightweight and compact pistols suitable for concealed carry.
Most auto-loading pistols utilize removable magazines that hold a plurality of cartridges. In such pistols, a cartridge may still remain chambered after the magazine has been removed. Although the loaded chamber condition of a pistol's chamber is customarily and most positively checked by user opening the action to expose the breech area and visually observing the presence of any cartridge therein, a magazine disconnect mechanism operable to disable the firing control mechanism when the magazine is removed from the pistol may sometimes be provided to supplement, but not replace visual inspection of the chamber.
A magazine disconnect mechanism is desired that can be spatially and efficiently accommodated in the limited space available in a compact pistol format.
According to one aspect of the invention, an auto-loading firearm with removable magazine is provided that includes a magazine disconnect mechanism which disables the firing control mechanism when the magazine is removed to prevent discharging the firearm under normal trigger pull pressure. In some preferred embodiments, the disconnect mechanism directly engages and disables the trigger by restricting or arresting the movement of the trigger when pulled by a user to prevent so that the trigger cannot be rotated a sufficient amount to fully actuate the firing control mechanism. To efficiently use the limited space available in compact pistol format, the magazine disconnect member in preferred embodiments is slidably disposed in the firearm and axially movable in response to the insertion and removal of the magazine into/from the firearm via contact with the magazine. In some embodiments, as further described herein, the magazine disconnect member may be configured as a generally flat or planar slideable plate.
According to one exemplary embodiment of the present invention, an auto-loading firearm with magazine disconnect mechanism includes a frame defining a longitudinal axis, a magazine removably disposed in the frame for holding a plurality of cartridges, a hammer pivotably mounted in the frame, a trigger pivotably movable in the frame and operable to cock and release the hammer for discharging the firearm, and a magazine disconnect member selectively engageable with the trigger in response to removing and inserting the magazine from/into the firearm. In one embodiment, the magazine disconnect member may be configured as a generally flattened plate slidably movable within the housing into and out of engagement with the trigger. In response to inserting and removing the magazine, the magazine disconnect member is movable between a blocking position in which the disconnect member engages the trigger when pulled and a non-blocking position in which the disconnect member does not engage the trigger when pulled. The firearm further includes a biasing member urging the magazine disconnect member into the blocking position. The magazine disconnect member is operable such that inserting the magazine into the frame moves the magazine disconnect member from the blocking position to the non-blocking position, and removing the magazine from the frame moves the disconnect member from the non-blocking position to the blocking position in which movement of the trigger is restricted to prevent cocking the hammer. The firing control mechanism of the firearm is therefore disabled and the firearm is prevented from being discharged without the magazine fully inserted into the firearm. In some embodiments, the firearm may be a compact auto-loading pistol. In other embodiments, the firearm may be a full-size auto-loading pistol or rifle.
According to another exemplary embodiment of the present invention, an auto-loading firearm with magazine disconnect mechanism includes a frame defining a longitudinal axis, a magazine removably disposed in the frame for holding a plurality of cartridges, a hammer pivotably mounted in the frame, a trigger pivotably movable in the frame and operable to cock and release the hammer for discharging the firearm wherein the trigger further includes a front portion that defines a first blocking surface, and a magazine disconnect member defining a second blocking surface which is selectively engageable with the first blocking surface of the trigger. The magazine disconnect member is longitudinally movable in response to removing and inserting the magazine between (i) a blocking position in which the second blocking surface is positioned to engage the first blocking surface of the trigger when pulled to prevent cocking the hammer and (ii) a non-blocking position in which the second blocking surface is positioned to not engage the first blocking surface of the trigger when pulled to allow cocking the hammer. The firearm further includes a biasing member urging the magazine disconnect member into the blocking position. The magazine disconnect member is operable such that inserting the magazine into the frame moves the magazine disconnect member from the blocking position to the non-blocking position, and removing the magazine from the frame moves the disconnect member from the non-blocking position to the blocking position to prevent discharging the firearm.
According to another exemplary embodiment of the present invention, an auto-loading firearm with magazine disconnect mechanism includes a frame defining a longitudinal axis and a chamber for holding a cartridge, a magazine removably disposed in the frame and adapted for holding a plurality of cartridges loadable into the chamber, a firing control mechanism including a trigger bar coupled to a trigger pivotably mounted in the frame, the trigger being operable via the trigger bar to discharge the firearm, and a magazine disconnect plate slidably disposed in the frame for forward and rearward axial horizontal movement in response to removing and inserting the magazine. The magazine disconnect plate preferably is selectively engageable with the trigger between a blocking position in which the disconnect plate engages the trigger when pulled and a non-blocking position in which the disconnect plate does not engage the trigger when pulled allowing full rotational or pivotal movement of the trigger to discharge the firearm. The firearm further includes a biasing member such as a spring urging the magazine disconnect plate into the blocking position. The magazine disconnect member is operable such that inserting the magazine into the frame moves the magazine disconnect plate from the blocking position to the non-blocking position, removing the magazine from the frame causes the spring to move the disconnect plate from the non-blocking position to the blocking position in which movement of the trigger is restricted to prevent discharging the firearm. The spring is movable from a compressed state when the magazine disconnect plate is in the non-blocking position to an expanded state when the magazine disconnect plate is in the blocking position. Movement of the spring into the expanded state forces the magazine disconnect plate into the blocking position. In one embodiment, the firing control mechanism further includes a hammer pivotably mounted in the frame wherein the trigger is operable via the trigger bar to cock and release the hammer for discharging the firearm. In one embodiment, the firing control mechanism may also include a firing pin which is engageable by the hammer and movable in a forward direction to strike a chambered cartridge.
According to another aspect of the present invention, a method for blocking the discharge of a firearm is provided. In one embodiment, the method includes: providing a firearm having a frame including a removable magazine for holding a plurality of cartridges and a trigger pivotably moveable for discharging the firearm; removing the magazine from the firearm; axially sliding a spring-biased magazine disconnect member in a first direction into engagement with the trigger in response to removing the magazine wherein movement of the trigger is restricted to prevent discharging the firearm. In a further embodiment, the method further includes: reinserting the magazine into the firearm; and axially sliding the magazine disconnect member in a second direction opposite the first direction out of engagement with the trigger in response to reinserting the magazine wherein movement of the trigger is unrestricted to allow discharging the firearm. In some embodiments, the first direction is rearward and the second direction is forward. According to another embodiment, the foregoing method may further include expanding a spring acting on the magazine disconnect member by removing the magazine from the firearm to slide the disconnect member in the first direction, and compressing the spring by reinserting the magazine back into the firearm which further slides the disconnect member in the second direction. In preferred embodiments, the magazine disconnect member may be configured as a generally flattened plate.
The features of the preferred embodiments will be described with reference to the following drawings where like elements are labeled similarly, and in which:
All drawing shown herein are schematic and not to scale.
The features and benefits of the invention are illustrated and described herein by reference to preferred embodiments. This description of preferred embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures may be secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the preferred embodiments. Accordingly, the invention expressly should not be limited to such preferred embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
An exemplary auto-loading firearm incorporating one exemplary embodiment of a magazine disconnect mechanism according to principles of the present invention will now be described for convenience with reference to a semi-automatic pistol. The principles and features of the embodiments disclosed herein, however, may be used with equal benefit for other types of auto-loading firearms including compact or full-size pistols and rifles that include removable magazines. Accordingly, the invention is not limited in its applicability or scope to pistols alone as described herein.
Referring now to
Pistol 20 further includes a barrel 26 that is movably disposed at least partially inside slide 24 and includes a rear chamber block 28 defining an open chamber 30 therein configured for receiving a cartridge C (shown in
With continuing reference to
With continuing reference to
To operably engage hammer 60 for cocking and releasing the hammer to discharge pistol 20, trigger bar 42 in one embodiment includes a laterally-extending portion such as trigger bar protrusion 69 as shown in
Hammer stop 62 preferably is biased into engagement with hammer 60 by hammer stop spring 68 mounted about hammer stop pin 63 as shown in
Operation of the firing control mechanism will now be described. Starting with pistol 20 in the ready-to-fire position shown in
In alternative embodiments and arrangements of a firing control mechanism, the means for striking a chambered cartridge to discharge firearm 20 may be a “striker” as commonly referred to in the art. Exemplary embodiments of such striker-fired firearms and firing mechanisms are shown in U.S. patent application Ser. No. 11/881/069, entitled “Striker-Fired Firearm,” which is incorporated herein by reference in its entirety. Striker mechanisms essentially replace the pivoting hammer and axially movable firing pin arrangement already described herein with a single spring-loaded axially movable striker component that incorporates the functions and features of the firing pin. The striker is moved axially rearward and then released forward to strike a chambered cartridge with the narrow forward end of the striker via the trigger and trigger bar arrangement in a similar manner to that already described herein with reference to the hammer and firing pin arrangement. Accordingly, the magazine disconnect mechanism described herein is not limited in its application to either a combination hammer and firing pin or a striker type means for striking a chambered cartridge since the pivotable movement of the trigger 40 sufficient to activate either type of these cartridge-striking systems is restricted or arrested by the magazine disconnect mechanism further described herein.
According to one aspect of the present invention, a magazine disconnect mechanism is provided for pistol 20 that prevents the firing control mechanism from being actuated sufficiently to discharge the pistol after magazine 50 has been removed. Referring initially to
With additional reference now to
In one embodiment, magazine disconnect plate 100 may be positioned and slidably mounted in an axially elongated retaining recess 83 which may be formed in the bottom surface 85 of firing control housing 80 as shown in
In one embodiment, magazine disconnect plate 100 advantageously may be slidably retained within recess 83 of firing control housing 80 without the need for pins or similar additional retaining elements. Referring to one non-limiting embodiment shown in
To install the magazine disconnect plate 100 into retaining recess 83 of firing control housing 80 in view of the dovetailed sloping surfaces arrangement, the recess 83 preferably has a rear facing opening 88 as shown in
Magazine disconnect plate 100 will now be described in further details with initial reference to
In one embodiment, the rear end 105 of magazine disconnect plate 100 is configured to operably engage magazine 50 when inserted into and removed from pistol 20 for actuating the magazine disconnect system. Referring to
With continuing reference to
Referring to
With continuing reference to
It will be appreciated that other mounting arrangements and placement of spring 120 are possible so long as magazine disconnect plate 100 is biased rearwards towards engagement with magazine 50. Accordingly, spring 120 may act on other portions or appurtenances provided on magazine disconnect plate 100 including portions front of trigger 40 or on the front end 104 of plate 100. The invention is therefore not limited to the preferred placement of spring 120 described above. It will be further appreciated that other suitable formed of springs other than helical may be used and the invention is not limited to any particular type of spring so long as the desired functionality described herein is maintained.
Referring now to
It will be appreciated that in some alternative embodiments, blocking flange 102 may be omitted and upward facing blocking surface 115 may instead be defined as part of top surface 107 of magazine disconnect plate 100 located in the same position as flange 102 shown in
Blocking flange 102 may be formed by any suitable method conventionally used in the art. In one preferred embodiment, blocking flange 102 may be most economically formed by rolling and bending a tab-like portion of magazine disconnect plate upwards as shown in
Magazine disconnect plate 100 may be formed from any suitable material including without limitation metals or polymers having relatively rigid mechanical properties. Preferably, plate 100 is made of a material and has sufficient thickness (measured vertically between top and bottom surfaces 107, 108) to provide strength sufficient to resist deformation when acted on by trigger 40 in the blocking position shown in
The operation of the magazine disconnect mechanism will now be described with primary reference to FIGS. 5 and 9-10. Magazine disconnect plate 100 is slidably movable in an axial direction in response to inserting and removing magazine 50 from a first forward unblocking position shown in
Beginning with
To remove magazine 50 from pistol 20, the user activates a conventional magazine release latch mechanism 53 (shown in
When magazine 50 is reinserted back into pistol 20, the magazine will again contact magazine sensing protrusion 112 on magazine disconnect plate 100 in the same manner describe above, thereby axially sliding the plate back forward to the unblocking position shown in
While the foregoing description and drawings represent preferred or exemplary embodiments of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes as applicable described herein may be made without departing from the spirit of the invention. One skilled in the art will further appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims and equivalents thereof, and not limited to the foregoing description or embodiments. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1866202 | Floyd | Jul 1932 | A |
2372519 | Roper | Mar 1945 | A |
3415000 | Koucky et al. | Dec 1968 | A |
3715826 | Seifred et al. | Feb 1973 | A |
3964200 | Patterson | Jun 1976 | A |
4016669 | Gminder | Apr 1977 | A |
4021955 | Curtis | May 1977 | A |
4031648 | Thomas | Jun 1977 | A |
4291481 | Hillberg | Sep 1981 | A |
4420899 | Bourlet et al. | Dec 1983 | A |
4522105 | Atchisson | Jun 1985 | A |
4765224 | Morris | Aug 1988 | A |
5038666 | Major | Aug 1991 | A |
5086579 | Flatley et al. | Feb 1992 | A |
5179233 | duPlessis | Jan 1993 | A |
5225612 | Bernkrant | Jul 1993 | A |
5426880 | Ruger et al. | Jun 1995 | A |
5438784 | Lenkarski et al. | Aug 1995 | A |
5669169 | Schmitter et al. | Sep 1997 | A |
5697178 | Haskell | Dec 1997 | A |
5701698 | Wesp et al. | Dec 1997 | A |
5899013 | Hauser et al. | May 1999 | A |
5974717 | Brooks | Nov 1999 | A |
6240669 | Spaniel et al. | Jun 2001 | B1 |
6256918 | Szabo | Jul 2001 | B1 |
6308449 | Plebani | Oct 2001 | B1 |
6405631 | Milek | Jun 2002 | B1 |
6412207 | Crye et al. | Jul 2002 | B1 |
6415702 | Szabo et al. | Jul 2002 | B1 |
6457271 | Vaid et al. | Oct 2002 | B1 |
6519887 | Allen et al. | Feb 2003 | B1 |
6560909 | Cominolli | May 2003 | B2 |
6588136 | Baker et al. | Jul 2003 | B2 |
6615527 | Martin | Sep 2003 | B1 |
6640478 | Johansson | Nov 2003 | B2 |
6655066 | Fluhr | Dec 2003 | B2 |
6665973 | Peev | Dec 2003 | B1 |
6769208 | Beretta | Aug 2004 | B2 |
6952895 | Zonshine | Oct 2005 | B1 |
7096618 | McGarry | Aug 2006 | B2 |
7204051 | Thomele et al. | Apr 2007 | B2 |
7257918 | Moore | Aug 2007 | B2 |
7293385 | McCormick | Nov 2007 | B2 |
7360331 | McGarry | Apr 2008 | B2 |
7392611 | Curry | Jul 2008 | B2 |
7472507 | Curry et al. | Jan 2009 | B2 |
7500327 | Bubits | Mar 2009 | B2 |
7526889 | Metzger et al. | May 2009 | B2 |
7568302 | Bubits | Aug 2009 | B1 |
7581345 | McGarry | Sep 2009 | B2 |
7690144 | Fagundes de Campos | Apr 2010 | B2 |
7698845 | Hochstrate et al. | Apr 2010 | B2 |
7703230 | Curry et al. | Apr 2010 | B2 |
20020152660 | Fluhr | Oct 2002 | A1 |
20030070342 | Baker et al. | Apr 2003 | A1 |
20050108914 | Thomele | May 2005 | A1 |
20050241204 | Hajjar et al. | Nov 2005 | A1 |
20050246933 | McGarry | Nov 2005 | A1 |
20080148618 | McGarry | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
4009372 | Apr 1989 | DE |
19507012 | Sep 1996 | DE |
0428292 | May 1991 | EP |
0907065 | Apr 1999 | EP |
191104607 | Mar 1911 | GB |
WO 0159387 | Aug 2001 | WO |
Entry |
---|
Corresponding PCT/US 12/20294 Search Report and Written Opinion dated May 1, 2012. |
Number | Date | Country | |
---|---|---|---|
20120174453 A1 | Jul 2012 | US |