The present subject matter relates generally to magnet assemblies for magneto-caloric heat pumps.
Conventional refrigeration technology typically utilizes a heat pump that relies on compression and expansion of a fluid refrigerant to receive and reject heat in a cyclic manner so as to effect a desired temperature change or i.e. transfer heat energy from one location to another. This cycle can be used to provide e.g., for the receiving of heat from a refrigeration compartment and the rejecting of such heat to the environment or a location that is external to the compartment. Other applications include air conditioning of residential or commercial structures. A variety of different fluid refrigerants have been developed that can be used with the heat pump in such systems.
While improvements have been made to such heat pump systems that rely on the compression of fluid refrigerant, at best such can still only operate at about forty-five percent or less of the maximum theoretical Carnot cycle efficiency. Also, some fluid refrigerants have been discontinued due to environmental concerns. The range of ambient temperatures over which certain refrigerant-based systems can operate may be impractical for certain locations. Other challenges with heat pumps that use a fluid refrigerant exist as well.
Magneto-caloric materials (MCMs), i.e. materials that exhibit the magneto-caloric effect, provide a potential alternative to fluid refrigerants for heat pump applications. In general, the magnetic moments of an MCM will become more ordered under an increasing, externally applied magnetic field and cause the MCM to generate heat. Conversely, decreasing the externally applied magnetic field will allow the magnetic moments of the MCM to become more disordered and allow the MCM to absorb heat. Some MCMs exhibit the opposite behavior, i.e. generating heat when the magnetic field is removed (which are sometimes referred to as para-magneto caloric material but both types are referred to collectively herein as magneto-caloric material or MCM). The theoretical percentage of Carnot cycle efficiency achievable for a refrigeration cycle based on an MCM can be significantly higher than for a comparable refrigeration cycle based on a fluid refrigerant. As such, a heat pump system that can effectively use an MCM would be useful.
Challenges exist to the practical and cost competitive use of an MCM, however. In addition to the development of suitable MCMs, equipment that can attractively utilize an MCM is still needed. For example, an MCM that transfers heat to a fluid with minimal energy usage would be useful. In particular, an MCM with that provides high heat transfer to the fluid and low pressure drop through the MCM would be useful.
The present subject matter provides a magnet assembly for a magneto-caloric heat pump. The magnet assembly includes a first frame that extends between first and third magnets and a second frame that extends between second and fourth magnets. Each of the first and second frames includes a series of metal layers arranged such that a thermal break is formed between adjacent metal layers in the series of metal layers. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first exemplary embodiment, a magnet assembly for a magneto-caloric heat pump is provided. The magnet assembly includes a first magnet. A second magnet is spaced from the first magnet along a transverse direction. The magnet assembly also includes a third magnet. A fourth magnet is spaced from the third magnet along the transverse direction. A first frame extends between the first and third magnets along a longitudinal direction that is perpendicular to the transverse direction. A second frame extends between the second and fourth magnets along the longitudinal direction. The second frame is spaced from the first frame along the transverse direction. Each of the first and second frames includes a series of metal layers arranged such that a thermal break is formed between adjacent metal layers in the series of metal layers along a lateral direction that is orthogonal to the longitudinal and transverse directions.
In a second exemplary embodiment, a magnet assembly for a magneto-caloric heat pump is provided. The magnet assembly includes a first magnet. A second magnet is spaced from the first magnet along a transverse direction. The magnet assembly also includes a third magnet. A fourth magnet is spaced from the third magnet along the transverse direction. A first frame extends between the first and third magnets along a longitudinal direction that is perpendicular to the transverse direction. A second frame extends between the second and fourth magnets along the longitudinal direction. The second frame is spaced from the first frame along the transverse direction. Each of the first and second frames includes a series of metal layers. The series of metal layers is positioned such that the metal layers of the series of metal layers are spaced along a lateral direction that is orthogonal to the longitudinal and transverse directions.
In a third exemplary embodiment, a magnet assembly for a magneto-caloric heat pump is provided. The magnet assembly includes a first magnet. A second magnet is spaced from the first magnet along a transverse direction. A regenerator housing is movable between the first and second magnets along a longitudinal direction that is perpendicular to the transverse direction. A caloric material is positioned within the regenerator housing. A frame extends between the first and second magnets. The frame includes a series of metal layers arranged such that a thermal break is formed between adjacent metal layers in the series of metal layers along a lateral direction that is orthogonal to the longitudinal and transverse directions.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
The present subject matter may be utilized in a caloric heat pump system for heating or cooling an appliance, such as a refrigerator appliance. While described in greater detail below in the context of a magneto-caloric heat pump system, one of skill in the art using the teachings herein will recognize that other suitable caloric materials may be used in a similar manner to heat or cool an appliance, i.e., apply a field, move heat, remove the field, move heat. For example, electro-caloric material heats up and cools down within increasing and decreasing electric fields. As another example, elasto-caloric material heats up and cools down when exposed to increasing and decreasing mechanical strain. As yet another example, baro-caloric material heats up and cools down when exposed to increasing and decreasing pressure. Such materials and other similar caloric materials may be used in place of or in addition to the magneto-caloric material described below to heat or cool liquid/water within an appliance. Thus, caloric material is used broadly herein to encompass materials that undergo heating or cooling when exposed to a changing field from a field generator, where the field generator may be a magnet, an electric field generator, an actuator for applying mechanical stress or pressure, etc.
Referring now to
The heat transfer fluid flows out of first heat exchanger 32 by line 44 to heat pump 100. As will be further described herein, the heat transfer fluid receives additional heat from magneto-caloric material (MCM) in heat pump 100 and carries this heat by line 48 to pump 42 and then to second or hot side heat exchanger 34. Heat is released to the environment, machinery compartment 40, and/or other location external to refrigeration compartment 30 using second heat exchanger 34. A fan 36 may be used to create a flow of air across second heat exchanger 34 and thereby improve the rate of heat transfer to the environment. Pump 42 connected into line 48 causes the heat transfer fluid to recirculate in heat pump system 52. Motor 28 is in mechanical communication with heat pump 100, as will be further described.
From second heat exchanger 34, the heat transfer fluid returns by line 50 to heat pump 100 where, as will be further described below, the heat transfer fluid loses heat to the MCM in heat pump 100. The now colder heat transfer fluid flows by line 46 to first heat exchanger 32 to receive heat from refrigeration compartment 30 and repeat the cycle as just described.
Heat pump system 52 is provided by way of example only. Other configurations of heat pump system 52 may be used as well. For example, lines 44, 46, 48, and 50 provide fluid communication between the various components of heat pump system 52 but other heat transfer fluid recirculation loops with different lines and connections may also be employed. For example, pump 42 can also be positioned at other locations or on other lines in system 52. Still other configurations of heat pump system 52 may be used as well.
As shown in
Heat pump 100 may further include a support frame 120 which supports magnet assembl(ies) 110. Magnet assembly 110 may be connected to support frame 120. For example, each magnet 112, 114 of magnet assembly 110 may be connected to support frame 120. Such connection in exemplary embodiments is a fixed connection via a suitable adhesive, mechanical fasteners and/or a suitable connecting technique, such as welding, brazing, etc. Support assembly 120 may, for example, support magnets 112, 114 in position such that gap 114 is defined between magnets 112, 114.
As illustrated, support frame 120 is an open-style frame, such that interior portions of support frame 120 are accessible from exterior to support frame 120 (e.g. in the longitudinal and transverse directions L, T) and components of heat pump 100 can be moved from interior to support frame 120 to exterior to support frame 120 and vice-versa. For example, support frame 120 may define one or more interior spaces 122. Multiple interior spaces 122, as shown, may be partitioned from each other by frame members or other components of the support frame 120. An interior space 122 may be contiguous with associated magnets 112, 114 (i.e. magnet assembly 110) and gap 116, such as along the longitudinal direction L. Support frame 120 may additionally define one or more exterior spaces 124, each of which includes the exterior environment proximate support frame 120. Specifically, an exterior space 124 may be contiguous with associated magnets 112, 114 (i.e. magnet assembly 110) and gap 116, such as along the longitudinal direction L. An associated interior space 122 and exterior space 124 may be disposed on opposing sides of associated magnets 112, 114 (i.e. magnet assembly 110) and gap 116, such as along the longitudinal direction L. Thus, magnet assembly 110 and gap 116 may be positioned between an associated interior space 122 and exterior space 124, e.g., along the longitudinal direction L.
As illustrated in
Various frame members may be utilized to form support frame 120. For example, in some exemplary embodiments, an upper frame member 126 and a lower frame member 127 may be provided. Lower frame member 127 may be spaced apart from upper frame member 126 along the vertical axis V. First magnet(s) 112 may be connected to upper frame member 126, and second magnet(s) 114 may be connected to lower frame member 127. In exemplary embodiments, upper frame member 126 and lower frame member 127 may be formed from materials which have relatively high magnetic permeability, such as iron.
In some exemplary embodiments, as illustrated in
Referring to
As provided in heat pump 100, each stage 130, 132 may extend, such as along the transverse direction T, between a first end portion 134 and a second end portion 136. As discussed herein, working fluid (also referred to herein as heat transfer fluid or fluid refrigerant) may flow into each stage 130, 132 and from each stage 130, 132 through first end portion 134 and second end portion 136. Accordingly, working fluid flowing through a stage 130, 132 during operation of heat pump 100 flows generally along the transverse direction T between first and second end portions 134, 136 of stages 130, 132.
Stages 130, 132, such as each pair of stages 130, 132, may be disposed within regenerator housings 140. Regenerator housing 140 along with stages 130, 132 and optional insulative materials may collectively be referred to as a regenerator assembly. As shown in
The regenerator housing(s) 140 (and associated stages 130, 132) and magnet assembly(s) 110 may be movable relative to each other, such as along the longitudinal direction L. In exemplary embodiments as shown, for example, each regenerator housing 140 (and associated stages 130, 132) is movable relative to an associated magnet assembly 110, such as along the longitudinal direction L. Alternatively, however, each magnet assembly 110 may be movable relative to the associated regenerator housing 140 (and associated stages 130, 132), such as along the longitudinal direction L.
Such relative movement between regenerator housing 140 and an associated magnet assembly 110 causes movement of each stage 130, 132 into the magnetic field M and out of the magnetic field M. As discussed herein, movement of a stage 130, 132 into the magnetic field M may cause the magnetic moments of the material to orient and the MCM to heat (or alternatively cool) as part of the magneto-caloric effect. When one of stages 130, 132 is out of the magnetic field M, the MCM may thus cool (or alternatively heat) due to disorder of the magnetic moments of the material.
For example, a regenerator housing 140 (or an associated magnet assembly 110) may be movable along the longitudinal direction L between a first position and a second position. In the first position (as illustrated for example in
Regenerator housing 140 (or an associated magnet assembly 110) is movable along the longitudinal direction L between the first position and the second position. Such movement along the longitudinal direction L from the first position to the second position may be referred to herein as a first transition, while movement along the longitudinal direction L from the second position to the first position may be referred to herein as a second transition.
Referring to
For example, in some exemplary embodiments as illustrated in
Referring again to
When a regenerator housing 140 (and associated stages 130, 132) is in a first position, a first stage 130 may be within the magnetic field and a second stage 132 may be out of the magnetic field. Accordingly, working fluid in first stage 130 may be heated (or cooled) due to the magneto-caloric effect, while working fluid in second stage 132 may be cooled (or heated) due to the lack of magneto-caloric effect. Additionally, when a stage 130, 132 is in the first position or second position, working fluid may be actively flowed to heat exchangers 32, 34, such as through inlets and outlets of the various stages 130, 132. Working fluid may be generally constant or static within stages 130, 132 during the first and second transitions.
One or more pumps 170, 172 (each of which may be a pump 42 as discussed herein) may be operable to facilitate such active flow of working fluid when the stages are in the first position or second position. For example, a first pump 170 (which may be or include a piston) may operate to flow working fluid when the stages 130, 132 are in the first position (such that stage 130 is within the magnetic field M and stage 132 is out of the magnetic field M), while a second pump 172 (which may be or include a piston) may operate to flow working fluid when the stages 130, 132 are in the second position (such that stage 132 is within the magnetic field M and stage 130 is out of the magnetic field M). Operation of a pump 170, 172 may cause active flow of working fluid through the stages 130, 132, heat exchangers 32, 34, and system 52 generally. Each pump 170, 172 may be in fluid communication with the stages 130, 132 and heat exchangers 32, 34, such as on various lines between stages 130, 132 and heat exchangers 32, 34. In exemplary embodiments as shown, the pumps 170, 172 may be on “hot side” lines between the stages 130, 132 and heat exchanger 34 (i.e. on lines 48). Alternatively, the pumps 170, 172 may be on “cold side” lines between the stages 130, 132 and heat exchanger 32 (i.e. on lines 44). Referring briefly to
Working fluid may be flowable from a stage 130, 132 through hot side outlet 168 and to stage 130, 132 through cold side inlet 162 when the stage is within the magnetic field M. Working fluid may be flowable from a stage 130, 132 through cold side outlet 164 and to the stage through hot side inlet 166 during movement of stage 130, 132 when the stage is out of the magnetic field M. Accordingly, and referring now to
Notably, check valves 190 may in some exemplary embodiments be provided on the various lines 44, 46, 48, 50 to prevent backflow there-through. Check valves 190, in combination with differential pressures during operation of heat pump 100, may thus generally prevent flow through the improper flow path when working fluid is being actively flowed through one of flow paths 190, 192.
For example, flexible lines 44, 46, 48, 50 may each be formed from one of a polyurethane, a rubber, or a polyvinyl chloride, or another suitable polymer or other material. In exemplary embodiments, lines 44, 46, 48, 50 may further be fiber impregnated, and thus include embedded fibers, or may be otherwise reinforced. For example, glass, carbon, polymer or other fibers may be utilized, or other polymers such as polyester may be utilized to reinforce lines 44, 46, 48, 50.
In step 302, stage 130 is moved from the first position to the second position in the first transition. During the time in the first transition, working fluid dwells in the MCM of stage 130. More specifically, the working fluid does not actively flow through stage 130.
In step 304, stage 130 is in the second position and thus out of magnetic field M. The absence or lessening of the magnetic field is such that the magnetic moments of the material become disordered and the MCM absorbs heat as part of the magnetocaloric effect. Further, pump 172 is activated to actively flow working fluid in the second flow path 182. As indicated by arrow QC-OUT, working fluid in stage 130, now cooled by the MCM, can travel out of stage 130 and along line 46 to first heat exchanger 32. At the same time, and as indicated by arrow QC-IN, working fluid from second heat exchanger 34 flows into stage 112 from line 50 when stage 130 is in the second transition. Because working fluid from second heat exchanger 34 is relatively warmer than the MCM in stage 130, the MCM will lose some of its heat to the working fluid. The working fluid now travels along line 46 to first heat exchanger 32 to receive heat and cool refrigeration compartment 30.
In step 306, stage 130 is moved from the second position to the first position in the second transition. During the time in the second transition, the working fluid dwells in the MCM of stage 130. More specifically, the working fluid does not actively flow through stage 130.
With regard to second stage 132, during step 300, which corresponds to the first position, second stage 132 is out of magnetic field M. The absence or lessening of the magnetic field is such that the magnetic moments of the material become disordered and the MCM absorbs heat as part of the magneto-caloric effect. Further, pump 170 is activated to actively flow working fluid in first flow path 180. As indicated by arrow QC-OUT, working fluid in stage 132, now cooled by the MCM, can travel out of stage 132 and along line 46 to first heat exchanger 32. At the same time, and as indicated by arrow QC-IN, working fluid from second heat exchanger 34 flows into stage 112 from line 50 when stage 132 is in the second transition. Because working fluid from second heat exchanger 34 is relatively warmer than the MCM in stage 132, the MCM will lose some of its heat to the working fluid. The working fluid now travels along line 46 to first heat exchanger 32 to receive heat and cool the refrigeration compartment 30.
In step 302, stage 132 is moved from the first position to the second position in the first transition. During the time in the first transition, the working fluid dwells in the MCM of stage 132. More specifically, the working fluid does not actively flow through stage 132.
In step 304, stage 132 is in the second position and thus fully within magnetic field M, which causes the magnetic moments of the material to orient and the MCM to heat as part of the magneto caloric effect. Further, pump 172 is activated to actively flow working fluid in the second flow path 182. As indicated by arrow QH-OUT, working fluid in stage 132, now heated by the MCM, can travel out of stage 132 and along line 48 to second heat exchanger 34. At the same time, and as indicated by arrow QH-IN, working fluid from first heat exchanger 32 flows into stage 132 from line 44. Because working fluid from first heat exchanger 32 is relatively cooler than the MCM in stage 132, the MCM will lose heat to the working fluid.
In step 306, stage 132 is moved from the second position to the first position in the second transition. During the time in the second transition, working fluid dwells in the MCM of stage 132. More specifically, the working fluid does not actively flow through stage 132.
Heat pump 100 may also include features for limiting conductive heat transfer, e.g., along the lateral direction A that is perpendicular to the transverse and longitudinal directions T, L.
First magnet 210 has an inner surface 212 and an outer surface 214 that are positioned opposite each other on first magnet 210, e.g., along the transverse direction T. Inner surface 212 of first magnet 210 may face towards regenerator housing 250, and outer surface 214 of first magnet 210 may face away from regenerator housing 250. Second magnet 220 also has an inner surface 222 and an outer surface 224 that are positioned opposite each other on second magnet 220, e.g., along the transverse direction T. Inner surface 222 of second magnet 220 may face towards regenerator housing 250, and outer surface 224 of second magnet 220 may face away from regenerator housing 250.
While only first and second magnets 210, 220 are shown in
Turning back to
First and second frames 230, 240 may include features for limiting conductive heat transfer through first and second frames 230, 240, e.g., along the lateral direction A. As shown in
Metal layers 232 of first frame 230 are arranged such that a thermal break 234 is formed between adjacent metal layers 232 along the lateral direction A. For example, as shown in
Thermal breaks 234 of first frame 230 and thermal breaks 244 of second frame 240 assist with limiting conductive heat transfer within first and second frames 230, 240, e.g., along the lateral direction A. Thus, heat transfer between a hot side of heat pump 100 (e.g., at or adjacent hot side heat exchanger 34) and a cold side of heat pump 100 (e.g., at or adjacent cold side heat exchanger 32) may be reduced or limited by thermal breaks 234 of first frame 230 and thermal breaks 244 of second frame 240. Limiting conductive heat transfer between the hot and cold sides of heat pump 100 through magnet assembly 200 may allow heat pump 100 to operate more efficiently relative to magnet assemblies with greater conductive heat transfer characteristics.
Thermal breaks 234 of first frame 230 and thermal breaks 244 of second frame 240 may be any suitable type of thermal break. For example, thermal breaks 234 of first frame 230 may be contact resistance thermal breaks where contact resistance between adjacent, contacting metal layers 232 of first frame 230 form thermal breaks 234 of first frame 230. Thus, metal layers 232 of first frame 230 may be stacked against one another along the lateral direction A to form first frame 230 with thermal breaks 234. As another example, thermal breaks 234 of first frame 230 may correspond to air gaps between adjacent metal layers 232 of first frame 230 along the lateral direction A, e.g., such that metal layers 232 of first frame 230 do not contact one another and are spaced apart from one another by air gaps along the lateral direction A. As yet another example, thermal breaks 234 of first frame 230 may correspond to an insulator material panel or layer, e.g., that has a thermal conductivity less than one half Watt per meter Kelvin, positioned between adjacent metal layers 232 of first frame 230 along the lateral direction A. Thermal breaks 244 of second frame 240 may be formed in any of the manners described above for thermal breaks 234 of first frame 230.
In the exemplary embodiment shown in
As shown in
Magnetic layers 216 of first magnet 210 are arranged such that a thermal break 218 is formed between adjacent magnetic layers 216 along the lateral direction A. For example, as shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
668560 | Fulner et al. | Feb 1901 | A |
1985455 | Mosby | Dec 1934 | A |
2671929 | Gayler | Mar 1954 | A |
2765633 | Muffly | Oct 1956 | A |
3816029 | Bowen et al. | Jun 1974 | A |
3956076 | Powell, Jr. et al. | May 1976 | A |
4037427 | Kramer | Jul 1977 | A |
4102655 | Jeffery et al. | Jul 1978 | A |
4107935 | Steyert, Jr. | Aug 1978 | A |
4197709 | Hochstein | Apr 1980 | A |
4200680 | Sasazawa et al. | Apr 1980 | A |
4259843 | Kausch | Apr 1981 | A |
4507927 | Barclay | Apr 1985 | A |
4507928 | Johnson | Apr 1985 | A |
4549155 | Halbach | Oct 1985 | A |
4554790 | Nakagome et al. | Nov 1985 | A |
4557228 | Samodovitz | Dec 1985 | A |
4599866 | Nakagome et al. | Jul 1986 | A |
4625519 | Hakuraku et al. | Dec 1986 | A |
4642994 | Barclay et al. | Feb 1987 | A |
4735062 | Woolley et al. | Apr 1988 | A |
4741175 | Schulze | May 1988 | A |
4785636 | Hakuraku et al. | Nov 1988 | A |
4796430 | Malaker et al. | Jan 1989 | A |
5091361 | Hed | Feb 1992 | A |
5156003 | Yoshiro et al. | Oct 1992 | A |
5249424 | DeGregoria et al. | Oct 1993 | A |
5336421 | Kurita et al. | Aug 1994 | A |
5351791 | Rosenzweig | Oct 1994 | A |
5465781 | DeGregoria | Nov 1995 | A |
5599177 | Hetherington | Feb 1997 | A |
5661895 | Irgens | Sep 1997 | A |
5718570 | Beckett et al. | Feb 1998 | A |
5934078 | Lawton, Jr. et al. | Aug 1999 | A |
6332323 | Reid et al. | Dec 2001 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6446441 | Dean | Sep 2002 | B1 |
6467274 | Barclay et al. | Oct 2002 | B2 |
6526759 | Zimm et al. | Mar 2003 | B2 |
6588215 | Ghoshal | Jul 2003 | B1 |
6612816 | Vanden Brande et al. | Sep 2003 | B1 |
6668560 | Zimm et al. | Dec 2003 | B2 |
6826915 | Wada et al. | Dec 2004 | B2 |
6915647 | Tsuchikawa et al. | Jul 2005 | B2 |
6935121 | Fang et al. | Aug 2005 | B2 |
6946941 | Chell | Sep 2005 | B2 |
6971245 | Kuroyanagi | Dec 2005 | B2 |
7148777 | Chell et al. | Dec 2006 | B2 |
7297270 | Bernard et al. | Nov 2007 | B2 |
7313926 | Gurin | Jan 2008 | B2 |
7481064 | Kitanovski et al. | Jan 2009 | B2 |
7552592 | Iwasaki et al. | Jun 2009 | B2 |
7644588 | Shin et al. | Jan 2010 | B2 |
7863789 | Zepp et al. | Jan 2011 | B2 |
7897898 | Muller et al. | Mar 2011 | B2 |
7938632 | Smith | May 2011 | B2 |
8061147 | Dinesen et al. | Nov 2011 | B2 |
8069662 | Albert | Dec 2011 | B1 |
8099964 | Saito et al. | Jan 2012 | B2 |
8174245 | Carver | May 2012 | B2 |
8191375 | Sari et al. | Jun 2012 | B2 |
8209988 | Zhang et al. | Jul 2012 | B2 |
8216396 | Dooley et al. | Jul 2012 | B2 |
8310325 | Zhang et al. | Nov 2012 | B2 |
8375727 | Sohn | Feb 2013 | B2 |
8378769 | Heitzler et al. | Feb 2013 | B2 |
8448453 | Bahl et al. | May 2013 | B2 |
8551210 | Reppel et al. | Oct 2013 | B2 |
8596084 | Herrera et al. | Dec 2013 | B2 |
8616009 | Dinesen et al. | Dec 2013 | B2 |
8656725 | Muller et al. | Feb 2014 | B2 |
8695354 | Heitzler et al. | Apr 2014 | B2 |
8729718 | Kuo et al. | May 2014 | B2 |
8763407 | Carroll et al. | Jul 2014 | B2 |
8769966 | Heitzler et al. | Jul 2014 | B2 |
8869541 | Heitzler et al. | Oct 2014 | B2 |
8904806 | Cramet et al. | Dec 2014 | B2 |
8935927 | Kobayashi et al. | Jan 2015 | B2 |
9175885 | Katter | Nov 2015 | B2 |
9245673 | Carroll et al. | Jan 2016 | B2 |
9377221 | Benedict | Jun 2016 | B2 |
9400126 | Takahashi et al. | Jul 2016 | B2 |
9523519 | Muller | Dec 2016 | B2 |
9534817 | Benedict et al. | Jan 2017 | B2 |
9548151 | Muller | Jan 2017 | B2 |
9599374 | Takahashi et al. | Mar 2017 | B2 |
9631843 | Benedict | Apr 2017 | B2 |
9702594 | Vetrovec | Jul 2017 | B2 |
9739510 | Hassen | Aug 2017 | B2 |
9797630 | Benedict et al. | Oct 2017 | B2 |
9810454 | Tasaki et al. | Nov 2017 | B2 |
9857105 | Schroeder et al. | Jan 2018 | B1 |
9857106 | Schroeder et al. | Jan 2018 | B1 |
9927155 | Boeder et al. | Mar 2018 | B2 |
9978487 | Katter et al. | May 2018 | B2 |
10006675 | Benedict et al. | Jun 2018 | B2 |
10018385 | Radermacher et al. | Jul 2018 | B2 |
20020040583 | Barclay et al. | Apr 2002 | A1 |
20020066368 | Zornes | Jun 2002 | A1 |
20030010054 | Esch et al. | Jan 2003 | A1 |
20030051774 | Saito | Mar 2003 | A1 |
20040093877 | Wada | May 2004 | A1 |
20040182086 | Chiang et al. | Sep 2004 | A1 |
20040187510 | Jung | Sep 2004 | A1 |
20040187803 | Regev | Sep 2004 | A1 |
20040250550 | Bruck | Dec 2004 | A1 |
20050109490 | Harmon et al. | May 2005 | A1 |
20050274676 | Kumar et al. | Dec 2005 | A1 |
20060130518 | Kang et al. | Jun 2006 | A1 |
20060231163 | Hirosawa et al. | Oct 2006 | A1 |
20070130960 | Muller et al. | Jun 2007 | A1 |
20070220901 | Kobayashi | Sep 2007 | A1 |
20080236171 | Saito et al. | Oct 2008 | A1 |
20080236175 | Chaparro Monferrer et al. | Oct 2008 | A1 |
20080303375 | Carver | Dec 2008 | A1 |
20090091411 | Zhang et al. | Apr 2009 | A1 |
20090158749 | Sandeman | Jun 2009 | A1 |
20090217674 | Kaji et al. | Sep 2009 | A1 |
20090236930 | Nashiki | Sep 2009 | A1 |
20090266083 | Shin et al. | Oct 2009 | A1 |
20090308080 | Han et al. | Dec 2009 | A1 |
20100000228 | Wiest et al. | Jan 2010 | A1 |
20100058775 | Kaji et al. | Mar 2010 | A1 |
20100071383 | Zhang et al. | Mar 2010 | A1 |
20100116471 | Reppel | May 2010 | A1 |
20100122488 | Fukai | May 2010 | A1 |
20100162747 | Hamel et al. | Jul 2010 | A1 |
20100209084 | Nelson et al. | Aug 2010 | A1 |
20100236258 | Heitzler et al. | Sep 2010 | A1 |
20100276627 | Mazet | Nov 2010 | A1 |
20100303917 | Watson et al. | Dec 2010 | A1 |
20110000206 | Aprad | Jan 2011 | A1 |
20110042608 | Reesink | Feb 2011 | A1 |
20110048031 | Barve | Mar 2011 | A1 |
20110048690 | Reppel et al. | Mar 2011 | A1 |
20110058795 | Kleman et al. | Mar 2011 | A1 |
20110061398 | Shih et al. | Mar 2011 | A1 |
20110062821 | Chang et al. | Mar 2011 | A1 |
20110082026 | Sakatani et al. | Apr 2011 | A1 |
20110162388 | Barve et al. | Jul 2011 | A1 |
20110168363 | Reppel et al. | Jul 2011 | A9 |
20110173993 | Muller et al. | Jul 2011 | A1 |
20110182086 | Mienko et al. | Jul 2011 | A1 |
20110192836 | Muller et al. | Aug 2011 | A1 |
20110218921 | Addala et al. | Sep 2011 | A1 |
20110239662 | Bahl et al. | Oct 2011 | A1 |
20110284196 | Zanadi | Nov 2011 | A1 |
20110302931 | Sohn | Dec 2011 | A1 |
20110308258 | Smith et al. | Dec 2011 | A1 |
20110314836 | Heitzler et al. | Dec 2011 | A1 |
20120031108 | Kobayashi et al. | Feb 2012 | A1 |
20120033002 | Seeler et al. | Feb 2012 | A1 |
20120036868 | Heitzler et al. | Feb 2012 | A1 |
20120045698 | Shima | Feb 2012 | A1 |
20120079834 | Dinesen | Apr 2012 | A1 |
20120222427 | Hassen | Sep 2012 | A1 |
20120222428 | Celik et al. | Sep 2012 | A1 |
20120266591 | Morimoto et al. | Oct 2012 | A1 |
20120266607 | Morimoto et al. | Oct 2012 | A1 |
20120267090 | Kruglick | Oct 2012 | A1 |
20120272665 | Watanabe et al. | Nov 2012 | A1 |
20120272666 | Watanabe | Nov 2012 | A1 |
20120285179 | Morimoto | Nov 2012 | A1 |
20120291453 | Watanabe et al. | Nov 2012 | A1 |
20130019610 | Zimm et al. | Jan 2013 | A1 |
20130020529 | Chang et al. | Jan 2013 | A1 |
20130104568 | Kuo et al. | May 2013 | A1 |
20130106116 | Kuo et al. | May 2013 | A1 |
20130145573 | Bizhanzadeh | Jun 2013 | A1 |
20130180263 | Choi et al. | Jul 2013 | A1 |
20130186107 | Shih et al. | Jul 2013 | A1 |
20130187077 | Katter | Jul 2013 | A1 |
20130192269 | Wang | Aug 2013 | A1 |
20130199460 | Duplessis et al. | Aug 2013 | A1 |
20130227965 | Yagi et al. | Sep 2013 | A1 |
20130232993 | Saito et al. | Sep 2013 | A1 |
20130255279 | Tomimatsu et al. | Oct 2013 | A1 |
20130269367 | Meillan | Oct 2013 | A1 |
20130298571 | Morimoto et al. | Nov 2013 | A1 |
20130300243 | Gieras et al. | Nov 2013 | A1 |
20130319012 | Kuo et al. | Dec 2013 | A1 |
20130327062 | Watanabe et al. | Dec 2013 | A1 |
20140020881 | Reppel et al. | Jan 2014 | A1 |
20140075958 | Takahashi et al. | Mar 2014 | A1 |
20140116538 | Tanaka et al. | May 2014 | A1 |
20140165594 | Benedict | Jun 2014 | A1 |
20140165595 | Zimm et al. | Jun 2014 | A1 |
20140190182 | Benedict | Jul 2014 | A1 |
20140216057 | Oezcan | Aug 2014 | A1 |
20140260373 | Gerber et al. | Sep 2014 | A1 |
20140290273 | Benedict et al. | Oct 2014 | A1 |
20140290275 | Muller | Oct 2014 | A1 |
20140291570 | Klausner et al. | Oct 2014 | A1 |
20140305137 | Benedict | Oct 2014 | A1 |
20140305139 | Takahashi et al. | Oct 2014 | A1 |
20140325996 | Muller | Nov 2014 | A1 |
20140366557 | Mun et al. | Dec 2014 | A1 |
20150007582 | Kim et al. | Jan 2015 | A1 |
20150027133 | Benedict | Jan 2015 | A1 |
20150030483 | Ryu | Jan 2015 | A1 |
20150033762 | Cheng et al. | Feb 2015 | A1 |
20150033763 | Saito et al. | Feb 2015 | A1 |
20150047371 | Hu et al. | Feb 2015 | A1 |
20150068219 | Komorowski et al. | Mar 2015 | A1 |
20150089960 | Takahashi et al. | Apr 2015 | A1 |
20150114007 | Neilson et al. | Apr 2015 | A1 |
20150168030 | Leonard et al. | Jun 2015 | A1 |
20150211440 | Joffroy | Jul 2015 | A1 |
20150260433 | Choi et al. | Sep 2015 | A1 |
20150267943 | Kim et al. | Sep 2015 | A1 |
20150362225 | Schwartz | Dec 2015 | A1 |
20150369524 | Ikegami et al. | Dec 2015 | A1 |
20160000999 | Focht et al. | Jan 2016 | A1 |
20160084544 | Radermacher et al. | Mar 2016 | A1 |
20160091227 | Leonard et al. | Mar 2016 | A1 |
20160216012 | Benedict et al. | Jul 2016 | A1 |
20160238287 | Benedict | Aug 2016 | A1 |
20160282021 | Zhao et al. | Sep 2016 | A1 |
20160355898 | Vieyra Villegas et al. | Dec 2016 | A1 |
20160356529 | Humburg | Dec 2016 | A1 |
20160367982 | Pennie | Dec 2016 | A1 |
20170059213 | Barclay et al. | Mar 2017 | A1 |
20170071234 | Garg | Mar 2017 | A1 |
20170138648 | Cui et al. | May 2017 | A1 |
20170176083 | Sul et al. | Jun 2017 | A1 |
20170328603 | Barclay et al. | Nov 2017 | A1 |
20170328649 | Brandmeier | Nov 2017 | A1 |
20170370624 | Zimm et al. | Dec 2017 | A1 |
20180005735 | Scharf et al. | Jan 2018 | A1 |
20180023852 | Schroeder et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2893874 | Jun 2014 | CA |
2919117 | Jan 2015 | CA |
101979937 | Feb 2011 | CN |
201772566 | Mar 2011 | CN |
101788207 | Sep 2011 | CN |
202432596 | Sep 2012 | CN |
103090583 | May 2013 | CN |
103712401 | Apr 2014 | CN |
102077303 | Apr 2015 | CN |
1016481842 | Mar 2017 | CN |
102013223959 | May 2015 | DE |
202015106851 | Mar 2016 | DE |
0187078 | Jul 1986 | EP |
2071255 | Jun 2009 | EP |
2108904 | Oct 2009 | EP |
2215955 | Aug 2010 | EP |
2322072 | May 2011 | EP |
3306082 | Apr 2018 | EP |
2935468 | Mar 2015 | FR |
59232922 | Dec 1984 | JP |
H08166182 | Jun 1996 | JP |
3205196 | Sep 2001 | JP |
2002315243 | Oct 2002 | JP |
2007147136 | Jun 2007 | JP |
2007291437 | Nov 2007 | JP |
2008051412 | Mar 2008 | JP |
2010112606 | May 2010 | JP |
2010525291 | Jul 2010 | JP |
6212955 | Dec 2014 | JP |
2014228216 | Dec 2014 | JP |
6079498 | Feb 2017 | JP |
2017207222 | Nov 2017 | JP |
101100301 | Dec 2011 | KR |
1238234 | Mar 2013 | KR |
WO 0212800 | Feb 2002 | WO |
WO 03016794 | Feb 2003 | WO |
WO 2004068512 | Aug 2004 | WO |
WO 2007036729 | Apr 2007 | WO |
WO 2009024412 | Feb 2009 | WO |
WO2010119591 | Oct 2010 | WO |
WO 2011034594 | Mar 2011 | WO |
WO 2014099199 | Jun 2014 | WO |
WO 2014170447 | Oct 2014 | WO |
WO 2014173787 | Oct 2014 | WO |
WO 2015017230 | Feb 2015 | WO |
WO2016035267 | Mar 2016 | WO |
WO 2017042266 | Mar 2017 | WO |
WO2017097989 | Jun 2017 | WO |
Entry |
---|
Caprea, et al., An innovative rotary permanent magnet magnetic refrigerator based on AMR cycle, Thermal Energy Systems: Production, Storage, Utilization and the Environment, dated May 2015, Napoli, Italy, pp. 1-5. |
International Search Report issued in connection with PCT Application No. PCT/US2014/042485 dated Oct. 23, 2014. |
International Search Report issued in connection with PCT Application No. PCT/US2014/017431 dated May 9, 2014. |
International search report issued in connection with PCT/US2013/070518, dated Jan. 22, 2014. |
Tetsuji Okamura, Performance of a room-temperature rotary magnet refrigerator, dated Nov. 28, 2005, Elsevier. |
Journal of Alloys and Compounds, copyright 2008 Elsevier B..V.. |
Evaluation of Ni—Mn—In—Si Alloys for Magnetic Refrigerant Application, Rahul Das, A. Perumal and A. Srinivasan, Dept of Physics, Indian Institute of Technology, Oct. 10, 2011. |
Effects of annealing on the magnetic entropy change and exchange bias behavior in melt-spun Ni—Mn—In ribbons, X.Z. Zhao, C.C. Hsieh, et al Science Direct, Scripta Materialia 63 (2010). |
PCT International Search Report and Written Opinion issued in connection with PCT Application No. PCT/US2013/070023 dated Feb. 27, 2014. |
Barbara Pulko, Epoxy-bonded La—Fe—Co—Si magnetocaloric plates, Journal of Magnetism and Magnetic Materials, 375 (2015) 65-73. |
Andrej Kitanovski, Present and future caloric refrigeration and heat-pump technologies, International Journal of Refrigeration, vol. 57 Sep. 2015, pp. 288-298. |
International Search Report of PCT/US2014/047925 dated Nov. 10, 2014. |
Number | Date | Country | |
---|---|---|---|
20180156503 A1 | Jun 2018 | US |