A well bore may be drilled in the earth for various purposes, such as hydrocarbon extraction, geothermal energy, or water. After a well bore is drilled, the well bore is typically lined with casing. The casing preserves the shape of the well bore as well as provides a sealed conduit for fluid to be transported to the surface.
A common problem in well bores is the accumulation of metallic debris. The metallic debris can be in the form of small metal shavings. Metal shavings can enter the hydrocarbon producing formation and reduce production. Metallic debris may be generated by tools on a work string scraping against the inside of the casing. Also, metallic debris is created while milling metal objects downhole, such as a bridge plug or packer. Some of the metallic debris may be brought back to the surface by well fluids that are circulated in the well bore, but a significant amount may still remain in the well bore.
Corrosion and other damage degrades the interior of the metal casing over time, which leaves a rough surface. This condition is typically cured by running tools in and out of the well bore with wire brushes and scrapers to abrade the inside of the casing. A scraper typically includes steel blades disposed on the outside of a cylindrical tool. The blades are biased radially outward by springs so that the scraper abrades the inside of the casing. The scraper helps to dislodge rough particles that are magnetically attracted to the casing or embedded in the casing wall. Wire brushes serve a similar purpose, but typically remove smaller particles. Some of the removed material is in the form of small metallic shavings and flakes of metal. Fluid is circulated during this operation to lift the removed material to the surface, but some metallic debris is left in the well bore.
Many tools exist that use magnets to attract and hold metallic debris, allowing the metallic debris to be removed from the well bore. Typically, permanent magnets in the form of buttons or bars are spaced apart to cover the outside of the magnetic tool. Metallic debris is attracted to each magnet allowing the removal of debris. Increased removal of metallic debris is accomplished by using more and larger magnets.
An example of a magnetic tool used to remove metallic debris is provided in U.S. Pat. No. 6,591,117 B2, entitled “Apparatus for Retrieving Metal Debris from a Well Bore.” In the '117 patent, large bar magnets are spaced apart around and along a tool body to attract metal debris. The bar magnets are fitted into recesses in the tool body and arranged to have an area between each magnet for metallic debris to settle.
In one aspect, the present invention relates to a downhole tool for removing metallic debris from a well bore. The downhole tool includes a body that is able to connect to a work string. Two or more hoop magnets are disposed coaxially along the length of the body, and arranged in a bucking arrangement.
In one aspect, the present invention relates to a downhole tool for removing metallic debris from a well bore. The downhole tool includes a body with a mandrel and a central opening. The body is able to connect to a work string. A magnet assembly is disposed on the mandrel. The magnet assembly includes an inner sleeve designed to fit around the mandrel. A plurality of hoop magnets are disposed on the inner sleeve and spaced apart along the length of the inner sleeve. The plurality of hoop magnets are arranged in a bucking arrangement.
In one aspect, the present invention relates to a downhole tool for removing metallic debris from a well bore. The downhole tool includes a body that is able to connect to a work string. A plurality of magnets are distributed azimuthally around the circumference of the body. The plurality of magnets are arranged in a bucking arrangement.
In one aspect, the present invention relates to a downhole tool for removing metallic debris from a well bore. The downhole tool includes a body with a mandrel and a central opening. The body is able to be connect to a work string. A magnet assembly is disposed on the mandrel. The magnet assembly includes an inner sleeve designed to fit around the mandrel. A plurality of magnets are distributed azimuthally around the circumference of the inner sleeve. The plurality of magnets are arranged in a bucking arrangement.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
In one aspect, the present invention relates to an arrangement of magnets for removing metallic debris from a well bore. More specifically, embodiments of the present invention have a plurality of magnets spaced apart so that the magnetic field of each magnet interacts with the magnetic field of its neighbor to increase the effectiveness of the magnet arrangement to remove metallic debris from a well bore.
In the embodiment shown in
To assemble this embodiment, a first magnet 101B may be placed against the center ridge 111. The first magnet 101B may be fixed in place by a retaining device, such as a retaining ring 106 or a snap ring. A second magnet 101A may be installed on the same side of the center ridge 111. The second magnet 101A is oriented so that the same magnetic pole faces the first magnet 101B, such as north to north. Both magnets 101A and 101B are in close proximity to each other so that their magnetic fields repulse each other, resulting in a substantial repulsive force. The second magnet 101A may also be secured in place by a retaining ring 106. The same procedure may be repeated for magnets 101C and 101D.
After all four magnets 101A–101D are secured, an outer sleeve 105 may be placed around the magnets 101A–101D. The outer sleeve 105 is preferably formed of a material exhibiting little or no magnetic susceptibility, such as an austenitic stainless steel, to prevent interference with the magnetic fields of the magnets 101. The outer sleeve 105 provides protection for the magnets 101 and a gathering surface for magnetic debris. In one embodiment, grooves 107 are formed in the outside surface of the outer sleeve 105. The grooves 107 help to retain metallic debris.
After the outer sleeve 105 is installed, end caps 108 may be placed on the magnet carrier 110. The end caps 108 may be secured by an interference fit between the outer sleeve 105 and inner sleeve 104. Alternatively, the end caps 108 may be threaded or secured by any other means known in the art. The end caps 108 are preferably formed of a material exhibiting little or no magnetic susceptibility to prevent interference with the magnetic fields of the magnets 101. The individual features in this particular embodiment are intended to illustrate how a magnet carrier may be assembled in accordance with one embodiment of the present invention. However, they are not intended to limit the scope of the invention. For example, the magnets may be held in place by other means, such as an adhesive. In one embodiment, the magnets are assembled from one end of the inner sleeve without a center ridge. One of ordinary skill in the art will appreciate that magnets may be assembled into a magnet carrier in different ways without departing from the scope of the invention. Furthermore, some embodiments may not include the magnet carrier. Instead, the magnet arrangement may be disposed directly onto a tool body, for example.
While the above embodiment combines separate magnet rings to form a magnet, other magnet forms may be selected to use in a similar manner. For example, the magnet 101 may be a single piece instead of a combination of magnet rings 102. Furthermore, the magnet 101 or magnet rings 102 need not be in a contiguous ring shape. Instead, they may comprise sections that substantially form a ring.
The magnetic orientation and distance of each hoop magnet relative to a neighboring hoop magnet allows for a magnetic field with an increased radial size to be created. As is known in the art, a magnet generally has a north and a south pole. When two magnets have opposite poles facing each other (i.e., north to south), the magnets are attracted to each other. Like magnetic poles repulse each other.
The longitudinal spacing of the hoop magnets vary depending the characteristics of the hoop magnets, such as the strength of the magnetic field. If the hoop magnets are too far apart, the bucking effect is reduced, causing the hoop magnets to act more individually. When moving the hoop magnets close together, the bucking effect increases, causing the magnetic field to expand radially. At the same time, the overall coverage of the magnetic field in the longitudinal direction is reduced for a given number of hoop magnets. Because the well bore is limited in diameter, the radial reach of the magnetic field is wasted much beyond the well bore. Therefore, it is desirable to balance the length and radial reach of the magnetic field created by the magnet arrangement. In one embodiment, six ceramic ferrite hoop magnets 1 inch in height are disposed ¾ of an inch apart longitudinally.
The number of hoop magnets spaced longitudinally in the magnet carrier may vary. Two or more hoop magnets may be spaced longitudinally in accordance with embodiments of the present invention. In one embodiment, six hoop magnets are used. In another embodiment, five hoop magnets are spaced apart in the magnet carrier. One of ordinary skill in the art will appreciate that the number of hoop magnets in the magnet carrier can vary without departing from the scope of the invention.
Turning to
The module arrangement shown in
Modules disposed on a mandrel as shown in the above embodiment may not be forced to rotate with the rest of the work string. The modules are confined longitudinally, but are free to rotate azimuthally. This reduces the wear on the casing and on the modules. This containment system also allows for simple replacement of modules when a module wears out or when other configurations are desired.
While the above embodiments have included a modular type of magnet carrier, it should be understood that the hoop magnet arrangement that has been disclosed may be used in other downhole tools for the purpose of removing metallic debris from a well bore. For example, the inner sleeve may not be required if the hoop magnets are disposed directly onto a tool body adapted to attach to a work string. Additionally, the hoop magnets may be disposed at one end of a tool body adapted to attach to a work string at the other end. Hoop magnets disposed at the end of the tool may be able to effectively remove metallic debris that has settled at the bottom of the well bore. One of ordinary skill in the art will be able to utilize the disclosed hoop magnet arrangement in other downhole tool applications to remove metallic debris from a well bore without departing from the scope of the invention.
While the above embodiments have used hoop magnets, one having the benefit of this disclosure could utilize the bucking phenomenon with other magnets.
The magnets 601 may be secured by any means known in the art, such as a bolt, straps, or adhesive. While the magnets 601 are shown directly attached to a tool body 602, the magnets 601 may be attached to a module similar to that shown in
While the magnets 601 shown in
Embodiments of the present invention provide one or more of the following advantages. Metallic debris, especially small metal shavings, are suspended in the well fluid. As the magnet carrier passes by the metal shavings, the metal shavings are only attracted by the magnet carrier if they are within a strong portion of the magnetic field. To capture the metal shavings throughout the well fluid, the magnetic field must extend radially to the casing from the magnet carrier. This can be accomplished by utilizing bucking between the magnetic fields of two or more hoop magnets. As the magnet carrier passes through the well bore and well fluid flows by, metal shavings are pulled from the well fluid and attached to the magnet carrier.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
3637033 | Mayall | Jan 1972 | A |
6269877 | Zeer et al. | Aug 2001 | B1 |
6354386 | Ruttley | Mar 2002 | B1 |
6357539 | Ruttley | Mar 2002 | B1 |
6491117 | Ruttley | Dec 2002 | B1 |
6629562 | Fidan | Oct 2003 | B1 |
6655462 | Carmichael et al. | Dec 2003 | B1 |
6702940 | Blange | Mar 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050274524 A1 | Dec 2005 | US |