MAGNESIUM HALIDE SUPPORT FOR USE AS A COMPOSITION OF A CATALYST FOR THE OLEFIN POLYMERIZATION, AND METHOD OF PREPARATION OF THE MAGNESIUM HALIDE SUPPORT

Abstract
An aspect of the present invention is a preparation of a magnesium halide support for using as a composition of a catalyst in an olefin polymerization, wherein the magnesium halide support is a solid substance prepared by an aliphatic alcohol non-ionic surfactant, preferably is ethoxylated aliphatic alcohol. Another aspect of the present invention is a method for the preparation of the magnesium halide support for using as the composition of the catalyst in the olefin polymerization comprising the following steps: (a) adding a magnesium halide compound into an organic solvent, and heating; (b) cooling down the mixture from (a) rapidly to the room temperature or lower in the inert organic solvent and the aliphatic alcohol non-ionic surfactant; and (c) washing the magnesium halide with the anhydrous inert organic solvent, and drying, wherein the aliphatic alcohol non-ionic surfactant is ethoxylated aliphatic alcohol.
Description
FIELD OF THE INVENTION

The present invention is in the field of Chemistry, which involves chemical mixtures and processes. This invention relates to a magnesium halide support for using as a composition of a catalyst in an olefin polymerization, and a process for preparing said magnesium halide support.


BACKGROUND OF THE INVENTION

The formation of dust particles during a polymerization process is one of the important problems in the plastic production industry. Said dust particles derived from polymer with very small particle size i.e. the polymer with particle sizes which are smaller than 75 micrometre. If the dusts particles are presence in large amount, they tend to obstruct a continuous response of the production process, thereby, affecting a translocation of the polymer in the supply tube to be stuck and damaging the production process. Generally, there are several methods to get rid of these dust particles, for example, using a sieve and a fan to blow away these dust particles, or installing a filter in the polymer production process. However, it was found that there are some limitations to of those methods in order to effectively and efficiently remove all dust particles. Moreover, utilization of those methods tends to complicate the production process as well as 1 increase production cost. Therefore, prevention or minimization of the formation of said dust particles is more preferable.


It is known that the shape and size of polymer and catalyst, and distribution of polymer are correlated with each other, as disclosed in Ludwig L. Bohm, Angew. Chem. Int. Ed. 2003, 42, 5010-5030. That is, if the catalyst has a spherical shape and a narrow particle size distribution, it would lead to the production of the same spherical shape and narrow particle size distribution of the polymer as well. Therefore, there have been efforts to improve the size and shape of the polymer through uses of the catalyst with suitable size and shape. Japanese Patent Number 6-287217 discloses a production process of an olefin polymer, which utilizes a solid catalyst compound to obtain a polyolefin with a spherical-like shape and with a narrow range of distribution diameter. Furthermore, there is no polymer that is smaller than 200 μm, produced as yet through the process which utilizes an increase of a powdered non-ionic surfactant during a catalyst preparation step in order to get rid of a formation of small size particles of said solid catalyst.


Japanese Patent Application, Publication Number 3-140308 discloses a production method of a polymerization catalyst for olefin, which is characterized in that a complex compound obtained from reacting an aluminium compound with alcohol in an inert organic solvent of which is stirred until it is mixed together at a temperature higher than its melting point by using a non-ionic surfactant, and then cooling down the suspended solution rapidly without a substantial loss of the alcohol. This results in a spherical solid composition. Then, said solid composition is partially dried, and treated with halogenated titanium or an electron donor compound.


However, the non-ionic surfactants disclosed in both Japanese Patents are surfactants in a sorbitan ester group. Use of the sorbitan ester in industrial scale can pose difficulties due to a low stability of its emulsion system and can consequently produce magnesium halide support with undesirable shape.


In order to solve this problem, the present invention aims to provide magnesium halide support and preparation for same for use as a composition of the catalyst in the olefin polymerization in order to achieve polymerized olefin with desirable spherical shape and narrow particle size distribution, as well as lower dust particles.


SUMMARY OF THE INVENTION

One aspect of the present invention is to provide a magnesium halide support for use as a composition of a catalyst in an olefin polymerization, wherein the magnesium halide support is a solid obtained from the preparation of an alcohol non-ionic surfactant which is an aliphatic alcohol, preferably an ethoxylated aliphatic alcohol.


Another aspect of the present invention is to provide a preparation process of a magnesium halide support for using as a composition of a catalyst in an olefin polymerization. The process comprising:


(a) adding the magnesium halide compound to an organic solvent, and heating;


(b) cooling down the mixture from (a) rapidly to the room temperature or lower in an inert organic solvent and an aliphatic alcohol non-ionic surfactant; and


(c) washing the magnesium halide support with an anhydrous inert organic solvent, and follow by drying,


wherein the non-ionic surfactant is preferably an ethoxylated aliphatic alcohol.


An objective of this invention is to provide the magnesium halide support with a spherical shape, and having a narrow particle size distribution, and it is preparation in order to use the same as a composition of a catalyst in an olefin polymerization.


Another objective is that the polyolefin from the catalyst with the magnesium halide support according to this invention will not cause the reactor fouling.


DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a magnesium halide support for using as a composition of the catalyst in the olefin polymerization, and a preparation process for the magnesium halide support, which will be described in various aspects as follows.


Any aspects shown here are also intended to include any applications to any other aspects of this invention, unless stated otherwise.


Definitions

Technical terms and scientific terms used herein have definitions as understood by those having an ordinary skill in the art, unless stated otherwise.


The use of singular noun or pronoun when used with the term “comprising” in the claims and/or specification means “one”, and also includes “one or more”, “at least one”, and “one or more than one”.


Throughout this application, the term “about” used to identify any values shown or appeared herein may be varied or deviated. The variation or deviation may be caused by errors of devices and methods used to determine a variety of values.


The terms “comprise”, “have”, and “include” are open-ended linking verbs. One or more forms of these verbs such as “comprise”, “which comprise”, “have”, “which have”, “include”, “which include” are also open-ended. For example, any methods, which “comprise”, “have”, or “include” one or more steps, are not limited to possess only the one or those more steps, but also cover all unidentified steps.


Any instruments, devices, methods, or chemicals stated herein, unless stated otherwise, are intended to mean instruments, devices, methods, or chemicals that are used commonly by those skilled in the art.


All compositions and/or methods disclosed and claimed in this application are intended to cover any embodiments from any actions, operations, modifications, or essential changes without substantially different experiments from this invention, and to obtain anything which has properties, benefits, utilities, and effectiveness in the same manner to the aspect of the present invention in accordance with the opinion of the persons of an ordinary skill in the art, although there has not been any characterization in claims. Therefore, any replacement for or similarity to the aspects to the present invention, including any minor modifications or changes that are obvious to the persons skilled in the art, shall be considered to be within the intention, scope and spirit of the invention as recited in the appended claims of this patent.


A. Preparation of the Magnesium Halide Support

Unless specifically stated in this detailed description, the magnesium halide support according to this invention can be prepared by the processes known in the art such as spray drying, spray cooling, high pressure extruding, or high speed stirring including the preparation of the magnesium halide support under heating condition with final reaction temperature that is high enough to melt the magnesium halide complex solution and solidify as solid particles.


The magnesium halide support according to the invention includes magnesium chloride, magnesium bromide, and derivatives of magnesium chloride and magnesium bromide obtained via substitution of one or two halogen atoms of magnesium dichloride and magnesium dibromide by alkene aryl, alkoxy or aryloxy that have 1 to 14 carbon atoms.


Incidentally, examples of the magnesium halide supports include, but not limited to, magnesium dichloride, magnesium dibromide, phenoxy magnesium chloride, isopropoxy magnesium dichloride, and butoxy magnesium chloride, butyl octyl magnesium, butyl ethyl magnesium with magnesium dichloride. The magnesium halide support may be used alone or in combination with others in order to use as the composition of the catalyst.


In one embodiment of the invention is a preparation of the magnesium halide support through an aliphatic alcohol non-ionic surfactant.


Preferably, the aliphatic alcohol according to this invention is ethoxylated aliphatic alcohol comprising at least 1 but not over 12 ethoxylate groups.


More preferably, the aliphatic alcohol comprises 1 to 5 ethoxylate groups.


In one aspect of the invention, the aliphatic alcohol non-ionic surfactant may comprise at least one chain of 6 to 22 carbon atoms.


Preferably, the aliphatic alcohol according to this invention comprises at least one chain of 12 to 14 carbon atoms.


The non-ionic surfactant is an aliphatic alcohol which may be a saturated and unsaturated chain, wherein the chain has an even number of carbon atoms that may be a straight, branched, or non-aromatic ring chain.


In another aspect of the invention, the aliphatic alcohol non-ionic surfactant for the preparation of the magnesium halide support is selected from an octyl alcohol, octyl-decyl alcohol, decyl alcohol, lauryl alcohol, lauryl-miristyl alcohol, lauryl-cetyl alcohol, miristyl alcohol, cetyl alcohol, cetyl-stearyl alcohol, stearyl alcohol, and the like, or the mixture thereof.


In another aspect of the invention, the aliphatic alcohol non-ionic surfactant is obtainable from bio-based sources, preferably a palm oil.


In another embodiment of the invention, the preparation of the magnesium halide support through the aliphatic alcohol non-ionic surfactant consists of the following steps:


incidentally, unless stated otherwise, the aliphatic alcohol non-ionic surfactant is used in a liquid or semi-liquid phase where each step is proceeded under a nitrogen atmosphere;


(a) adding a magnesium halide compound into an organic solvent, and heating;


(b) cooling down the mixture from (a) rapidly to the room temperature or lower, in an inert organic solvent and the aliphatic alcohol non-ionic surfactant; and


(c) washing the magnesium halide by the anhydrous inert organic solvent, and drying.


Preferably, the non-ionic surfactant is an ethoxylated aliphatic alcohol.


Preferably, the step (c) is proceeded under a vacuum or inert gas condition.


The preferable organic solvent in the step (a) is an alcohol or ether solvent.


The alcohol solvent used in the step (a) is the aliphatic alcohol with 1-10 carbon atoms, or the mixture thereof, that can be selected from ethanol, isopropanol, butanol, hexanol, octanol, and 2-ethyl hexanol.


The ether solvent used in the step (a) is the aliphatic or alicyclic ether with 2-6 carbon atoms, or the mixture thereof.


In one aspect of the invention, in step (a) the magnesium compound and the organic solvent are used in ratio 1:2-15.


In one aspect of the invention, the step (a) is proceeded at the temperature of 25-150° C.


The preferable inert organic solvent in the step (b) is an inert organic solvent with the boiling point of 30-200° C.


Preferably, the inert organic solvent in step (b) is selected from an alkane or aromatic compound with 5-12 carbon atoms, or the mixture thereof, that can be selected from pentane, hexane, heptane, dectane, or the like.


The preferable magnesium compound in this invention is the anhydrous magnesium chloride.


The mixing speed of each step in the preparation of the magnesium halide support is between 300-1200 rounds per minute.


The following example shows the present invention without a limitation to the scope of the invention.

    • The 0.02 mol anhydrous magnesium chloride (MgCl2) was dissolved in 0.12-0.25 mol ethanol (C2H5OH) at the temperature higher than 90° C. at the stirrer speed of 300-900 rpm.
    • The mixture was precipitated immediately at the temperature of 0° C. in a 200 mL heptane solution (C7H16) with a 0.1-5% w/v non-ionic surfactant at the stirrer speed of 800-1200 rpm.
    • Then magnesium halide adduct was washed with an anhydrous hexane several times at the stirrer speed of 300-500 rpm and dried under a vacuum.


Incidentally, the magnesium halide support in a solid form will appear in the step (b).


The following is the preparation of the magnesium halide support in different forms according to this invention, which affects the shape and particle size distribution of the magnesium halide support.


I. Cooling Method


An experiment comparing effects of cooling methods on the shape and particle size distribution of the magnesium halide support was performed, and results of the experiment are shown in table 1 and FIG. 1.









TABLE 1







Effects of the cooling methods on the shape and particle


size distribution of the magnesium halide support









Particle sizes of magnesium halide support











Cooling method
D[3, 2] (μm)
Span
D[4, 3] (μm)
D50 (μm)














Slow cooling
105.9
1.8
186.8
164.6


Rapidly cooling
28.2
2.0
58.5
50.6









II. Types of Surfactants


An experiment comparing effects of the surfactants on the shape and particle size distribution of the magnesium halide support was performed by not using any surfactant, using a sodium lauryl ether sulfate (SLES) surfactant, and a non-ionic surfactant according to this invention. The concentrations of surfactants were 1% w/v. and results of the experiment are shown in table 2 and FIGS. 2-5.









TABLE 2







Effects of the surfactants on the shape and the particle


size distribution of the magnesium halide support









particle size of magnesium halide support










types of surfactant
D[3, 2]
D(50)
Span













no surfactant
28.2
50.6
2.0


SLES
29.2
49.3
1.9


non-ionic surfactant
29.8-32.5
55.2-61.2
1.9-2.0


Rx(OC2H4)yOH









Remarks:

x is an integer between 12 to 14


y is an integer between 3 to 5


R is an alkyl group


III. Concentrations of Surfactants


An experiment comparing effects of concentration of the non-polar surfactant on the shape and particle size distribution of the magnesium halide support was performed, and results of the experiment are shown in table 3 and FIGS. 6.









TABLE 3







Effects of the concentrations of the non-ionic surfactant on the shape


and the particle size distribution of the magnesium halide support









particle sizes of magnesium halide support











concentrations of the non-
D[3, 2]

D[4, 3]
D50


ionic surfactant (% w/v)
(μm)
Span
(μm)
(μm)














0
35.2
1.9
67.1
59.4


0.5
42.9
2.1
91.4
76.3


1.0
41.7
1.9
77.6
66.8


1.5
28.0
1.7
50.6
45.2


2.0
28.0
1.5
46.2
42.9


3.0
21.1
1.4
32.0
29.3












BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 shows the distribution graph of the particle sizes of the magnesium halide support prepared from the slow cooling and rapidly cooling method.



FIG. 2 shows pictures of a scanning electron microscope (SEM) and an optical microscope (OM) techniques of the magnesium halide support prepared with no surfactant.



FIG. 3 shows pictures of a scanning electron microscope (SEM) and optical microscope (OM) techniques of the magnesium halide support prepared by sodium lauryl ether sulfate (SLES).



FIG. 4 shows pictures of a scanning electron microscope (SEM) and optical microscope (OM) techniques of the magnesium halide support prepared by non-ionic surfactant according to this invention.



FIG. 5 shows distribution graph of particle size of the magnesium halide support prepared by using no surfactant, using sodium lauryl ether sulfate (SLES), and using non-ionic surfactant according to this invention.



FIG. 6 shows optical microscope pictures of the magnesium halide support prepared by the non-ionic surfactant according to this invention at different concentrations.





BEST MODE OF THE INVENTION

Best mode of the invention is as disclosed in the detailed description.

Claims
  • 1. A magnesium halide support for using as a composition of catalyst in an olefin polymerization, wherein the magnesium halide support is a solid obtainable via an aliphatic alcohol non-ionic surfactant.
  • 2. The magnesium halide support according to claim 1, wherein the non-ionic surfactant is ethoxylated aliphatic alcohol.
  • 3. The magnesium halide support according to claim 1 or 2, wherein the aliphatic alcohol comprises at least 1 to 12 ethoxylate groups.
  • 4. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is the aliphatic alcohol that comprises 1 to 5 ethoxylate groups.
  • 5. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is the aliphatic alcohol of which has a chain of an even number of carbon atoms.
  • 6. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is the aliphatic alcohol of a mixture of saturated and unsaturated chains.
  • 7. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is the aliphatic alcohol comprises at least one chain of 6 to 22 carbon atoms.
  • 8. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is the aliphatic alcohol comprises at least one chain of 12 to 14 carbon atoms.
  • 9. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is the aliphatic alcohol comprises a straight chain, a branched chain, or a non-aromatic ring chain.
  • 10. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is selected from octyl alcohol, octyl-decyl alcohol, decyl alcohol, lauryl alcohol, lauryl-miristyl alcohol, lauryl-cetyl alcohol, miristyl alcohol, cetyl alcohol, cetyl-stearyl alcohol, stearyl alcohol, and the like, or a mixture thereof.
  • 11. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is a bio-based source.
  • 12. The magnesium halide support according to claim 11, wherein the non-ionic surfactant is derived from palm oil.
  • 13. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is used in a liquid or semi-liquid phase form.
  • 14. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is used in concentrations of 0.01 - 5% w/v.
  • 15. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is used in concentrations of 0.5 - 3% w/v.
  • 16. The magnesium halide support according to any one of the preceding claims, wherein the non-ionic surfactant is used in concentrations of 1 - 2% w/v.
  • 17. A catalyst in the olefin polymerization comprising the magnesium halide support according to any one of the preceding claims as a co-composition with titanium halide.
  • 18. A method of preparing the magnesium halide support for using as the composition of the catalyst in the olefin polymerization comprising: (a) adding a magnesium halide compound into an organic solvent, and heating;(b) cooling down the mixture from (a) rapidly to the room temperature or lower in the inert organic solvent and the aliphatic alcohol non-ionic surfactant; and(c) washing the magnesium halide with the anhydrous inert organic solvent, and drying.
  • 19. The method according to claim 18, wherein said non-ionic surfactant is the aliphatic alcohol.
  • 20. The method according to claim 18 or 19, wherein the non-ionic surfactant is the ethoxylated aliphatic alcohol.
  • 21. The method according to any one of claims 18 to 20, wherein the aliphatic alcohol comprises at least 1 to 12 ethoxylate groups.
  • 22. The method according to any one of claims 18 to 21, wherein the non-ionic surfactant is the aliphatic alcohol comprising at least 1 to 5 ethoxylate groups.
  • 23. The method according to any one of claims 18 to 22, wherein the non-ionic surfactant is the aliphatic alcohol having a chain of an even number of carbon atoms.
  • 24. The method according to any one of claims 18 to 23, wherein the non-ionic surfactant is the aliphatic alcohol of a mixture of saturated and unsaturated chains.
  • 25. The method according to any one of claims 18 to 24, wherein the non-ionic surfactant is the aliphatic alcohol comprising at least one chain of 6 to 22 carbon atoms.
  • 26. The method according to any one of claims 18 to 25, wherein the non-ionic surfactant is the aliphatic alcohol comprising at least one chain of 12 to 14 carbon atoms.
  • 27. The method according to any one of claims 18 to 26, wherein the non-ionic surfactant is the aliphatic alcohol comprising straight, branched, or non-aromatic ring chains.
  • 28. The method according to any one of claims 18 to 27, wherein the non-ionic surfactant is selected from octyl alcohol, octyl-decyl alcohol, decyl alcohol, lauryl alcohol, lauryl-miristyl alcohol, lauryl-cetyl alcohol, miristyl alcohol, cetyl alcohol, cetyl-stearyl alcohol, stearyl alcohol, and the like, or a mixture thereof.
  • 29. The method according to any one of claims 18 to 28, wherein the non-ionic surfactant is a bio-based source.
  • 30. The method according to any one of claims 18 to 29, wherein the non-ionic surfactant is derived from palm oil.
  • 31. The method according to any one of claims 18 to 30, wherein the non-ionic surfactant is used in a liquid or semi-liquid phase form.
  • 32. The method according to any one of claims 18 to 31, wherein the non-ionic surfactant is used in concentrations of 0.01 - 5% w/v.
  • 33. The method according to any one of claims 18 to 32, wherein the non-ionic surfactant is used in concentrations of 0.5 - 3% w/v.
  • 34. The method according to any of claims 18 to 33, wherein the non-ionic surfactant is used in concentrations of 1 - 2% w/v.
  • 35. The method according to any one of claims 18 to 34, wherein the magnesium compound is an anhydrous magnesium compound.
  • 36. The method according to any one of claims 18 to 35, wherein the organic solvent in step (a) is alcohol or ether solvent.
  • 37. The method according to any one of claims 18 to 36, wherein the alcohol solvent in step (a) is aliphatic alcohol with 1 - 10 carbon atoms or a mixture thereof.
  • 38. The method according to any one of claims 18 to 37, wherein the alcohol solvent in step (a) is selected from ethanol, isopropanol, butanol, hexanol, octanol, and 2-ethyl hexanol.
  • 39. The method according to any one of claims 18 to 36, wherein the ether solvent in step (a) is the aliphatic or alicyclic ether with 2 - 6 carbon atoms or a mixture thereof.
  • 40. The method according to any one of claims 18 to 39, wherein the magnesium compound and the organic solvent in step (a) are used in the ratio of 1:2-15.
  • 41. The method according to any one of claims 18 to 40, wherein the step (a) is performed at the temperature of 25 - 150 ° C.
  • 42. The method according to any one of claims 18 to 41, wherein the magnesium halide support appears in a solid form in step (b).
  • 43. The method according to any one of claims 18 to 42, wherein the inert organic solvent in step (b) is aliphatic hydrocarbon, aromatic hydrocarbon or a mixture thereof.
  • 44. The method according to any one of claims 18 to 43, wherein the inert organic solvent in step (b) is the inert organic solvent with the boiling point of 30 - 200 ° C.
  • 45. The method according to any one of claims 18 to 44, wherein the inert organic solvent in step (b) is selected from an alkane or aromatic compound with 5 - 12 carbon atoms or a mixture thereof.
  • 46. The method according to any one of claims 18 to 45, wherein a mixing speed of each step in the preparation of the magnesium halide support is 300 - 1200 rounds per minute.
  • 47. The method according to any one of claims 18 to 46, wherein each step is performed under an inert gas atmosphere.
  • 48. The method according to any of claims 18 to 46, wherein the drying in step (c) is performed under a vacuum or inert gas condition.
Priority Claims (1)
Number Date Country Kind
1001001960 Dec 2010 TH national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/TH11/00051 12/21/2011 WO 00 6/20/2013