1. Field of the Invention
This invention relates to a magnet generator which generates power under the electromagnetic induction action between magnets and an armature winding, on the basis of the rotation of a flywheel.
2. Description of the Related Art
In a prior-art magnet generator, on account of an alternating magnetic field generated by magnets during the rotation of a flywheel, a hysteresis loss and an eddy current loss occur in a laminated core, and a copper loss and various thermal losses exist in a winding coil contributing to power generation. The resistance of the power generation coil is increased by the various thermal losses, resulting in the problem of decrease in an output current. In the flywheel (rotor) of the magnet generator, therefore, a plurality of vent holes having a large area are provided in a bowl-shaped bottom surface in order to enhance a cool performance (ventilation efficiency) and a power generation efficiency. It has also been known that the bottom portion of the flywheel is provided with a plurality of fins, by which the forcible stream of air is generated with the rotation of the flywheel, thereby to promote the cooling of the power generation coil. (Refer to JP-A-2002-101630, JP-A-2003-324899 and JP-A-2003-333801.)
In the fabrication of such fins, however, the fins must be made integral with the flywheel by insert molding, and a job which requires a large number of man-hour with a dedicated resin forming mold is involved, resulting in the problem that a fabricating cost becomes high. With the intention of eliminating such a problem, it has been proposed that, instead of the provision of the fins, protuberances which protrude onto the side of the power generation coil are formed at the peripheral edge parts of the vent holes by plastic deformation process, whereby the turbulence of air streams is generated in the flywheel by the rotation of this flywheel. (Refer to JP-A-2005-318685.)
With that flywheel (rotor) of the prior-art magnet generator which is formed with the protuberances, a cooling performance is enhanced. However, burring working, etc. must be performed in order to form the protuberances at the peripheral edge parts of the vent holes, and complications are still existent in a fabricating process for the protuberances. Moreover, a large number of vent holes of large area are required in order to efficiently decrease the heat generation of the power generation coil by ventilation and to suppress the lowering of the output current, and a plurality of screw holes are required among the vent holes in order to assemble a flywheel mounting component (such as a one-way clutch), so that the rigidity of the flywheel (bottom surface) is apprehended.
Therefore, the plate thickness of the flywheel has increased in order to ensure the rigidity of the flywheel bottom surface. Besides, since the vent holes of the flywheel and the screw holes thereof are mostly formed by cutting working, a long time has expended on the working of a thick plate, and a high working cost has been required for treating burrs and laps after the cutting working.
This invention has been made in order to eliminate the problems as stated above, and it has for its object to obtain a magnet generator in which the hole base part of each of vent holes provided in the flywheel (rotor) of the magnet generator is formed in a droop or curved shape, thereby to enhance a cooling efficiency and to eliminate the need for treatment of burrs and laps after cutting, so that the remarkable enhancement of a productivity is permitted.
A magnet generator according to the invention includes a bowl-shaped flywheel, a plurality of magnets and a power generation coil. The flywheel is formed of a cylindrical portion, and a bottom portion joining to the cylindrical portion. The magnets are arranged on an inner peripheral surface of the cylindrical portion of the flywheel. The power generation coil, disposed in opposition to the magnets within the flywheel, generates power under an electromagnetic induction action with the magnets. The flywheel has a plurality of vent holes in the bottom portion thereof, and a droop or curved shape is formed at, at least, one hole base part of each of the vent holes.
According to the invention, the hole base part of each of the plurality of vent holes provided in the bowl-shaped flywheel (rotor) is formed in the droop or curved shape, whereby the magnet generator whose cooling efficiency and power generation efficiency are enhanced can be obtained. Besides, owing to the droop or curved shape of the hole base part of each of the vent holes, the magnet generator which eliminates the need for treatment of burrs and laps after cutting and which permits remarkable reduction in cost can be obtained. Further, the vent holes are formed at a forging working step, whereby the magnet generator which permits remarkable enhancement in productivity can be obtained.
The foregoing and other objects, features, aspects and advantages of this invention will become more apparent from the following detailed description of this invention when taken in conjunction with the accompanying drawings.
An embodiment of a magnet generator applying this invention will be described.
A plurality of permanent magnets 7 are fixed to the inner peripheral surface of the cylindrical portion 4 of the flywheel 3. The plurality of permanent magnets 7 are arranged at a predetermined angular intervals equal to one another, around the axis of rotation A-A, and the adjacent permanent magnets 7 are magnetized in polarities opposite to each other, whereby the permanent magnets 7 generate magnetic fields whose directions change alternately. Besides, a cylindrical protective ring 8 for assembling the magnets 7 is fitted in close contact with the inner peripheral surfaces of the respective permanent magnets 7. Resin or molded members 9 are packed into spaces outside both the ends of each permanent magnet 7 in the direction of the axis of rotation A-A, and into the mutual intervals of the respective permanent magnets 7 in the circumferential direction of the flywheel 3.
Owing to the molded members 9, the plurality of permanent magnets 7 and the protective ring 8 are fixed to the inner peripheral surface of the cylindrical portion 4 of the flywheel 3. Numeral 10 designates a laminated core which is made up of a plurality of steel sheets, and which is disposed inside the flywheel 3 so as to oppose to the permanent magnets 7. Numeral 11 designates a power generation coil which is wound round the laminated core 10. A plurality of vent holes 12 are provided in the inner side surface of the flywheel 3. A plurality of screw holes 13 serve to fix a flywheel mounting component (such as a clutch).
The plurality of vent holes 12 are formed at circumferential intervals in the bottom portion 6 of the flywheel 3. Each of the vent holes 12 has its hole base part formed in a droop or curved shape. Although a fabricating method for the droop shape will be described later, this droop shape is formed into a substantially round shape which is cut in excess of an ordinary chamfering quantity (C 0.5-1.0).
Besides, as understood from the following equation of the Bernoulli theorem concerning a fluid, the passage area change of each vent hole becomes equal to the change of the flow velocity of a cooling medium, and hence, the efficient taking-in (suction) and taking-out (discharge) of a ventilation stream can be realized by the droop shape:
P+½ρV2=Const. {P: pressure, ρ: density, and V: flow velocity}
Next, a forging step in the fabrication of each vent hole 12 will be described in comparison with the prior art, with reference to
On the other hand,
As described above, according to the magnet generator of the invention, the vent holes can be endowed with the droop shape without the existence of the burrs and laps, owing to the adoption of the forging step. Therefore, a job for treating the burrs and laps after the cutting working can be relieved, and a remarkable enhancement in productivity is expected.
Next,
In general, if a magnet generator lies in a gaseous atmosphere, the temperature of the interior of the flywheel 3 rises (the air pressure lowers) due to the heat generation of the power generation coil 11, and heat flows out to the exterior (a side of lower temperature) via the vent holes 12. The passage area of each of the vent holes 12 is changed (made smaller) toward the outer side of the flywheel 3 as shown in
Next, other modifications to the droop shape of each vent hole according to Embodiment 3 will be described with reference to
On the other hand, in the vent hole 12 of a flywheel in
Incidentally, although the droop shapes of the hole base parts of the vent holes have been described as being realized by the forging working from the viewpoint of enhancement in productivity (reduction in cost), they can be realized even by cutting working (endmill working) or chamfering working as in the prior art, and a similar cooling effect is, of course, attained even in this case.
Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not limited to the illustrative embodiments set forth herein.
Number | Date | Country | Kind |
---|---|---|---|
2006-341173 | Dec 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2369896 | Harris et al. | Feb 1945 | A |
4363982 | Kaminski | Dec 1982 | A |
4684835 | Kline et al. | Aug 1987 | A |
5732587 | Maeda et al. | Mar 1998 | A |
5925960 | Hayes | Jul 1999 | A |
6384494 | Avidano et al. | May 2002 | B1 |
6429564 | Uemura et al. | Aug 2002 | B1 |
6750578 | Buening et al. | Jun 2004 | B2 |
6815849 | Serizawa et al. | Nov 2004 | B2 |
7015606 | Huang et al. | Mar 2006 | B2 |
7078834 | Liu | Jul 2006 | B2 |
7122924 | Lee | Oct 2006 | B2 |
20020145348 | Anma | Oct 2002 | A1 |
20040164628 | Serizawa et al. | Aug 2004 | A1 |
20050236916 | Uemura et al. | Oct 2005 | A1 |
20060158050 | Maeda et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2000-52157 | Feb 2000 | JP |
2001-136720 | May 2001 | JP |
2002-315245 | Oct 2002 | JP |
2003-88055 | Mar 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20080143204 A1 | Jun 2008 | US |