This disclosure relates generally to magnetic actuated attachment mechanisms, and more specifically to magnetic actuated attachment mechanisms for wearable devices.
Electronic devices and other apparatuses, such as wearable devices like heart rate monitors or fitness monitors, may be attached to one or more body parts of a user utilizing attachment structures such as bands. In order to attach an electronic device to and/or detach the electronic from the user's body part, the attachment structures may include a variety of different coupling mechanisms.
Though a variety of different coupling mechanisms for attachment structures such as bands have been developed, many may not be well suited to the frequency with which a wearable device or other electronic device may be attached to and/or detached from a user (as well as coupling/decoupling of attachment structures to the electronic device, coupling/decoupling of one or more portions of the attachment structures to one or more other portions of the attachment structures, and so on). Use of such coupling mechanisms may be burdensome and/or annoying to users. As a result, use of the wearable device or other electronic device may also be burdensome and/or annoying to users.
The present disclosure describes systems, methods, and apparatuses related to magnetic actuated attachment mechanisms for wearable devices. A band for a wearable device may include first and second band links. The first band link may include one or more magnetic pins. The second band link may include one or more magnets and one or more apertures. In a first position the first and second band links may mechanically and magnetically couple by the magnet pulling the magnetic pin into the aperture and in a second position the first and second band links may mechanically and magnetically decouple by the magnetic pin being forced from the aperture. In this way, the band links may be easily and quickly coupled to and/or decoupled from each other.
A variety of mechanisms may be included that force the magnetic pin from the aperture in the second position. Such mechanisms may include repulsion between the magnetic pin and the magnet, springs, inner magnets, and/or other components.
Mechanically and magnetically coupling the first and second band links may also electrically connect the first and second band links. Such electrical connection between the first and second band links may electrically connect one or more components of such band links, other band links, the wearable device or other electronic device, and so on.
In various embodiments, a band for a wearable device may include a first band link including a magnetic pin and a second band link including a magnet and an aperture. The first band link and the second band link may: mechanically and magnetically couple in a first position by the magnet pulling the magnetic pin into the aperture and mechanically and magnetically decouple in a second position by the magnetic pin being forced from the aperture.
In some embodiments, a band for a wearable device may include a band section and a clasp. At least one of the band section or the clasp may include a magnetic pin. At least one of the band section or the clasp may include a magnet and an aperture. The band section and the clasp may mechanically and magnetically couple in a first position by the magnet pulling the magnetic pin into the aperture. The band section and the clasp may mechanically and magnetically decouple in a second position by the magnetic pin being forced from the aperture.
In one or more embodiments, a wearable device may include a band section and a band mount coupled to the wearable device. At least one of the band section or the band mount may include a pin. At least one of the band section or the band mount may include an aperture. The band section and the band mount may electrically couple in a first position by the pin into pulling into the aperture. The band section and the band mount may electrically decouple in a second position by the pin being forced from the aperture
It is to be understood that both the foregoing general description and the following detailed description are for purposes of example and explanation and do not necessarily limit the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.
The description that follows includes sample systems, methods, and apparatuses that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.
The present disclosure describes systems, methods, and apparatuses related to magnetic actuated attachment mechanisms for wearable devices. A band (or other attachment structure) for a wearable device may include first and second band links (or other portions). The first band link may include one or more magnetic pins and the second band link may include one or more magnets and one or more apertures. In a first position, the first and second band links may mechanically and magnetically couple by the magnet pulling the magnetic pin into the aperture. In a second position, the first and second band links may mechanically and magnetically decouple by the magnetic pin being forced from the aperture. In this way, the band links may be easily and quickly coupled to and/or decoupled from each other.
Although these coupling mechanisms are described as coupling/decoupling band links, it is understood that this is an example. In various implementations such coupling mechanisms may be utilized to couple/decouple an attachment structure and a wearable device or other electronic device, multiple portions of an attachment structure (such as when such coupling mechanisms are included in a clasp of a band), and so on.
The first and/or second band links may include a variety of mechanisms that force the magnetic pin from the aperture in the second position. Such mechanisms may include repulsion between the magnetic pin and the magnet. Such mechanisms may also include springs, inner magnets, and/or other components of the first band link that pull the magnetic pin from the aperture in the second position.
Mechanically and magnetically coupling the first and second band links may also electrically connect the first and second band links (as well as one or more components of such band links, other band links, the wearable device or other electronic device, and so on). In some implementations, the magnetic pin and the magnet may be conductive. In other implementations, the magnetic pin and magnet may each include conductive material that is insulated by insulating material and electrically connects in the first position. In various implementations, coupling and/or decoupling of the first and second band links may cause a state change in the wearable device or other electronic device.
The band may be switched between the first and second positions by altering the position of the first and second band links with respect to each other. However, in various implementations the first and second positions may refer to aspects other than the position of the first and second band links with respect to each other. For example, the first and/or second band link may include mechanisms such as a lever that switch the band between the first and the second position by performing actions such as rotating the magnet and/or the magnetic pin. By way of another example, the band may be switched between the first and second positions utilizing a tool, such as a tool that is operable to rotate the magnet and/or the magnetic pin. Various configurations are possible and contemplated.
Further, as illustrated the clasp 104 may include tongues 107 and 108 that are insertable into notches of various links for coupling. However, it is understood that this is an example and that the clasp may couple/decouple to links utilizing variously configured components and mechanisms.
Additionally, it is understood that the system 100 is an example. As illustrated, the wearable device 101 is a digital wristwatch. However, in various implementations the band may be utilized with various other wearable devices and/or any kind of electronic device without departing from the scope of the present disclosure such as tablet computers, smart phones, laptop computers, and so on. Moreover, although a band including links is illustrated, it is understood that other kinds of attachments structures may be utilized without departing from the scope of the present disclosure such as a solid band, a band with two solid halves instead of links or other kind of band sections, and/or any other attachment structure.
Although the first and second positions are illustrated in
The motion illustrated in the difference between
In this first example implementation, magnetic attraction between the magnetic pins 303 and the magnets 302 may pull the magnetic pins into the apertures 301 in the first position and magnetic repulsion between the magnetic pins and the magnets may force the magnetic pins from the apertures 301 in the second position. This difference between magnetic attraction and repulsion of the magnetic pins and the magnets may relate to associated polarity patterns of the magnetic pins and the magnets and rotation of the magnetic pins and/or the magnets caused by switching between the first and second positions. For example, moving the first and second band links 103a and 103b with respect to each other may rotate the magnetic pins and/or the magnets with respect to each other.
For example,
Similarly,
Although a particular configuration of positive and negative portions 401-404 is illustrated in
Additionally, as illustrated the positive portions 401 and 404 of the magnetic pins 303 and the magnets 302 constitute an unequal portion of the magnetic pins and the magnets as compared to the negative portions 402 and 403. This may result in the magnetic pins and magnets having a greater range of motion where they can be rotated with respect to each other while still attracting than the range of motion where they can be rotated with respect to each other and not attract and/or repel. However, although specific proportions are shown, it is understood that this is an example and that other configurations or codings of the magnetic pins and/or magnets are possible and contemplated without departing from the scope of the present disclosure. For example, though the positive and negative portions are shown with the negative portions being substantially wedge-shaped areas occupying approximately 25% of the surfaces, in various examples the positive and negative portions may be divided into various shaped portions of various sizes, such as implementations with equal sized half-circle shaped portions, implementations with the positive portions being substantially wedge-shaped areas occupying approximately 25% of the surfaces, and/or other configurations of proportions and arrangement patterns.
Further, in some implementations the magnetic pins 303 and the magnets 302 may be coded such that the attraction and/or repulsion between the magnetic pins and the magnets changes as the magnetic pins and magnets are moved (such as rotated) with respect to each other. For example, the magnetic pins and the magnets may be coded such that the attraction and/or repulsion increases between the magnetic pins and the magnets as they are rotated with respect to each other. Such gradation of magnetic strength may allow disconnection and/or connection to be more gradual as opposed to abrupt. Such gradation of magnetic strength may also allow simulation of the feeling or impression to a user of unscrewing band links (such as first and second band links 103a and 103b) from each other.
Moreover, this first example is illustrated and described as forcing the magnetic pins 303 from the apertures 301 in the second position utilizing magnetic repulsion between the magnetic pins and the magnets 302. However, in other implementations other mechanisms may be utilized to aid such magnetic repulsion in forcing the magnetic pins from the apertures 301, force the magnetic pins from the apertures 301 when the magnets are not attracting the magnetic pins, and/or overcome the magnetic attraction between the magnetic pins and the magnets to force the magnetic pins from the apertures 301.
In some implementations, the magnetic pins 303 and the magnets 302 may be conductive. As such, contact between the magnetic pins and the magnets when the magnetic pins and the magnets are magnetically coupled may electrically connect the electronic components 701 and 704 via conductive components 702 and 703.
In other implementations, the magnetic pins 303 and magnets 302 may each include conductive material that is insulated by insulating material and contacts to electrically connect in the first position. As such, between the magnetic pins and the magnets when the magnetic pins and the magnets are magnetically coupled may electrically connect the electronic components 701 and 704 via conductive components 702 and 703. For example, the magnetic pins and magnets may each include conductive centers that align with each other while the materials surrounding the centers are insulating (which may be magnetic portions of the magnetic pins and/or magnets and/or insulating materials that are surrounded by magnetic portions of the magnetic pins and/or magnets, and so on).
In various implementations, coupling and/or decoupling of the first and second band links 103a and 103b may cause a state change in the wearable device 101 or other electronic device. For example, coupling the first and second band links may cause an interrupt signal to be transmitted to a processing unit of the wearable device that wakes the wearable device from a sleep state whereas decoupling the first and second band links may cause an interrupt signal to be transmitted to the processing unit that puts the wearable device into the sleep state. By way of another example, coupling the first and second band links may cause the wearable device to provide a notification (such as a visual, audio, haptic, and/or other notification) regarding the coupling whereas decoupling the first and second band links may cause the wearable device to provide a notification regarding the decoupling.
The electronic components 701 and 704 may be any kind of electronic components. Such components may include one or more processing units, one or more communication components, one or more electrical interconnects, one or more input/output components (such as one or more microphones, speakers, haptic components, displays, touch screens, touch pads, touch sensors, force sensors, and so on), and one or more non-transitory storage media (which may take the form of, but is not limited to, a magnetic storage medium; optical storage medium; magneto-optical storage medium; read only memory; random access memory; erasable programmable memory; flash memory; and so on). Additionally, the wearable device 101 may also include one or more of these components.
Although
For example,
As illustrated, the first band link 103a includes screws 801 in this fifth example implementation that are operable to rotate the magnets 302 when manipulated by a screwdriver 802. As such, rotation of the magnets may switch the band between the first and second position by transitioning the magnets between positions where the magnets attract the magnetic pins 303 and positions where the magnets do not attract and/or repel the magnetic pins.
However, it is understood that this is an example. In various implementations, the tool 802 may be a tool other than a screwdriver. Further, in various implementations the tool may operate on a component other than a screw 801, a component of the first and/or second band link 103a and 103b other than the magnets 302, a component of the second band link 103b instead of and/or in addition to a component of the first band link 103a, and so on. Other configurations are possible and contemplated without departing from the scope of the present disclosure.
By way of another example,
As illustrated, the first band link 103a includes a lever 901 that is pivotally mounted to the first band link via pins 902 in this sixth example implementation. Movement of the lever may rotate the magnets 302. As such, rotation of the magnets may switch the band between the first and second position by transitioning the magnets between positions where the magnets attract the magnetic pins 303 and positions where the magnets do not attract and/or repel the magnetic pins.
However, it is understood that this is an example. In various implementations, the mechanism 901 may be a mechanism other than a lever, operate on a component of the first and/or second band link 103a and 103b other than the magnets 302, be a component of the second band link instead of and/or in addition to the first band link, and so on. Other configurations are possible and contemplated without departing from the scope of the present disclosure.
Additionally, although the coupling mechanisms illustrated in
The flow may begin at block 1001 where a first band link is constructed with a magnetic pin. The flow may then proceed to block 1002 where a second band link is constructed with a magnet and an apertures.
Next, the flow may proceed to block 1003 where the first and second band links are configured so that the first and second band links are mechanically and magnetically coupled in a first position and mechanically and magnetically decoupled in a second position. The first and second band links may be mechanically and magnetically coupled in the first position by pulling the magnetic pin into the aperture. The first and second band links may be mechanically and magnetically decoupled in the second position by forcing the magnetic pin from the aperture.
Although the method 1000 is illustrated and described above as including particular operations performed in a particular order, it is understood that this is an example. In various implementations, various orders of the same, similar, and/or different operations may be performed without departing from the scope of the present disclosure.
For example, the method 1000 illustrates and describes the operation of configuring the first and second band links to mechanically and magnetically couple in the first position and mechanically and magnetically decouple in the second position as separate operations from constructing the first and second band links, all of which are illustrated and described as being performed in a linear order. However, it is understood that this is an example and that in various implementations one or more of blocks 1001-1003 may be performed simultaneously without departing from the scope of the present disclosure.
As discussed above and illustrated in the accompanying figures, the present disclosure describes systems, methods, and apparatuses related to magnetic actuated attachment mechanisms for wearable devices. A band (or other attachment structure) for a wearable device may include first and second band links (or other portions). The first band link may include one or more magnetic pins and the second band link may include one or more magnets and one or more apertures. In a first position, the first and second band links may mechanically and magnetically couple by the magnet pulling the magnetic pin into the aperture. In a second position, the first and second band links may mechanically and magnetically decouple by the magnetic pin being forced from the aperture. In this way, the band links may be easily and quickly coupled to and/or decoupled from each other.
In the present disclosure, the methods disclosed may be implemented utilizing sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
Techniques of the described disclosure may utilize a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure, such as a computer controlled manufacturing method. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.
While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 14/859,581, filed Sep. 21, 2015, which is a divisional of U.S. patent application Ser. No. 14/580,319, filed Dec. 23, 2014, now U.S. Pat. No. 9,141,086, which claims the benefit of U.S. Provisional Patent Application No. 62/035,679, filed Aug. 11, 2014, the disclosures of which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62035679 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14580319 | Dec 2014 | US |
Child | 14859581 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14859581 | Sep 2015 | US |
Child | 15604653 | US |