The present invention relates to a magnesium base alloy tube and its manufacturing method, and more particularly to a small-diameter magnesium base alloy tube and its manufacturing method preferably usable in manufacture of a stent (as an effective therapeutic method of coronary arterial diseases such as angina or myocardial infarction, a percutaneous coronary intervention (PCI) is known, and herein it refers to a reticular metal tube of thin-wall fine tube manufactured by laser processing or the like for use in coronary arterial disease in this PCI.
Magnesium comprises ¼ of iron and ⅔ of aluminum by specific gravity, and it noted as a metal having the smallest specific gravity as structural metals. In particular, magnesium base alloy has a higher rigidity than other metals, and is easier to lower in weight, and is developed in various applications as structural materials in various industrial fields (see, for example, patent document 1).
At the same time, owing to its excellent biocompatible properties, magnesium base alloy is being intensively developed in various industrial applications as medical materials, for instance, stent (see, for example, patent document 2)
However, magnesium base alloy is small in slip coefficient number at ordinary temperature, and is low in cold processability, and is hence actually limited in applications in a wide range, and in particular in the case of manufacture of a small-diameter magnesium base alloy tube used in manufacture of a stent, because of low processability, in order to obtain a large sectional area reduction rate, it is necessary to manufacture by way of a special manufacturing process, for example, by passing through multiple dice having tubular materials arranged in a row, and in addition to an extra cost required for manufacture, it is more likely to have affects of processing and hardening[[g, and it was hence difficult to obtain a small-diameter magnesium base alloy tube long in length, high in dimensional precision, and excellent in mechanical properties used for manufacture of a stent.
[Patent document 1] Japanese Patent Document Publication No. 3597186
[Patent document 2] International Patent Document Publication No. 2014/021454
The present invention relates to the conventional magnesium base alloy product, more particularly to a problem of a small-diameter magnesium base alloy, and it is a primary object thereof to present a small-diameter magnesium base alloy tube and its manufacturing method long in length, high in dimensional precision, and excellent in mechanical properties.
To achieve the above objet, the magnesium base alloy tube of the invention is characterized by the outside diameter of 1.0 to 6.0 mm, the inside diameter of 0.8 to 5.5 mm, the overall length of 500 mm or more, the coaxiality of 20 μm or less, and the elongation of 10% or more.
The manufacturing method of the magnesium base alloy tube of the invention is a method of manufacturing the magnesium base alloy tube, being characterized by extruding and forming a raw material of magnesium base alloy, by using an extrusion-forming die comprising an upper pattern having circular cylindrical protrusions of a plate shape positioned in the center of plural through-holes so as to be surrounded by plural through-holes for supplying the raw material into diaphragms of equal angles on the circumference, and a lower pattern positioned in the concave portions commonly penetrating at the exit of the plural through-holes of the upper pattern, having through-holes for inserting the protrusions of circular circumference of the upper pattern by providing wind-shaped gap, positioned in the center of concave portions of the concave portions in the circular columnar shape of the upper pattern
In this case, as the raw material of the magnesium base alloy, any powder, cast material or extrusion forming material may be used.
According to the magnesium base alloy tube and its manufacturing method of the invention, it is possible to present a small-diameter magnesium base alloy tube suited to manufacture of a stent, long in length, high in dimensional precision, and excellent in mechanical properties, and its manufacturing method.
Hereinafter, the magnesium base alloy tube and its manufacturing method of the invention are specifically described while referring to embodiments and the accompanying drawings.
This manufacturing apparatus is a forming pattern, which comprises an upper pattern 2 having plural (four in this example) penetration holes 21 for supplying a raw material 1 of a magnesium base alloy to equal angle intervals on the circumference and circular columnar protrusions 22 positioned in the center of the plural penetration holes 21 so as to be surrounded by the penetration holes 21 at the outlet side of the penetration holes 21, and a lower pattern 3 having concave parts 31 of a specific shape (cross shape in this example) commonly penetrating the outlet of the plural penetration holes 21 of the upper pattern 2 and penetration holes 32 positioned in the center of this concave part 31, in which the protrusions 22 of the circular columnar shape of the upper pattern 2 are to be inserted, is installed in a holder 52 of a press machine 5, and the raw material 1 of magnesium base alloy inserted in an upper tubular space 52a of the upper pattern 2 of the holder 52 is pressed by a punch 51 of the press machine 5, so that the small-diameter magnesium base alloy tube can be extruded and formed.
In this case, the penetration holes 32 of the lower pattern 3 have the upper part in which the protrusions are inserted formed in drawing parts 32a in which a specified tube forming space is formed, and the lower part is formed in leading-out parts 32b of the magnesium base alloy tube of larger diameter extruded and formed by the drawing part 32a.
The upper pattern 2 and the lower pattern 3 for composing the forming pattern are not designed to rotate relatively by inserting common pins in holes 23 of smaller diameter than those formed respectively in the upper pattern 2 and lower pattern 3.
As the raw material 1 of the magnesium base alloy, depending on the final product (application), various conventionally known magnesium base alloys may be used, but it is preferred to use any magnesium base alloys excellent in strength and mechanical properties, forging properties (extrusion forming performance), and others, such as AZ system (Mg—Al—Zn alloy) and WE system (Mg—Y-rare earth elements alloy).
Preferred examples of the raw material of the magnesium base alloy include powder and forging materials (such as columnar or cylindrical shapes suited to the tubular space 52a of the holder 52 of the press machine 5), and in relation to the use of the forming pattern consisting of the upper pattern and the lower pattern to be installed on the manufacturing apparatus, it is preferred to use a powder material capable of obtaining a uniform texture in the peripheral direction of the extruded and formed magnesium base alloy tube (such as those shown in the sectional view of the magnesium base alloy tube in
Extrusion forming of the magnesium base alloy tube by this manufacturing apparatus may be either performed in cold process, but is more preferred to be done in a temperature condition of about 300° C. to 500° C., and more preferably the extrusion-formed magnesium base alloy tube may be treated, as required, thermally (heated and then cooled gradually).
The small-diameter magnesium base alloy tube manufactured by using this manufacturing apparatus is preferably 1.0 to 6.0 mm in outside diameter, 0.8 to 5.5 mm in inside diameter, 0.1 to 1.0 mm in wall thickness, and 500 mm or more in overall length, more preferably 1000 mm or more, and 20 μm or less in coaxiality, and 10% or more in elongation, and hence it is possible to obtain a small-diameter magnesium base alloy tube suited to manufacture of medical appliances such as stent, and long in length, high in dimensional precision, and excellent in mechanical properties.
Specific examples of the small-diameter magnesium base alloy tube manufactured by using this manufacturing apparatus are shown in Table 1 and
Herein, the overall length of the magnesium base alloy tube is 500 mm, but by adding and supplying the raw material 1, as required, a length of over 2000 mm can be also manufactured.
The coaxiality was measured by using a digital microscope VHX-2000 of Keyence, and measuring the center distance of an outside diameter circle (outer circumference) and an inside diameter circle (inner circumference) of an arbitrary section of the magnesium base alloy tube.
Incidentally, the extrusion forming of small-diameter magnesium base alloy tube by this manufacturing apparatus is high in area reduction rate, and is hence high in the load applied to the forming patterns (upper pattern 2 and lower pattern 3), and therefore the forming pattern is likely to be deformed, buckled or broken.
To cope with this problem, as required, ultrasonic transmitters are disposed in the punch 51 and/or holder 21 (the forming pattern (upper pattern 2 and lower pattern 3) (not shown), and by adding ultrasonic oscillations at the time of forming, it is designed to reduce the abrasion resistance between the manufacturing apparatus such as forming patterns (upper pattern 2 and lower pattern 3), and the extruded and formed magnesium base alloy tube.
As shown in
As a form of the raw material 1 of the magnesium base alloy, aside from the powder forging material mentioned above, it is also possible to use an extrusion forming material (a cylindrical shape suited to the tubular space 52a of the holder 52 of the press machine 5).
The extrusion forming material may be manufactured by using the extrusion forming machine 6 comprising an extrusion forming die 61 having an extrusion opening, and an extrusion tool 64 as shown in
The extrusion forming die 61 has a die unit 61a and a main body unit 61b.
In the magnesium base powder heating process, as shown in
In the magnesium base powder feeding process, as shown in
In the primary extrusion process, as shown in
In the additional magnesium base powder feeding process, as shown in
In the secondary extrusion process, as shown in
By repeating this additional magnesium base powder feeding process, as shown in
In this manner, the extrusion forming material 65 thus obtained in this process may be cut in a length suited to the tubular space 52a of the holder 52 of the press machine 5, which may be used as a preferred raw material 1.
The small-diameter magnesium base alloy tube manufactured by using thus obtained extrusion forming material 65 in the raw material 1 of the magnesium base alloy undergoes two steps of extrusion forming process, and is processed into fine texture and high strength after the processing and curing process, and the mechanical properties are further excellent, and at the same time the corrosion resistance is further enhanced by corrosion core reduction and suppression of precipitation by solid solution of the magnesium base alloy.
The magnesium base alloy tube and its manufacturing method of the invention are specifically described while referring to exemplary embodiments, but the invention is not limited to the illustrated embodiments alone, but may be freely changed in the constitution and the application as far as it is not departed from the true spirit of the invention.
The magnesium base alloy tube and its manufacturing method of the invention are intended to present a small-diameter magnesium alloy tube long in length, high in dimensional precision, and excellent in mechanical properties, and can be hence applied preferably in manufacture of medical materials such as the stent, urinary tube, bile duct, and other internal tubular tissues by making use of the excellent biocompatibility of magnesium base alloy, and can be also applied in many structural materials in various industrial fields.
Number | Date | Country | Kind |
---|---|---|---|
2015-141461 | Jul 2015 | JP | national |
Number | Date | Country |
---|---|---|
2464442 | Sep 2003 | CA |
3597186 | Dec 2004 | JP |
2014-21454 | Feb 2014 | JP |
2014021454 | Feb 2014 | WO |
Entry |
---|
CA 2464442; Abstract; Magnesium Base Alloy Tube and Method for Manufacture Thereof Sep. 12, 2003. |
Number | Date | Country | |
---|---|---|---|
20170014881 A1 | Jan 2017 | US |