Magnet holder for permanent magnet rotors of rotating machines

Information

  • Patent Grant
  • 7936102
  • Patent Number
    7,936,102
  • Date Filed
    Wednesday, September 27, 2006
    18 years ago
  • Date Issued
    Tuesday, May 3, 2011
    13 years ago
Abstract
A rotating machine with a permanent magnet rotor that is easier, lower cost, and lighter includes a plurality of permanent magnet assemblies (20) mounted on a rotor body (1). The magnet assemblies (20) are mounted via magnet holders that each include a pair of claws (2, 3) connected by a bridge (5) and forming a seat for a respective magnet assembly (20). The claws have terminal expansions (11) that extend beyond the bridge (5) and form a second seat in which a tightening section (9) is received. The claws (2, 3) can elastically pivot about the bridge (5) when the terminal expansions (11) are squeezed together or forced apart, allowing insertion of and securing the magnet assembly, respectively.
Description
PRIORITY CLAIM

This application is a national stage application of PCT/IB2006/002684, filed Sep. 27, 2006, which claims the benefit of priority to Italian Application No. BZ2005A000062, filed Nov. 29, 2005, the entire contents of which are incorporated herein.


TECHNICAL FIELD

Embodiments disclosed herein relate to rotating machinery, such as wind turbines, rope driven and carried transport systems, electric generators and motors, and permanent magnet supports therefor. More particularly, embodiments relate to magnet holders in rotating machine rotors, such as rotors in wind turbines, wind mills, electric generators, electric motors, rope or cable based transport systems, and the like.


BACKGROUND

In power generating and working rotating machinery, such as wind machines and rope or cable driven and carried transport systems, relative motion between magnetic field generators and coils produces electricity, one of these groups being mounted on a rotor and the other group being mounted on a stator of the power generating machine. The magnetic field generators are typically windings, which are electromagnets supplied with a small portion of the output of the power generating machine. However, permanent magnets can instead be used to provide a magnetic field that induces electrical current in conductors when relative motion occurs between the magnets and the conductors. But permanent magnets are relatively heavy, and when used in large scale machinery, the apparatus used to hold the magnets in place can add substantially more undesirable weight, are difficult to install, are limited in the sizes of magnets they can accommodate, or are overly costly. For example, in some applications, the magnets are glued to a rotor body, the glue being applied under pressure. Additional applications use stampings over the ends of the magnets to hold them in place. Still other applications employ clamps, each clamp having an end attached to the underside of the rotor body and another end extending over the body of the magnet.


SUMMARY

Embodiments disclosed herein overcome the difficulties of prior art magnet supports, eliminating adhesive and stamping and rendering attachment to the rotor very simple. Additionally, the holder of the embodiments disclosed herein can accommodate multiple sizes of magnets and are easily and quickly assembled. In one embodiment, a pincer element holds the magnet or magnet assembly with two claws on one end of the holder. A flexible hinge member connects the pincer claws and forms a bridge that creates two seats. The first seat is that in which the magnet assembly is received. The other seat can receive a tightening section that forces the claws together when tightened, thus causing the claws to grip and retain the magnet assembly. On the outsides of the seat, the holder includes formations that enable one holder to be interlocked with adjacent holders. The coupling end, when the holder is not installed on the rotor and the tightening section is removed or at least loosened, can be used to open the pincer element, thereby opening the pincer claws to release or enable insertion of the magnet. Advantageously, the holder can be made from aluminum, such as an aluminum extrusion, to save weight and cost, though other materials could be used. Using a plurality of magnet holders of the type disclosed herein, a wind machine rotor can be built using permanent magnets, yet with relatively low weight, relatively low cost, and less complex assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be described while referring to the accompanying drawings.



FIG. 1 shows a schematic cross section of a portion of a rotating machine, such as a wind turbine.



FIG. 2 shows a schematic partial section through a magnet holder according to embodiments disclosed herein with a magnet assembly and a tightening section installed.



FIG. 3 shows a schematic partial section through a magnet holder according to embodiments disclosed herein with no magnet assembly or tightening section installed.





DESCRIPTION

Referring to FIG. 1, in one embodiment, a rotating machine 100, such as a wind turbine, includes a rotor 101 supported via a bearing by a stator 103. The rotor 101 includes a rotor body 1 that supports a plurality of magnet holders 2, such as that seen in FIG. 1. In one embodiment, as seen in FIGS. 2 and 3, the preferred magnet holder 2 is a pincer element with two claws 3, 4 that are connected by a flexible bridge 5. The claws 3, 4 form a seat 6 that can receive a portion of a magnet assembly 20. An example of a suitable magnet assembly 20 is a core plate stack held together by tie rods 21 and holding a permanent magnet 22 as disclosed in copending PCT application PCT/IB/2006/002679, based on Italian Patent Application BZ2005A063.


In one embodiment, the claws 3, 4 extend beyond the bridge 5 to form another seat 8 that can receive a tightening section 9 that is used to force the claws 3, 4 against the magnet assembly 20 and to secure the magnet holder to the rotor body 1. More specifically, the seat 8 includes two inclined internal planes 10 of terminal expansions 11 of the claws 3, 4. The tightening section 9 has corresponding inclined external surfaces, such that when the tightening section 9 is drawn away from the magnet assembly 20, the terminal expansions 11 of the claws 3, 4 are forced apart, causing the claws 3, 4 to pivot about the bridge 5, which forces the seat 6 for the magnet assembly 20 to close. Thus, when the magnet assembly 20 is in the seat 6, the tightening section 9 is drawn away form the magnet assembly 20, as with a bolt extending through the tightening section 9 and into the rotor body 1, to secure the magnet assembly in the pincer element 2. Preferably, the tightening section 9 is drawn by a tightening member, such as a bolt.


It should be noted that in one embodiment, the pivoting of the claws 3, 4 is not done about a point per se, but is achieved by deformation of the claws and bridge. During this deformation, the bridge acts as a spring tending to return the claws to their original position. Thus, when the terminal expansions move together and apart, the bridge-claw junctions and the bridge itself deform, yielding the pivoting action. Preferably, the holder 2 is formed as an aluminum extrusion, though other materials or machined aluminum could be used if desired.


In one embodiment, the rotor body 1 will have a plurality of magnet holders 2 mounted thereon to form the complete rotor. To even better secure the magnet holders 2 on the rotor body 1, each magnet holder 2 preferably includes a recess 12 and corresponding projection 13 on opposite sides of the magnet holder 2. When mounted on the rotor body 1, the projection 13 of a magnet holder 2 will be received by the recess 12 of an adjacent magnet holder, while the recess 12 receives the projection 13 of an adjacent magnet holder 2 on the opposite side. In different embodiments, the magnet holders 2 are preferably formed from aluminum by extrusion, though other materials and methods could be employed.


The embodiments disclosed herein thus provide a simple, relatively inexpensive permanent magnet rotor for electricity producing wind machines. To place a magnet assembly 20 in a magnet holder 2, the terminal expansions 11 of the claws 3, 4 are preferably placed in a press or the like, which squeezes the terminal expansions together. The other ends of the claws 3, 4 are forced apart by the action of the press since the claws 3, 4 pivot about the bridge 5. With the claws 3, 4 thus open, a magnet assembly can be inserted in the seat 6, and the terminal expansions 11 can be released to allow the claws 3, 4 to close on the magnet assembly 20. The tightening section 9 can then be inserted into the other seat 8, the holder 2 placed on the rotor body 1, and a bolt or the like inserted through the rotor body 1 and into the tightening section 9. As the tightening section 9 is drawn toward the rotor body 1 to secure the holder 2 against the rotor body 1, the tightening section 9 applies expansive force to the planes 10 of the terminal expansions 11, which results in compressive force being applied to the magnet assembly 20 by the other ends of the claws 3, 4, thus securing the magnet assembly while attaching the holder to the rotor body 1.


While the rotor body 1 of the different embodiments disclosed herein has been described in the context of an electrical generator, specifically a wind-powered electrical generator, it should be noted that different embodiments could be applied as the rotor body of an electric motor. Additionally, if the rotor body were linearized, different embodiments could be employed in a linear electric motor or generator without departing from the spirit of the invention.


It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. It will also be appreciated that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

Claims
  • 1. A rotating machine comprising: a stator;a rotor with a rotor body;a plurality of magnet holders mounted on the rotor body, the magnet holders receiving a plurality of magnet assemblies, each magnet holder including: two opposed claws connected by a bridge;a first seat formed on one side of the bridge by the claws;a second seat formed on another side of the bridge by a plurality of terminal expansions of the claws; anda tightening section configured to apply expansive force to the terminal expansions when the tightening section is drawn away from the bridge, the expansive force causing the claws to pivot about the bridge and apply compressive force at opposite ends of the claws from their terminal expansion ends.
  • 2. The rotating machine of claim 1, wherein for each magnet holder, the second seat includes a plurality of facing inclined planes formed on the inner surfaces of the terminal expansions and the tightening section includes a plurality of corresponding inclined surfaces.
  • 3. The rotating machine of claim 1, wherein for each magnet holder, one of the terminal expansions includes a projection on an outer surface of said terminal expansion and the other terminal expansion includes a corresponding recess on an outer surface of said terminal expansion such that the projection extends into the recess of a claw of a next magnet holder and the recess receives the projection of a claw of a previous magnet holder.
  • 4. The rotating machine of claim 1, wherein for each magnet holder, the tightening section receives a bolt extending through the rotor body and attaches a die magnet holder to the rotor body while acting on the terminal expansions to force the opposite ends of the claws toward each other.
  • 5. The rotating machine of claim 1, wherein each magnet holder is an aluminum extrusion.
  • 6. The rotating machine of claim 1, wherein each magnet holder is formed from a plastic.
  • 7. A method of attaching magnet holders to a rotor body of a wind turbine including a stator, a rotor with the rotor body, and a magnet assembly, said method of attaching the magnet holder comprising: placing a plurality of terminal expansions of two opposed claws of said magnet holder in a press, said two opposed claws connected by a bridge, wherein a first seat is formed on one side of the bridge by the claws, and a second seat is formed on another side of the bridge by the plurality of terminal expansions of the claws; andsqueezing the terminal expansions toward each other with the press to cause the claws to pivot about the bridge, thereby opening the opposite ends of the claws for insertion of the magnet assembly of the wind turbine into the first seat.
  • 8. The method of claim 7, further comprising: inserting the magnet assembly into the first seat, andreleasing the press to allow the opposite ends of the claws to close on the magnet assembly.
  • 9. The method of claim 7, comprising: inserting a tightening section into the magnet holder,placing the magnet holder on the rotor body,inserting a bolt through the rotor body and through the tightening section to secure the magnet holder to the rotor body, anddrawing the tightening section toward the rotor body to apply an expansive force to at least one of the terminal expansions of the claws, said expansive force causing the claws to pivot about the bridge to apply a compressive force at the ends of the claws opposite from the terminal expansions.
  • 10. A rotating machine permanent magnet rotor comprising: a plurality of permanent magnet assemblies supported in a plurality of respective magnet holders, each magnet holder including: a pincer element with two claws joined by a bridge,first ends of the claws forming a first seat on one side of the bridge and engaging a magnet assembly, andsecond ends of the claws including a plurality of terminal expansions of the claws forming a second seat receiving a tightening section.
  • 11. The rotating machine permanent magnet rotor of claim 10, wherein the second seat comprises a plurality of facing inclined planes on inner surfaces of the terminal expansions and the tightening section includes a plurality of corresponding inclined faces such that when the tightening section is drawn toward the rotor body, the inclined faces of the tightening section tend to force the inclined planes of the terminal expansions apart, thereby causing the claws to pivot about the bridge and tending to open the first ends of the claws.
  • 12. The rotating machine permanent magnet rotor of claim 10, wherein the magnet holder is an aluminum extrusion.
  • 13. The rotating machine permanent magnet rotor of claim 10 wherein a plurality of outer surfaces of the claws carry a plurality of securers that interlock with a plurality of corresponding securers on adjacent magnet holders.
  • 14. The rotating machine permanent magnet rotor of claim 13, wherein the interlocking securers comprise a projection on an external surface of one claw and a recess on an external surface of the other claw, the recess corresponding to the projection so that the projection of another magnet holder claw can be received in the recess and the recess of another magnet holder claw can receive the projection.
  • 15. A rotating machine magnet holder, comprising: two opposed claws connected by a bridge;a plurality of first portions of the claws on one side of the bridge;a plurality of terminal expansions of the claws on another side of the bridge;a first seat formed by the first portions;a second seat formed by a plurality of inclined planes on a plurality of inner surfaces of the terminal expansions;a tightening section including a plurality of inclined surfaces corresponding to and engaging the terminal expansion inclined planes; anda tightening member connected to the tightening section from a rotor body of a rotating machine;whereby when the tightening section is drawn away from the bridge by the tightening member, the surfaces interact to apply expansive force to the terminal expansions, the expansive force causing the claws to pivot about the bridge and apply compressive force at ends of the first portions of the claws.
Priority Claims (1)
Number Date Country Kind
BZ2005A0062 Nov 2005 IT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2006/002684 9/27/2006 WO 00 11/3/2008
Publishing Document Publishing Date Country Kind
WO2007/063370 6/7/2007 WO A
US Referenced Citations (297)
Number Name Date Kind
596152 Geisenhoener Dec 1897 A
1894357 Manikowske Jan 1933 A
1948854 Heath et al. Feb 1934 A
1979813 Reis et al. Nov 1934 A
2006172 Klappauf Jun 1935 A
2040218 Soderberg May 1936 A
2177801 Arnold Oct 1939 A
2469734 Ledwith May 1949 A
2496897 Strickland Feb 1950 A
2655611 Sherman et al. Oct 1953 A
2739253 Plumb et al. Mar 1956 A
2756356 Brownlee et al. Jul 1956 A
2806160 Brainard et al. Sep 1957 A
2842214 Prewitt Jul 1958 A
2903610 Bessiere Sep 1959 A
3004782 Meermans Oct 1961 A
3072813 Reijust et al. Jan 1963 A
3083311 Krasnow et al. Mar 1963 A
3131942 Ertaud May 1964 A
3168686 King Feb 1965 A
3221195 Hoffmann Nov 1965 A
3363910 Toronchuk Jan 1968 A
3364523 Schippers Jan 1968 A
3392910 Tanzberger Jul 1968 A
3468548 Webb Sep 1969 A
3700247 Butler et al. Oct 1972 A
3724861 Lesiecki Apr 1973 A
3746349 Smale et al. Jul 1973 A
3748089 Boyer Jul 1973 A
3789252 Abegg Jan 1974 A
3828426 Phelon et al. Aug 1974 A
3841643 McLean Oct 1974 A
3860843 Kawasaki et al. Jan 1975 A
3942026 Carter Mar 1976 A
3963247 Nommensen Jun 1976 A
3968969 Mayer et al. Jul 1976 A
4022479 Orlowski May 1977 A
4061926 Peed Dec 1977 A
4087698 Myers May 1978 A
4141137 De Wolf et al. Feb 1979 A
4179634 Burson Dec 1979 A
4273343 Visser Jun 1981 A
4289970 Deibert Sep 1981 A
4291235 Bergey, Jr. Sep 1981 A
4292532 Leroux Sep 1981 A
4336649 Glaser Jun 1982 A
4339874 McCarty Jul 1982 A
4348604 Thode Sep 1982 A
4350897 Benoit Sep 1982 A
4354126 Yates Oct 1982 A
4368895 Okamoto et al. Jan 1983 A
4398773 Boden et al. Aug 1983 A
4452046 Valentin Jun 1984 A
4482831 Notaras et al. Nov 1984 A
4490093 Chertok et al. Dec 1984 A
4517483 Hucker May 1985 A
4517484 Dacier May 1985 A
4521026 Eide Jun 1985 A
4585950 Lund Apr 1986 A
4613779 Meyer Sep 1986 A
4638200 Le Corre et al. Jan 1987 A
4648801 Wilson Mar 1987 A
4694654 Kawamura Sep 1987 A
4700096 Epars Oct 1987 A
4714852 Kawada Dec 1987 A
4720640 Anderson Jan 1988 A
4722661 Mizuno Feb 1988 A
4724348 Stokes Feb 1988 A
4761590 Kaszman Aug 1988 A
4792712 Stokes Dec 1988 A
4801244 Stahl Jan 1989 A
4866321 Blanchard Sep 1989 A
4900965 Fisher Feb 1990 A
4906060 Claude Mar 1990 A
4973868 Wust Nov 1990 A
4976587 Johnston et al. Dec 1990 A
5004944 Fisher Apr 1991 A
5063318 Anderson Nov 1991 A
5090711 Becker Feb 1992 A
5091668 Cuenot et al. Feb 1992 A
5177388 Hotta Jan 1993 A
5191255 Kloosterhouse et al. Mar 1993 A
5275139 Rosenquist Jan 1994 A
5280209 Leupold et al. Jan 1994 A
5281094 McCarty et al. Jan 1994 A
5298827 Sugiyama Mar 1994 A
5302876 Iwamatsu et al. Apr 1994 A
5311092 Fisher May 1994 A
5315159 Gribnau May 1994 A
5331238 Johnsen Jul 1994 A
5410997 Rosenquist May 1995 A
5419683 Peace May 1995 A
5456579 Olson Oct 1995 A
5483116 Kusase Jan 1996 A
5506453 McCombs Apr 1996 A
5579800 Walker Dec 1996 A
5609184 Apel et al. Mar 1997 A
5663600 Baek et al. Sep 1997 A
5670838 Everton Sep 1997 A
5696419 Rakestraw Dec 1997 A
5704567 Maglieri Jan 1998 A
5746576 Bayly May 1998 A
5777952 Nishimura Jul 1998 A
5783894 Whither Jul 1998 A
5793144 Kusase Aug 1998 A
5798632 Muljadi Aug 1998 A
5801470 Johnson et al. Sep 1998 A
5811908 Iwata et al. Sep 1998 A
5814914 Caamaño Sep 1998 A
5844333 Sheerin Dec 1998 A
5844341 Spooner Dec 1998 A
5857762 Schwaller Jan 1999 A
5886441 Uchida Mar 1999 A
5889346 Uchida Mar 1999 A
5894183 Borchert Apr 1999 A
5925964 Kusase Jul 1999 A
5952755 Lubas Sep 1999 A
5961124 Muller Oct 1999 A
5973435 Irie et al. Oct 1999 A
5986374 Kawakami Nov 1999 A
5986378 Caamaño Nov 1999 A
6013968 Lechner et al. Jan 2000 A
6037692 Miekka Mar 2000 A
6064123 Gislason May 2000 A
6067227 Katsui et al. May 2000 A
6089536 Watanabe Jul 2000 A
6093984 Shiga et al. Jul 2000 A
6127739 Appa Oct 2000 A
6172429 Russell Jan 2001 B1
6177746 Tupper Jan 2001 B1
6193211 Watanabe Feb 2001 B1
6194799 Miekka Feb 2001 B1
6215199 Lysenko et al. Apr 2001 B1
6232673 Schoo et al. May 2001 B1
6278197 Appa Aug 2001 B1
6285090 Brutsaert et al. Sep 2001 B1
6326711 Yamaguchi Dec 2001 B1
6365994 Watanabe Apr 2002 B1
6373160 Schrödl Apr 2002 B1
6376956 Hosoya Apr 2002 B1
6378839 Watanabe Apr 2002 B2
6384504 Elrhart et al. May 2002 B1
6417578 Chapman Jul 2002 B1
6428011 Oskouei Aug 2002 B1
6452287 Looker Sep 2002 B1
6452301 Van Dine et al. Sep 2002 B1
6455976 Nakano Sep 2002 B1
6472784 Miekka Oct 2002 B2
6474653 Hintenlang et al. Nov 2002 B1
6476513 Gueorguiev Nov 2002 B1
6483199 Umemoto et al. Nov 2002 B2
6492743 Appa Dec 2002 B1
6492754 Weiglhofer et al. Dec 2002 B1
6499532 Williams Dec 2002 B1
6504260 Debleser Jan 2003 B1
6515390 Lopatinsky et al. Feb 2003 B1
6520737 Fischer et al. Feb 2003 B1
6548932 Weiglhofer et al. Apr 2003 B1
6590312 Seguchi Jul 2003 B1
6603232 Van Dine et al. Aug 2003 B2
6617747 Petersen Sep 2003 B1
6629358 Setiabudi et al. Oct 2003 B2
6664692 Kristofferson Dec 2003 B1
6676122 Wobben Jan 2004 B1
6683397 Gauthier et al. Jan 2004 B2
6700260 Hsu Mar 2004 B2
6700288 Smith Mar 2004 B2
6707224 Petersen Mar 2004 B1
6720688 Schiller Apr 2004 B1
6727624 Morita et al. Apr 2004 B2
6746217 Kim Jun 2004 B2
6759758 Martinez Jul 2004 B2
6762525 Maslov et al. Jul 2004 B1
6781276 Stiesdal et al. Aug 2004 B1
6784564 Wobben Aug 2004 B1
6794781 Razzell Sep 2004 B2
6828710 Gabrys Dec 2004 B1
6856042 Kubota Feb 2005 B1
6879075 Calfo et al. Apr 2005 B2
6888262 Blakemore May 2005 B2
6891299 Coupart et al. May 2005 B2
6903466 Mercier et al. Jun 2005 B1
6903475 Ortt et al. Jun 2005 B2
6906444 Hattori et al. Jun 2005 B2
6911741 Pettersen et al. Jun 2005 B2
6921243 Canini et al. Jul 2005 B2
6931834 Jones Aug 2005 B2
6933645 Watson Aug 2005 B1
6933646 Kinoshita Aug 2005 B2
6942454 Ohlmann Sep 2005 B2
6945747 Miller Sep 2005 B1
6949860 Hama Sep 2005 B2
6951443 Blakemore Oct 2005 B1
6972498 Jamieson et al. Dec 2005 B2
6983529 Ortt et al. Jan 2006 B2
6984908 Rinholm et al. Jan 2006 B2
6987342 Hans Jan 2006 B2
6998729 Wobben Feb 2006 B1
7004724 Pierce et al. Feb 2006 B2
7008172 Selsam Mar 2006 B2
7008348 LaBath Mar 2006 B2
7016006 Song Mar 2006 B2
7021905 Torrey et al. Apr 2006 B2
7028386 Kato et al. Apr 2006 B2
7033139 Wobben Apr 2006 B2
7038343 Agnes et al. May 2006 B2
7042109 Gabrys May 2006 B2
7057305 Krüger-Gotzmann et al. Jun 2006 B2
7075192 Bywaters et al. Jul 2006 B2
7081696 Ritchey Jul 2006 B2
7088024 Agnes et al. Aug 2006 B2
7091642 Agnes et al. Aug 2006 B2
7095128 Canini et al. Aug 2006 B2
7098552 McCoin Aug 2006 B2
7109600 Bywaters et al. Sep 2006 B1
7111668 Rürup Sep 2006 B2
7116006 McCoin Oct 2006 B2
7119469 Ortt et al. Oct 2006 B2
7154191 Jansen et al. Dec 2006 B2
7161260 Krüger-Gotzmann et al. Jan 2007 B2
7166942 Yokota Jan 2007 B2
7168248 Sakamoto Jan 2007 B2
7179056 Siegfriedsen Feb 2007 B2
7180204 Grant Feb 2007 B2
7183665 Bywaters et al. Feb 2007 B2
7196446 Hans Mar 2007 B2
7205678 Casazza Apr 2007 B2
7217091 LeMieux May 2007 B2
7259472 Miyake et al. Aug 2007 B2
7281501 Leufen Oct 2007 B2
7285890 Jones et al. Oct 2007 B2
7323792 Sohn Jan 2008 B2
7345376 Costin Mar 2008 B2
7358637 Tapper Apr 2008 B2
7377163 Miyagawa May 2008 B2
7385305 Casazza Jun 2008 B2
7385306 Casazza Jun 2008 B2
7431567 Bevington et al. Oct 2008 B1
7443066 Salamah et al. Oct 2008 B2
7458261 Miyagawa Dec 2008 B2
7482720 Gordon et al. Jan 2009 B2
7548008 Jansen et al. Jun 2009 B2
7687932 Casazza et al. Mar 2010 B2
20020047418 Seguchi Apr 2002 A1
20020047425 Coupart et al. Apr 2002 A1
20020056822 Watanabe May 2002 A1
20020063485 Lee May 2002 A1
20020089251 Tajima et al. Jul 2002 A1
20020148453 Watanabe Oct 2002 A1
20030011266 Morita et al. Jan 2003 A1
20030102677 Becker et al. Jun 2003 A1
20030137149 Northrup et al. Jul 2003 A1
20030230899 Martinez Dec 2003 A1
20040086373 Page, Jr. May 2004 A1
20040094965 Kirkegaard et al. May 2004 A1
20040119292 Darra Jun 2004 A1
20040150283 Calfo Aug 2004 A1
20040151575 Pierce et al. Aug 2004 A1
20040151577 Pierce et al. Aug 2004 A1
20040189136 Kolomeitsev et al. Sep 2004 A1
20050002783 Hiel et al. Jan 2005 A1
20050002787 Wobben Jan 2005 A1
20050082839 McCoin Apr 2005 A1
20050230979 Bywaters et al. Oct 2005 A1
20050280264 Nagy Dec 2005 A1
20060000269 LeMieux et al. Jan 2006 A1
20060001269 Jansen et al. Jan 2006 A1
20060006658 McCoin Jan 2006 A1
20060012182 McCoin Jan 2006 A1
20060028025 Kikuchi et al. Feb 2006 A1
20060066110 Jansen Mar 2006 A1
20060071575 Jansen Apr 2006 A1
20060091735 Song May 2006 A1
20060125243 Miller Jun 2006 A1
20060131985 Qu Jun 2006 A1
20060152012 Wiegel et al. Jul 2006 A1
20060152015 Bywaters et al. Jul 2006 A1
20060152016 Bywaters et al. Jul 2006 A1
20070020109 Takahashi et al. Jan 2007 A1
20070116567 Luetze May 2007 A1
20070187954 Struve et al. Aug 2007 A1
20070187956 Wobben Aug 2007 A1
20070222226 Casazza et al. Sep 2007 A1
20070222227 Casazza et al. Sep 2007 A1
20080107526 Wobben May 2008 A1
20080197636 Tilscher et al. Aug 2008 A1
20080197638 Wobben Aug 2008 A1
20080246224 Pabst et al. Oct 2008 A1
20080290664 Kruger Nov 2008 A1
20080303281 Krueger Dec 2008 A1
20080309189 Pabst Dec 2008 A1
20080315594 Casazza et al. Dec 2008 A1
20090096309 Pabst et al. Apr 2009 A1
20100019502 Pabst et al. Jan 2010 A1
20100026010 Pabst Feb 2010 A1
20100117362 Vihriala et al. May 2010 A1
20100123318 Casazza et al. May 2010 A1
Foreign Referenced Citations (129)
Number Date Country
2 404 939 Apr 2004 CA
2518742 Sep 2004 CA
1554867 Dec 2004 CN
1130913 Jun 1962 DE
2164135 Jul 1973 DE
2322458 Nov 1974 DE
2506160 Aug 1976 DE
2922885 Dec 1980 DE
3638129 May 1988 DE
3844505 Jul 1990 DE
3903399 Aug 1990 DE
4304577 Aug 1994 DE
4402184 Aug 1995 DE
4415570 Nov 1995 DE
4444757 Jun 1996 DE
29706980 Jul 1997 DE
19636591 Mar 1998 DE
19644355 Apr 1998 DE
19652673 Jun 1998 DE
19711869 Sep 1998 DE
19748716 Nov 1998 DE
29819391 Feb 1999 DE
19801803 Apr 1999 DE
19932394 Jan 2001 DE
19947915 Apr 2001 DE
1 995 1594 May 2001 DE
19951594 May 2001 DE
10000370 Jul 2001 DE
20102029 Aug 2001 DE
1 021 9190 Nov 2003 DE
10246690 Apr 2004 DE
102004018524 Nov 2005 DE
102004028746 Dec 2005 DE
0 013 157 Jul 1980 EP
0232963 Aug 1987 EP
0313392 Apr 1989 EP
0 627 805 Dec 1994 EP
1108888 Jun 2001 EP
1167754 Jan 2002 EP
1289097 Mar 2003 EP
1291521 Mar 2003 EP
1 309 067 May 2003 EP
1363019 Nov 2003 EP
1375913 Jan 2004 EP
1394406 Mar 2004 EP
1394451 Mar 2004 EP
1589222 Oct 2005 EP
1612415 Jan 2006 EP
1641102 Mar 2006 EP
1677002 Jul 2006 EP
1772624 Apr 2007 EP
1780409 May 2007 EP
1829762 Sep 2007 EP
2140301 Feb 2000 ES
806292 Dec 1936 FR
859844 Dec 1940 FR
1348765 Jan 1964 FR
2401091 Mar 1979 FR
2445053 Jul 1980 FR
2 519 483 Jul 1983 FR
2 594 272 Aug 1987 FR
2594272 Aug 1987 FR
2760492 Sep 1998 FR
2796671 Jan 2001 FR
2798168 Mar 2001 FR
2810374 Dec 2001 FR
2882404 Aug 2006 FR
191317268 Jan 1914 GB
859 176 Jan 1961 GB
1524477 Sep 1978 GB
1537729 Jan 1979 GB
2041111 Sep 1980 GB
2 050 525 Jan 1981 GB
2 075 274 Nov 1981 GB
2 131 630 Jun 1984 GB
2144587 Mar 1985 GB
2208243 Mar 1989 GB
2266937 Nov 1993 GB
2372783 Sep 2002 GB
57059462 Apr 1982 JP
3145945 Jun 1991 JP
5122912 May 1993 JP
6002970 Jan 1994 JP
6269141 Sep 1994 JP
10-070858 Mar 1998 JP
11236977 Aug 1999 JP
11-299197 Oct 1999 JP
2000-134885 May 2000 JP
2001-057750 Feb 2001 JP
2003453072 Jul 2003 JP
2004-153913 May 2004 JP
2004-297947 Oct 2004 JP
2005-006375 Jan 2005 JP
2005-020906 Jan 2005 JP
2005-312150 Nov 2005 JP
8902534 May 1991 NL
2000466 Sep 1993 RU
2229621 May 2004 RU
WO8402382 Jun 1984 WO
9105953 Feb 1991 WO
WO9212343 Jul 1992 WO
WO9730504 Aug 1997 WO
WO9733357 Sep 1997 WO
WO9840627 Sep 1998 WO
WO9930031 Jun 1999 WO
WO9933165 Jul 1999 WO
WO9937912 Jul 1999 WO
WO9939426 Aug 1999 WO
WO0001056 Jan 2000 WO
0106623 Jan 2001 WO
WO0106121 Jan 2001 WO
WO0107784 Feb 2001 WO
WO0121956 Mar 2001 WO
WO0125631 Apr 2001 WO
WO0129413 Apr 2001 WO
WO0134973 May 2001 WO
WO0135517 May 2001 WO
WO0169754 Sep 2001 WO
WO0233254 Apr 2002 WO
WO02057624 Jul 2002 WO
WO02083523 Oct 2002 WO
WO03036084 May 2003 WO
WO03067081 Aug 2003 WO
WO03076801 Sep 2003 WO
WO2004017497 Feb 2004 WO
WO2005103489 Nov 2005 WO
WO2006013722 Feb 2006 WO
WO2006032515 Mar 2006 WO
WO2008078342 Jul 2008 WO
Related Publications (1)
Number Date Country
20090302702 A1 Dec 2009 US