The present invention is a method and apparatus for opening and closing a pair of contacts in a circuit control pod such as a lighting control pod. A magnetic latch solenoid mechanism, or “maglatch,” is employed with a spring that is not located in close proximity to the contacts or to the maglatch in order to provide bi-stable operation.
A maglatch is a variation of a solenoid in which a permanent magnet is added to a solenoid. This component allows for translation of electrical signals to a mechanical motion. A maglatch used in a preferred embodiment of the present invention is shown in
A schematic cross sectional view of a maglatch 210 in accordance with the invention is shown in
The maglatch 210 further comprises electromagnetic coil 230 connected to a housing of the maglatch (housing 111 of
The maglatch 210 further comprises a permanent magnet 215 and may include a flux guide 216. When the plunger 260 is in a retracted position and therefore proximate the permanent magnet 215 and flux plate 216, a strong magnetic circuit is formed through those members, exerting an attractive force on the plunger 260 and “latching” it in the retracted position.
The effect of the permanent magnet 215 depends upon the position of the plunger 260. When the plunger is extended, the magnet provides no function because the air gap 280 in the magnetic circuit is sufficiently large to greatly weaken the field. When the solenoid is pulsed with current in the first polarity, electromagnetic forces on the plunger 260 pull it inward. Once the plunger is retracted, the permanent magnet 215 of the maglatch holds the plunger in place. That holding force creates one of the two stable positions of the switching mechanism of the invention. The holding force is directly dependant upon the strength of the maglatch permanent magnet. The solenoid portion of the maglatch creates the force that allows the plunger to move from the extended position to the retracted position.
In order to provide motion in the other direction, i.e., to extend the plunger, the switching mechanism also requires a spring 390, shown in
Returning to
The contact assembly of the present invention has two stable equilibrium positions: contacts closed and contacts open. Those positions will now be described with reference to
The force diagram of
The force diagram of
A preferred embodiment of the circuit control pod 500 of the invention, including its major components, is described below with reference to
The spring 590 is a compression spring located away from the contacts 581, 582 to reduce the spring's exposure to heat generated by opening and closing the contacts. The spring is captured directly by the base and cover (not shown) of the circuit control pod 500, and acts on the L-shaped contact arm 583.
The contact arm 583 serves several functions. The arm provides a conductor for current flow to the moveable contact 582. Line current flows from a line side terminal 570 through a braided wire conductor (not shown) that is welded to the contact arm in the region near the pivot pin 580. The line current then flows from the braid weld site through the arm to the moveable contact 582. The moveable contact is also welded to the contact arm. Other connection techniques, such as soldering and brazing, may alternatively be used to attach the braid and the moveable contact to the contact arm.
The contact arm 583 pivots about the pivot pin 580 to provide the motion to open and close the electrical contacts 581, 582. The arm 583 further provides a mechanical interface 591 with spring 590. The arm provides mechanical support for both the pivot pin 580 and the wrist pin 530.
In one embodiment of the invention, the contact arm 583 provides mechanical support for an armature 571 used in a “blow closed” mechanism that also includes a magnetic yoke 572 mounted in proximity to the line side conductor 570 and the contact arm 583. The “blow closed” mechanism operates when excess current flows through the contact arm 583 and the line side conductor 570, inducing a magnetic field in the yoke 572, which exerts an attractive force on the armature 571. That attractive force holds the contacts closed and resists forces at the contacts that otherwise tend to blow the contacts apart under high current loads.
The contact arm 583 serves as one of a pair of parallel conductors that additionally holds the contacts 581, 582 together under over-current conditions. Current flowing in parallel paths in opposing surfaces of the contact arm 583 and the line side conductor 570 exert attractive forces between those two components. Those attractive forces, in addition to the force of the spring 590 and the above-described “blow-closed” mechanism, hold the contacts closed during an overcurrent condition. The parallel conductors and the “blow-closed” mechanism are described in more detail in the commonly assigned patent application entitled “Design and Method for Keeping Electrical Contacts Closed During Short Circuits,” filed concurrently with the present application, the contents of which are hereby incorporated by reference herein in their entirety.
The contact arm 583 may also serve as part of a visual flag indicator (not shown) and as part of an auxiliary contact mechanism (not shown). Further, if the angle of the spring is changed, and the contact arm 583 is slotted to permit translation relative to the pivot pin 580, the contact arm may be adapted to allow sliding motion between contacts to break tack welds that may result from arcing.
The pivot pin 580 provides for smooth rotation of the contact arm 583. The pin is captured in the base 675 (
The contact pair includes a moveable contact 582 and a fixed contact 581. The contacts make and break the electrical load. The moveable contact 582 is welded directly to the contact arm 583. The fixed contact 581 is welded to the load terminal 584.
The load terminal 584 provides an electrical connection from the contact 581 to the outside of the circuit control pod. The other end of the load terminal interfaces with a lug 585 for the securing of an external conductor (wire, electrical bus, etc.) to the circuit control pod. Features of the load terminal allow for a robust mechanical and electrical connection.
A wrist pin 530 is provided to allow for differences between the linear motion of the maglatch plunger 560 and the rotational motion of the contact arm 583. For the limited rotational motion of the preferred design relative to the length of the arm, a small amount of clearance is provided in the hole diameter where the wrist pin 530 engages the contact arm 583.
The printed circuit board 573 provides internal control of the circuit control pod. The printed circuit board receives power through an external connector 574. The printed circuit board 573 switches the polarity and duration of energy supplied to the maglatch 510 so that no additional devices (diode bridge, etc.) are required to operate the maglatch.
In a preferred embodiment, the circuit control pod is part of a larger system called an Integrated Lighting Control System. In the Integrated Lighting Control System, a set of many circuit control pods is connected to a computer via a communications bus. Signals to open or close the circuit control pod contacts are sent by the computer down the communication bus. When the signal reaches a circuit control pod, the circuit control pod electronics identify that the signal is intended for a particular circuit control pod. One technique for identifying a particular circuit control pod on a communications bus is disclosed in U.S. Patent Publication No. 20070064360, published Mar. 22, 2007 and entitled “Selection Line and Serial Control of Remote Operated Devices in an Integrated Power Distribution System,” the contents of which are incorporated by reference herein in their entirety.
Once the signal is decoded, the circuit control pod printed circuit board 573 issues a positive DC, pulse-width-controlled signal of 18-50 milliseconds in duration to the maglatch 510. The printed circuit board 573 must properly regulate the pulse width and polarity in order to retract the maglatch plunger 560. When the opposite motion is desired, the circuit control pod electronics board 573 delivers a negative DC pulse for 2-6 milliseconds. That second pulse temporarily disrupts the field of the permanent magnet within the maglatch 510, allowing the plunger 560 to extend.
A maglatch circuit control pod 600 of the present invention is shown in
The maglatch circuit control pod of the present invention has numerous advantages over existing switching devices. As compared to a worm-gear motor design, the device is quiet; the only noise produced being the sound of contacts striking. The device furthermore runs on very low power. For example, a preferred embodiment of the invention requires only about 1.7 A at 24 VDC for 2-25 milliseconds.
Operation of maglatch circuit control pod of the present invention is rapid. The inventors have measured response times for a device according to the invention at less than 4.5 milliseconds to break continuity.
The device of the invention is compact in part because it does not require a large armature for mechanical advantage. Because the device does not also manage or conflict with circuit breaker functions, it is simplified electrically and mechanically, and does not require compromises on contact design.
Due in part to the pivot pin and wrist pin designs, the system has a longer machanical life. The expected life of a contact assembly according to one embodiment of the invention is in excess of 450,000 cycles.
The foregoing detailed description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the description of the invention, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. For example, while the contact arm is described herein as having a particular L-shaped configuration, other contact arm designs may be substituted. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention.
This application claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 60/830,535 entitled “Maglatch Mechanism for Use in Lighting Control Pod,” filed on Jul. 13, 2006, the contents of which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
60830535 | Jul 2006 | US |