Magnetic actuators for haptic response

Abstract
In an embodiment, an actuator or circuit includes elements moveably coupled via bearings positioned between curved grooves. The bearings and the curves may exert a restorative force to return the elements to an original position after movement and may be spherical, cubic, cylindrical, and/or include gears that interact with groove gears. In some embodiments, an electrical coil may be coplanar with a surface of an element and a hard magnet may be positioned in the center and be polarized to stabilize or destabilize the element with respect to another element. In various embodiments, a magnetic circuit includes an element with an electrical coil wrapped in multiple directions around the element. In some embodiments, an actuator includes attraction elements and exertion of force causes an element to approach, contact, and/or magnetically attach to one of the attraction elements.
Description
TECHNICAL FIELD

This disclosure relates generally to haptic devices, and more specifically to magnetic actuators that provide a haptic response.


BACKGROUND

Magnetic actuators, such as those utilized in haptic devices, typically include a first body element that is moveable with relation to a second body element. Such movement may be accomplished through direction of magnetic flux utilizing one or more electrical coils, soft magnets (a material that is not permanently magnetic but can become magnetic in response to the proximity of a magnetic force), and/or one or more hard magnets (materials that are permanently magnetic such as rare-earth magnets). The movement may cause vibrations, which may be provided to a user as haptic output or feedback.


SUMMARY

The present disclosure discloses magnetic actuators and circuits. In various embodiments, a magnetic actuator or circuit may include a moveable body or bar element that is moveably coupled to a fixed body or bar element via one or more bearings positioned between one or more grooves. In some cases the grooves may be curved such that force exerted causing lateral movement of the moveable body or bar elements cause the bearings to move upward on the curve of the groove such that the bearing moves back down the curve and restores the moveable body or bar elements to an original position after the force is no longer exerted. In various cases, the bearings may be spherical, cubic, cylindrical, and/or include gear elements that interact with one or more gear elements of the grooves. In some cases, the bearings cause the moveable body or bar element to translate vertically as well as move laterally, though in other cases the bearings may only cause the moveable body or bar elements to move laterally.


In some embodiments, a body element may include one or more electrical coils coplanar with the body element. In various cases, the body element may also include one or more hard magnets positioned in the center of the electrical coil that are polarized to stabilize or destabilize centering of the body element with respect to another body element.


In various embodiments, a magnetic circuit may include a first bar element with a plurality of hard magnets and/or soft magnets and a second bar element with one or more electrical coils wrapped around the second bar element. In some cases, the electrical coil may include a first section wrapped in a first direction, a second section wrapped in a second direction opposing the first direction, and a middle section that transitions between the first direction and the second direction.


In one or more embodiments, an actuator may include a fixed body element, with first and second side soft magnets, that is moveably coupled to a moveable body element. Exertion of force may cause the moveable body element to move such that the moveable body element approaches and/or contacts the first or second soft side magnet. Such contact may result in a “tap,” which may be provided to a user as a tactile output. Upon contact, the moveable body element may magnetically attach to the respective soft side magnet and may remain so after the force is no longer exerted until another force is exerted that detaches the moveable body element and causes it to move to approach the other soft side magnet.


In some embodiments, an actuator may include a first magnetic attraction element, a second magnetic attraction element, and a moveable member including a first hard magnet, a second hard magnet, and an electrical coil. Exertion of force may cause the moveable member to move such that the first hard magnet approaches and/or contacts the first magnetic attraction element or the second hard magnet approaches and/or contacts the second magnetic attraction element. Such contact may result in a “tap,” which may be provided to a user as a tactile output. Upon contact, the respective hard magnet may magnetically attach to the respective magnetic attraction element and may remain so after the force is no longer exerted until another force is exerted that detaches the respective hard magnet and causes the moveable member to move such that the other hard magnet approaches the other magnetic attraction member. In some cases, the magnetic attraction elements may be hard magnets, though in other implementations the magnetic attraction elements may be soft magnets.


It is to be understood that both the foregoing general description and the following detailed description are for purposes of example and explanation and do not necessarily limit the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a top view illustrating a track pad incorporated into an electronic device.



FIG. 1B is a cross-sectional side view of the electronic device taken along line 1B in FIG. 1A including a first embodiment of a magnetic actuator.



FIG. 1C is a bottom view of the fixed body element of FIG. 1B.



FIG. 1D is a top view of the moveable body element of FIG. 1B.



FIG. 1E is a close up side view of a first groove of the fixed body element of FIG. 1C taken along line 1E in FIG. 1C.



FIG. 1F is a cross-sectional side view of the electronic device taken along line 1F in FIG. 1A illustrating an example flow of magnetic flux.



FIG. 1G illustrates a cross-sectional side view of an alternative embodiment of the moveable body element of FIG. 1B taken along line 1G of FIG. 1D.



FIG. 1H is a close up side view of an alternative embodiment of the first groove of the fixed body element of FIG. 1E.



FIG. 1I is a cross-sectional side view of the electronic device taken along line 1B in FIG. 1A including a second embodiment of a magnetic actuator.



FIG. 1J is a close up view of a bearing and a second groove of FIG. 1I.



FIG. 2A is a cross-sectional side view of a first implementation of a third embodiment of a magnetic actuator.



FIG. 2B is a cross-sectional side view of a second implementation of the magnetic actuator of FIG. 2A.



FIG. 3A is a cross-sectional side view of a first implementation of a fourth embodiment of a magnetic actuator.



FIG. 3B illustrates the magnetic actuator of FIG. 3A after the application of a first electrical current to an electrical coil of the magnetic actuator.



FIG. 3C illustrates the magnetic actuator of FIG. 3B after the application of a second electrical current to the electrical coil of the magnetic actuator.



FIG. 3D is a front plan view of a second implementation of the fourth embodiment of a magnetic actuator.



FIG. 3E is a cross-sectional view of the magnetic actuator of FIG. 3D taken along line 3E in FIG. 3D.



FIG. 3F illustrates the magnetic actuator of FIG. 3E after the application of a first electrical current to an electrical coil of the magnetic actuator.



FIG. 3G illustrates the magnetic actuator of FIG. 3F after the application of a second electrical current to the electrical coil of the magnetic actuator.



FIG. 3H illustrates the magnetic actuator of FIG. 3D with a housing surrounding parts of the magnetic actuator.



FIG. 4A is a front view of a first embodiment of a magnetic circuit.



FIG. 4B is a side view of the magnetic circuit of FIG. 4A.



FIG. 4C is a front view of a second embodiment of a magnetic circuit.



FIG. 4D is a front view of a third embodiment of a magnetic circuit.



FIG. 4E is a front view of a fourth embodiment of a magnetic circuit.





DETAILED DESCRIPTION

The description that follows includes sample systems, methods, and computer program products that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.


In many magnetic actuators, a first body element and a second body element may be connected via one or more centering springs. When the first and second body elements move with respect to each other from an original position, the centering spring may exert a restorative force upon the first and second body elements. This restorative force may operate to bring the first and second body elements back to the original position so that the first and second body elements are positioned for subsequent movement.


The present disclosure discloses magnetic actuators and circuits. In various embodiments, a magnetic actuator or circuit may include a first element that is moveably coupled to a second element via one or more bearings positioned between one or more grooves. In some cases the grooves may be curved. The bearings and the curves may exert a restorative force to return the first and second elements to an original position after movement. In various cases, the bearings may be spherical, cubic, cylindrical, and/or include gear elements that interact with one or more gear elements of the grooves.


In some embodiments, a second element may include one or more electrical coils that are coplanar with a surface of the second element. In various cases, the second element may also include one or more hard magnets positioned in the center of the electrical coil that are polarized to stabilize or destabilize centering of the second element with respect to a first element.


In various embodiments, a magnetic circuit may include a second element with one or more electrical coils wrapped around the second element. In some cases, the electrical coil may include a first section wrapped in a first direction, a second section wrapped in a second direction opposing the first direction, and a middle section that transitions between the first direction and the second direction.


In one or more embodiments, an actuator may include a first element with first and second side soft magnets that is moveably coupled to a second element. Exertion of force may cause the second element to move such that the second body element approaches and/or contacts the first or second soft side magnet. Such contact may result in a “tap,” which may be provided to a user as a tactile output. Upon contact, the second element may magnetically attach to the respective soft side magnet and may remain so after the force is no longer exerted until another force is exerted that detaches the second element and causes it to move to approach the other soft side magnet.


In other embodiments, an actuator may include a first magnetic attraction element, a second magnetic attraction element, and a moveable member including a first hard magnet, a second hard magnet, and an electrical coil. Exertion of force may cause the moveable member to move such that the first hard magnet approaches and/or contacts the first magnetic attraction element or the second hard magnet approaches and/or contacts the second magnetic attraction element. Upon contact, the respective hard magnet may magnetically attach to the respective magnetic attraction element and may remain so after the force is no longer exerted until another force is exerted that detaches the respective hard magnet and causes the moveable member to move such that the other hard magnet approaches the other magnetic attraction member.



FIG. 1A is a top view illustrating a track pad 102 incorporated into an electronic device 101. The electronic device may be any electronic device that includes a track pad such as a desktop computer, a laptop computer, a wearable device, a smart phone, a digital media player, a mobile computing device, a tablet computing device, and so on.



FIG. 1B is a cross-sectional side view of the electronic device 101 taken along the line 1B in FIG. 1A. As illustrated, a first embodiment of a magnetic actuator 100A is coupled to the track pad 102.


Although the magnetic actuator is illustrated and described herein as coupled to the track pad of the electronic device, it is understood that this is an example. In various implementations, the magnetic actuator may be utilized in a variety of different ways in a variety of different electronic devices. For example, such a magnetic actuator may be coupled to a housing (such as the housing of a tablet computer, mouse, and so on), one or more selection elements (such as one or more keys of a keyboard, buttons of a mouse, touch pads of a tablet computing device, and so on), a wearable device such as a watch, glasses, and so on.


As illustrated, the magnetic actuator may include a fixed body element 104, a number of bearings 110 (which may be spherical), and a moveable body element 103. The fixed body element may include an electrical coil 107 (which may be coplanar with a surface of the fixed body element) and a number of first grooves 105. The moveable body element may include a first hard magnet (materials that are permanently magnetic such as rare-earth magnets) 108, a second hard magnet element 109 (see FIGS. 1D and 1E) (which may have an opposite polarity than the first hard magnet facing a surface of the moveable body element), and a number of second grooves 106. The moveable body element may be attracted to the fixed body element via the first hard magnet and/or the second hard magnet element. The moveable body element may be separated from the fixed body element by the bearings positioned in the first and second grooves.



FIG. 1C is a bottom view of the fixed body element 104. As illustrated, the first grooves may be curved such that the fixed body element grooves are deeper at a center portion 150 than at either edge portion 151 or 152.



FIG. 1D is a top view of the moveable body element 103. As illustrated, the second grooves 106 may be curved such that the moveable body element grooves are deeper at a center portion 160 than at either edge portion 161 or 162.


Application of electrical current to the electrical coil 107 may cause the electrical coil to generate a magnetic field. The magnetic field has a magnetic flux. The magnetic flux may exert a force upon any magnetic material (i.e., the first hard magnet 108 and the second hard magnet 109) within the magnetic field. The vector of the force may vary with the magnetic flux, which may vary according to the position of the magnetic material within the field. This force may cause the moveable body element 103 to move laterally with respect to the fixed body element 104. This movement may cause one or more vibrations, which may be provided to a user as tactile output or feedback. An example of the flow of the magnetic flux 170 can be seen in FIG. 1F.


Thus, returning to FIGS. 1B-1D, when the moveable body element 103 moves laterally with respect to the fixed body element 104 due to the lateral force, the bearing 110 may move from the deeper center portions 150 and 160 to the narrower edge portions 151, 161 or 152, 162 (depending on the direction of motion). This may force the moveable body element further away vertically from the fixed body element. When the lateral force ceases, gravity and/or other forces may then cause the bearing to move from the narrower edge portions 151, 161 or 152, 162 to the deeper center portions 150 and 160. This may allow the moveable body element to move back vertically closer to the fixed body element.


As such, the bearings 110 and the grooves 105 and 106 may interact to exert a restorative force on the moveable body element after movement. This restorative force may operate to return the moveable body element to an original position with respect to the fixed body element after the lateral movement.



FIG. 1E is a close-up side view of a first groove of the fixed body element 104 of FIG. 1C. As illustrated, the center portion 150 is deeper than the edge portions 151 or 152.


With reference again to FIG. 1C, in addition to the center portion 150 of the first grooves 105 being deeper than the edge portions 151 and 152, the grooves may be curved such that the inside portion of the grooves are deeper than their outside portions. As such, the first grooves may be V-shaped cross-sectionally, U-shaped, or similarly shaped. This may cause the sides of the bearings 110 to contact outside portions of the first grooves at two points as opposed to the bottom of the bearings contacting the inside portion of the first grooves (e.g., the bottom of the channel formed by the first grooves). With reference again to FIG. 1D, the second grooves 106 may be similarly curved.


Additionally, although the bearings 110 are illustrated and described above as spherical and the first and second grooves 105 and 106 are shown as curved cross-sectionally to correspond to the bearings, it is understood that this is an example. In various implementations, the bearings may be cylindrical and include a plurality of gear elements that are configured to interact with gear elements defined in the first and second grooves. Such an implementation may prevent slippage between the bearings and the first grooves and the second grooves. Such an implementation is illustrated in FIG. 1H, which illustrates gear elements 192 defined in a first groove 105 interacting with gear elements 191 of a cylindrical bearing 110.



FIG. 1F is a cross-sectional side view of the electronic device taken along line 1F in FIG. 1A, illustrating an example flow of magnetic flux 170 in response to a specific electrical current applied to the electrical coil 107.


Although the magnetic actuator 100A is illustrated and described above as including four bearings 110, four first grooves 105, and four second grooves 106, it is understood that this is an example. In various implementations, the magnetic actuator may include any number of bearings and/or grooves (such as one, three, or fifteen).



FIG. 1G illustrates a cross-sectional side view of an alternative embodiment of the moveable body element 103 of FIG. 1B, taken along line 1G of FIG. 1D. As illustrated, at least one soft magnet 180 (a material that is not permanently magnetic but can become magnetic in response to the proximity of a magnetic force) may be positioned beneath the first hard magnet 108 and/or the second hard magnet 109 such that the first hard magnet and/or the second hard magnet are positioned between the soft magnet and the fixed body element 104. In some implementations, the soft magnet may be composed at least partially of a ferrous metal such as steel.



FIG. 1I is a cross-sectional side view of the electronic device taken along line 1B in FIG. 1A, including a second embodiment of a magnetic actuator 1001. As illustrated, in this embodiment the bearings 140 are cubes. Further, the first grooves 105 include curved areas 141 and 143 that curve inward toward center point 142. Similarly, the second grooves 106 include curved areas 145 and 147 that curve inward toward center point 146.


As such, when the moveable body element 103 moves laterally with respect to the fixed body element 104 due to the application of force, the cube bearings may roll along the corresponding curved areas. When the force ceases, gravity and/or other forces may then cause the cube bearings to roll back along the corresponding curved areas. This may provide a restorative force that may operate to return the moveable body element to an original position with respect to the fixed body element after movement.


The relationship between the dimensions of the cube and the dimensions of the curved areas 141, 143, 145, and/or 147 may determine whether or not the cube bearings 140 move the moveable element 103 in a purely lateral direction or whether the cube bearings force the moveable body element to translate vertically as well as laterally.



FIG. 1J is a close up view of a bearing 140 and a second groove 106 of FIG. 1I. The lines 149 indicate the movement of the moveable element 103 that may result based on a center point 148 of the cube bearings. Given the dimensions of the cube bearing illustrated, the center point corresponds to the lowest line 149, which is curved to indicate that the moveable body element would translate vertically during lateral movement. However, if the cube bearing was large enough that the center point corresponded to the top line 149, the moveable body element would only move laterally and would not translate vertically.


Although the moveable body element 103 has been illustrated and described above as moveable with respect to the fixed body element 104, it is understood that this is an example. In various implementations, the body element 104 may be moveable with respect to a fixed body element 103.



FIG. 2A is a cross-sectional side view of a first implementation of a third embodiment of a magnetic actuator 200. In some implementations, such a magnetic actuator may be coupled to a device such as the track pad 102 of FIG. 1A.


Returning to FIG. 2A, as illustrated, the magnetic actuator 200 may include a first body element 211 that is moveably coupled to a second body element 212 such that the second body element is capable of lateral movement with respect to the first body element. The first body element may include a soft magnet 201, a first hard magnet 203, and a second hard magnet 204 (which may have an opposite polarity than the first hard magnet facing a surface of the first body element). The second body element may include an electrical coil 205 wound in a circular arrangement to have a first side 206, a second side 207, and a gap in the center. The second body element may also include a center hard magnet 208 positioned in the gap in the center of the electrical coil and a second soft magnet element 202 positioned underneath the electrical coil.


In response to application of an electrical current, the first and second sides of the electrical coil 206 and 207 may generate a magnetic field. The magnetic field has a magnetic flux 209. The magnetic flux may exert a force upon any magnetic material (i.e., the first hard magnet 203 and the second hard magnet 204) within the magnetic field. The vector of the force may vary with the magnetic flux, which may vary according to the position of the magnetic material within the field. This force may cause the second body element 212 to move laterally with respect to the first body element 211. This movement may cause one or more vibrations, which may be provided to a user as tactile output or feedback.


In this first implementation, the center hard magnet 208 may be polarized to oppose the direction of the magnetic flux 209. This opposition may destabilize centering of the first body element 211 with respect to the second body element 212 because the polarities of the sides of the center hard magnet 208 repel the respective polarities of the undersides of the first and second hard magnets 203 and 204. Instead, as a result of the opposition and repulsion, the second body element may be more stable when offset from center in either lateral direction with respect to the first body element than when centered with respect to the first body element. In implementations where the second body element has an original position centered with respect to the first body element, this may cause resistance to the second moveable body element returning to the original centered position with respect to the first moveable body element after the lateral movement 210.


In other implementations, the second body element 212 may have an original position that is offset with respect to the first body element 211 and that may be disrupted by the lateral movement 210 of the second body element. In such implementations, the opposition of the center hard magnet 208 to the direction of the magnetic flux 209 may provide a restorative force after the lateral movement (caused by the repulsion of the sides of the center hard magnet 208 that the respective polarities of the undersides of the first and second hard magnets 203 and 204) that acts to return the second body element to the original offset position with respect to the first body element after the lateral movement of the second body element.


The second body element 212 may be moveably coupled to the first body element 211 utilizing a variety of different mechanisms (not shown). For example, in some implementations the second body element may be suspended from the first body element, such as by wire or string. In other implementations, one or more springs, magnetic forces, and so on may moveably couple the second body element to the first body element.



FIG. 2B is a cross-sectional side view of a second implementation of the magnetic actuator of FIG. 2A. In this second implementation, the center hard magnet 208 may be polarized to complement the direction of the magnetic flux 209. This complementing force may exert a restorative force on the first moveable body element and/or the second moveable body element because the polarities of the sides of the center hard magnet 208 attract the respective polarities of the undersides of the first and second hard magnets 203 and 204. Such restorative force may act to return the second body element 212 to an original position with respect to the first body element 211 after the lateral movement 210 of the second body element.


Although the second body element 212 has been illustrated and described above as moveable with respect to the first body element 211, it is understood that this is an example. In various implementations, the first body element may be moveable with respect to the second body element.



FIG. 3A is a cross-sectional side view of a first implementation of a fourth embodiment of a magnetic actuator 300A. In some implementations, such a magnetic actuator may be coupled to a device such as the track pad 102 of FIG. 1A.


Returning to FIG. 3A, as illustrated, the magnetic actuator 300A may include a moveable body element 302A that is moveably coupled (such as laterally moveably coupled) to a fixed body element 301A. The fixed body element may include a first hard magnet 306A, a second hard magnet 307A, and a soft magnet 303A. The soft magnet may include a top structure 310A, a first side soft magnet 304A, and a second side soft magnet 305A. The moveable body element may include a base element 309A (which may be at least one soft magnet) and an electrical coil 308A.


Although the fixed body element 301A is illustrated and described as incorporating the top structure 310A, the first side soft magnet 304A, and the second side soft magnet 305A into a single soft magnet 303A, it is understood that this is an example. In other implementations the first side soft magnet, the second side soft magnet, and/or the top structure may be formed of separate soft magnets. Additionally, in various implementations the top structure may not be a soft magnet.


In response to application of an electrical current, the electrical coil 308A may generate a magnetic field. The magnetic field has a magnetic flux. The magnetic flux may exert a force upon any magnetic material (i.e., the first hard magnet 306A and the second hard magnet 307A) within the magnetic field. The vector of the force may vary with the magnetic flux, which may vary according to the position of the magnetic material within the field. This force may cause the moveable body element 302A to approach and/or contact either the first side soft magnet 304A or the second side soft magnet 305A. Such approaches and/or contacts may result in one or more vibrations or taps which may be provided to a user as haptic output or feedback.


When the second moveable body element 302A contacts the first side soft magnet 304A, the second moveable body element may magnetically attach to the first side soft magnet. Subsequently, the second moveable body element may remain magnetically attached to the first side soft magnet even after the electrical current that resulted in the movement of the second moveable body element is no longer applied to the electrical coil 308A. A similar effect may occur when the second moveable body element contacts the second side soft magnet 305A.



FIG. 3B illustrates the magnetic actuator 300A of FIG. 3A after the application of a first electrical current to the electrical coil 308A, resulting in a lateral force being applied to the second moveable body element 302A. As illustrated, the second moveable body element approaches, contacts, and magnetically attaches to the first side soft magnet 304A. This contact may result in a “tap” which may be provided to a user as haptic output or feedback.


The second moveable body element 302A may remain magnetically attached to the first side soft magnet 304A even after the first electrical current is no longer applied to the electrical coil 308A. The second moveable body element may remain magnetically attached to the first side soft magnet until a second electrical current is applied to the electrical coil.



FIG. 3C illustrates the magnetic actuator 300A of FIG. 3B after the application of the second electrical current to the electrical coil 308A, resulting in a lateral force (opposite to the lateral force illustrated in FIG. 3B) being applied to the second moveable body element 302A. As illustrated, the second moveable body element approaches, contacts, and magnetically attaches to the second side soft magnet 305A.


Although the moveable body element 302A has been illustrated and described above as moveable with respect to the fixed body element 301A, it is understood that this is an example. In various implementations, the body element 301A may be moveable with respect to a fixed body element 302A.



FIG. 3D is a front plan view of a second implementation of the fourth embodiment of a magnetic actuator 300B. In some implementations, such a magnetic actuator may be coupled to a device such as the track pad 102 of FIG. 1A.


Returning to FIG. 3D, as illustrated, the magnetic actuator 300B may include a first magnetic attraction element 303B, a second magnetic attraction element 308B, and a moveable member 3018. The first magnetic attraction element may include a first aperture 302B, the second magnetic attraction element may include a second aperture 307B, and the moveable member may be configured to move by passing and/or extending through the first aperture and/or the second aperture. The moveable member may be a shaft and may include a first hard magnet 304B, a second hard magnet 3068, and at least one electrical coil 305B that is at least partially positioned or wrapped around the first hard magnet and/or the second hard magnet.



FIG. 3E is a cross-sectional view of the magnetic actuator 300B taken along line 3E in FIG. 3D. As illustrated, the first magnetic attraction element 303B and the second magnetic attraction element 308B may be hard magnets that are polarized towards each other. However, it is understood that this is an example and in various implementations the first magnetic attraction element and the second magnetic attraction element may be soft magnets. Similarly, the first hard magnet 304B and the second hard magnet 306B may be polarized towards each other.


In response to application of an electrical current, the electrical coil 305B may generate a magnetic field. The magnetic field has a magnetic flux. The magnetic flux may exert a force upon any magnetic material (i.e., the first hard magnet 304B and the second hard magnet 306B) within the magnetic field. The vector of the force may vary with the magnetic flux, which may vary according to the position of the magnetic material within the field. This force may cause the moveable member 301B to move such that the first hard magnet 304B approaches and/or contacts the first magnetic attraction element 303B or the second hard magnet 306B approaches and/or contacts the second magnetic attraction element 308B. Such approaches and/or contacts may result in one or more vibrations or taps which may be provided to a user as haptic output or feedback.


When the first hard magnet 304B contacts the first magnetic attraction element 303B, the first hard magnet may magnetically attach to the first magnetic attraction element. Subsequently, the first hard magnet may remain magnetically attached to the first magnetic attraction element even after the force is no longer exerted upon the moveable member 301B. A similar effect may occur when the second hard magnet 306B contacts the second magnetic attraction element 308B.



FIG. 3F illustrates the magnetic actuator 300B of FIG. 3E after the application of a first electrical current to an electrical coil 305B, resulting in a force being applied to the moveable member 301B. As illustrated, the moveable member moves such that the first hard magnet 304B approaches, contacts, and magnetically attaches to the first magnetic attraction element 303B. This contact may result in a “tap” which may be provided to a user as haptic output or feedback.


The first hard magnet 304B may remain magnetically attached to the first magnetic attraction element 303B even after the first electrical current is no longer applied to the electrical coil 305B. The first hard magnet may remain magnetically attached to the first magnetic attraction element a second electrical current is applied to the electrical coil, resulting in a force being applied to the moveable member 301B (opposite to the force shown in FIG. 3F) such that the first hard magnet detaches from the first magnetic attraction element and the second hard magnet 306B approaches the second magnetic attraction element 308B.



FIG. 3G illustrates the magnetic actuator 300B of FIG. 3F after the application of a second electrical current to the electrical coil 305B. As illustrated, the second hard magnet 306B approaches, contacts, and magnetically attaches to the second magnetic attraction element 308B.



FIG. 3H illustrates the magnetic actuator of FIG. 3D with a housing 310B surrounding parts of the magnetic actuator. As illustrated, in some implementations, such a housing may surround the first hard magnet 304B, the second hard magnet 306B, the electrical coil 305B, the first magnetic attraction element 303B, the second magnetic attraction element 308B, and at least part of the moveable member 301B. As also illustrated, the housing may include a first housing aperture 309B and a second housing aperture 311B and the moveable member 301B may be configured to move by passing and/or extending through the first housing aperture and/or the second housing aperture.



FIG. 4A is a front view of a first embodiment of a magnetic circuit 400A. In some implementations, such a magnetic circuit may be a magnetic actuator. In various implementations, such a magnetic circuit may be coupled to a device such as the track pad 102 of FIG. 1A.


Returning to FIG. 4A, as illustrated, the magnetic circuit 400A may include a moveable bar element 401 that is moveably coupled to a fixed bar element 402. The moveable bar element may include a soft magnet 403, a first hard magnet 404, and a second hard magnet 405. The fixed bar element may include an electrical structure 407 (such as a wire, wire insulated in plastic and/or rubber, and/or other electrical coil structure) wound around a bar structure 406 of the fixed bar element.


As illustrated, the electrical coil structure 407 may have a first section 409 that is wound in a first direction around the bar structure 406 and a second section 408 that is wound in a second direction around the bar structure. The first direction may be opposite of the second direction. Further, the electrical coil structure may include a middle section 410 where the winding in the first direction changes to the second direction. In various cases, the middle section may be attached to the bar structure, such as utilizing adhesive.


In response to application of an electrical current, the electrical coil structure 407 may generate a magnetic field. The magnetic field has a magnetic flux 414. The magnetic flux may exert a force upon any magnetic material (i.e., the first hard magnet 404 and the second hard magnet 405) within the magnetic field. The vector of the force may vary with the magnetic flux, which may vary according to the position of the magnetic material within the field. This force may cause the moveable bar element 401 to move laterally with respect to the fixed bar element 402. Such movement may result in one or more vibrations which may be provided to a user as haptic output or feedback.


As illustrated, the moveable bar element 401 may be moveably coupled to portions 412 of the fixed bar element 402 via bearings 413. As illustrated in FIG. 4B, the bearings may be positioned between first grooves 415 and second grooves 416. Movement of the bearings along the first grooves and second grooves may enable the moveable bar element to move laterally with respect to the fixed bar element.


Although the magnetic circuit 400A is illustrated and described as utilizing the bearings 413 to moveably couple the moveable bar element 401 and the fixed bar element 402, it is understood that this is an example. In other implementations, springs or other moveable attachment mechanisms may be utilized to moveably attach the moveable bar element and the fixed bar element.


Although the moveable bar element 401 has been illustrated and described above as moveable with respect to the fixed bar element 402, it is understood that this is an example. In various implementations, the bar element 402 may be moveable with respect to a fixed bar element 401.



FIG. 4C is a front view of a second embodiment of a magnetic circuit 400C. Contrasted with the first embodiment of the magnetic circuit 400A illustrated in FIGS. 4A and 4B, the magnetic circuit 400C may include an additional moveable bar element 450. The additional moveable bar element may be moveably coupled to an opposite side of the fixed bar element 402 from the moveable bar element 401. The additional moveable bar element may be moveably coupled to the fixed bar element via bearings 455.


Further contrasted with the magnetic circuit 400A illustrated in FIGS. 4A and 4B, the moveable bar element 401 of the magnetic circuit 400C may include a first mass adding element 457. The first mass adding element may be positioned between the first hard magnet 404 and the second hard magnet 405 and may function to contribute mass to movement of the first moveable bar element. In some cases, the first mass adding element may be formed from tungsten.


The additional moveable bar element 450 may include a soft magnet 451, a third hard magnet 453, and a fourth hard magnet 452. Additionally, the additional moveable bar element may include a second mass adding element 454. The second mass adding element may be positioned between the third hard magnet and the fourth hard magnet.



FIG. 4D is a front view of a third embodiment of a magnetic circuit 400D. As contrasted with the first embodiment of the magnetic circuit 400A illustrated in FIGS. 4A and 4B, the first grooves 415 and/or the second grooves 416 of the magnetic circuit 400D may include gear elements 461. Additionally, the bearings 413 (which may be cylindrical) may include gear elements 462. Interaction between the gear elements of the bearings and the gear elements of the grooves may enable the moveable bar element to move laterally with respect to the fixed bar element. Such an implementation may prevent slippage between the bearings and the grooves.


Although the magnetic circuit 400D is illustrated and described as utilizing the gear elements 461, 462, and 463 in the same magnetic circuit as the particular electrical coil structure 407, it is understood that this is an example. In other implementations the gear elements 461, 462, and 463 may be utilized to moveably couple various different moveable elements without departing from the scope of the present disclosure. For example, in some implementations the gear elements 461, 462, and 463 may be utilized to moveably couple elements such as the fixed body element 104 and the moveable body element 103 of FIGS. 1B-1E.



FIG. 4E is a front view of a fourth embodiment of a magnetic circuit 400E. As contrasted with the first embodiment of the magnetic circuit 400A illustrated in FIGS. 4A and 4B, the bearings 413 may be cubes. Further, the first grooves 415 may include curved areas 471 and 473 that curve inward toward center point 472. The second grooves 416 may be similarly curved. As such, when the moveable bar element 401 moves laterally with respect to the fixed bar element 402 due to the application of electrical current to the electrical coil structure 407, the cube bearings may roll along the corresponding curved areas. When the lateral movement is ceased, gravity and/or other forces may then cause the cube bearings to roll back along the corresponding curved areas. This may provide a restorative force that may operate to return the moveable bar element to an original position with respect to the fixed bar element after the lateral force is ceased.


The relationship between the dimensions of the cube and the dimensions of the curved areas 471, 473, 474, and/or 476 may determine whether or not the cube bearings 413 move moveable bar element 401 in a purely lateral direction or whether the cube bearings force the moveable body element to translate vertically as well as laterally.


As discussed above and illustrated in the accompanying figures, the present disclosure discloses magnetic actuators and circuits. In various embodiments, a magnetic actuator or circuit may include a moveable element that is moveably coupled to a fixed element via one or more bearings positioned between one or more grooves. In some cases the grooves may be curved. The bearings and the curves may exert a restorative force to return the first and second elements to an original position after movement. In various cases, the bearings may be spherical, cube, cylindrical, and/or include gear elements that interact with one or more gear elements of the grooves.


In some embodiments, a body element may include one or more electrical coils coplanar with a surface of the body element. In various cases, the body element may also include one or more hard magnets positioned in the center of the electrical coil that are polarized to stabilize or destabilize centering of the body element with respect to another element.


In various embodiments, a magnetic circuit may include a bar element with one or more electrical coils wrapped around the bar element. In some cases, the electrical coil may include a first section wrapped in a first direction, a second section wrapped in a second direction opposing the first direction, and a middle section that transitions between the first direction and the second direction.


In one or more embodiments, an actuator may include a fixed element with first and second side soft magnets that is moveably coupled to a moveable element. Exertion of force may cause the moveable element to move such that the moveable body element approaches and/or contacts the first or second soft side magnet. Such contact may result in a “tap,” which may be provided to a user as a tactile output. Upon contact, the moveable element may magnetically attach to the respective soft side magnet and may remain so after the force is no longer exerted until another force is exerted that detaches the moveable element and causes it to move to approach the other soft side magnet.


In other embodiments, an actuator may include a first magnetic attraction element, a second magnetic attraction element, and a moveable member including a first hard magnet, a second hard magnet, and an electrical coil. Exertion of force may cause the moveable member to move such that the first hard magnet approaches and/or contacts the first magnetic attraction element or the second hard magnet approaches and/or contacts the second magnetic attraction element. Upon contact, the respective hard magnet may magnetically attach to the respective magnetic attraction element and may remain so after the force is no longer exerted until another force is exerted that detaches the respective hard magnet and causes the moveable member to move such that the other hard magnet approaches the other magnetic attraction member.


In the present disclosure, the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.


The described disclosure may be provided as a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.


It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.


While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.

Claims
  • 1. An actuator, comprising: a fixed body element including a top structure, at least a first hard magnet and a second hard magnet having a fixed relationship with respect to the top structure, and at least a first side soft magnet and a second side soft magnet having a fixed relationship with respect to the top structure; anda moveable body element that is moveably coupled to the fixed body element and includes at least one electrical coil disposed between and spaced apart from the first side soft magnet and the second side soft magnet;wherein the moveable body element moves laterally, between the first side soft magnet and the second side soft magnet, in response to a lateral force exerted upon the moveable body element.
  • 2. The actuator of claim 1, wherein the moveable body element magnetically attaches to at least one of the first side soft magnet or the second side soft magnet upon contact.
  • 3. The actuator of claim 1, wherein applying the lateral force moves the moveable body element laterally to approach, contact, and magnetically attach to the first side soft magnet.
  • 4. The actuator of claim 3, wherein the contact of the moveable body element and the first side soft magnet is utilized to produce a tactile output for a user.
  • 5. The actuator of claim 4, wherein the tactile output is a tap.
  • 6. The actuator of claim 3, wherein the moveable body element remains magnetically attached to the first side soft magnet after application of the lateral force.
  • 7. The actuator of claim 6, wherein the moveable body element detaches from the first side soft magnet when at least one opposite lateral force is applied to the moveable body element.
  • 8. The actuator of claim 1, wherein the top structure comprises at least one soft magnet.
  • 9. An electronic device, comprising: a haptic output surface;an array of hard magnets disposed below the haptic output surface and including a first hard magnet and a second hard magnet;a soft magnet structure defining a first side soft magnet and a second side soft magnet, wherein, the first hard magnet and the second hard magnet are disposed between the first side soft magnet and the second side soft magnet; andthe first side soft magnet and the second side soft magnet have fixed relationships with respect to the haptic output surface; anda movable structure disposed below the array of hard magnets; wherein,the movable structure includes an electrical coil; anda first current induced in the electrical coil causes the movable structure to move toward the first side soft magnet.
  • 10. The electronic device of claim 9, wherein a second current induced in the electrical coil causes the movable structure to move toward the second side soft magnet.
  • 11. The electronic device of claim 9, wherein: the soft magnet structure comprises a top structure parallel to the electrical coil; andat least portions of the first side soft magnet and the second side soft magnet extend perpendicularly from the top structure.
  • 12. The electronic device of claim 11, wherein the top structure, the first side soft magnet and the second side soft magnet are portions of a single soft magnet.
  • 13. The electronic device of claim 11, wherein each of the top structure, the first side soft magnet, and the second side soft magnet is a separate soft magnet.
  • 14. The electronic device of claim 9, wherein the movable structure moves laterally between the first side soft magnet and the second side soft magnet.
  • 15. The electronic device of claim 9, wherein the movable structure magnetically attaches to the first side soft magnet upon contacting the first side soft magnet.
  • 16. The electronic device of claim 9, wherein the movable structure remains magnetically attached to the first side soft magnet after the first current is removed and until a second current is induced in the electrical coil.
  • 17. The electronic device of claim 9, further comprising: a track pad or touch pad; wherein,the track pad or touch pad defines the haptic output surface.
  • 18. The electronic device of claim 9, further comprising: a housing for a smart phone or a tablet computing device; wherein,the housing defines the haptic output surface.
  • 19. The electronic device of claim 9, wherein the haptic output surface is a surface of a wearable device.
  • 20. The electronic device of claim 9, wherein: the movable structure comprises a base;the base comprises at least one soft magnet; andthe electrical coil is attached to the base.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/025,425, filed Mar. 28, 2016, now U.S. Pat. No. 10,236,760, and entitled “Magnetic Actuators for Haptic Response,” which is a 35 U.S.C. § 371 application of PCT/US2013/062556, filed on Sep. 30, 2013, and entitled “Magnetic Actuators for Haptic Response,” the contents of which are incorporated by reference as if fully disclosed herein.

US Referenced Citations (526)
Number Name Date Kind
3001049 Didier Sep 1961 A
3390287 Sonderegger Jun 1968 A
3419739 Clements Dec 1968 A
4236132 Zissimopoulos Nov 1980 A
4412148 Klicker et al. Oct 1983 A
4414984 Zarudiansky Nov 1983 A
4490815 Umehara et al. Dec 1984 A
4695813 Nobutoki et al. Sep 1987 A
4975616 Park Dec 1990 A
5010772 Bourland Apr 1991 A
5245734 Issartel Sep 1993 A
5283408 Chen Feb 1994 A
5293161 MacDonald et al. Mar 1994 A
5317221 Kubo et al. May 1994 A
5365140 Ohya et al. Nov 1994 A
5434549 Hirabayashi et al. Jul 1995 A
5436622 Gutman et al. Jul 1995 A
5510584 Norris Apr 1996 A
5510783 Findlater et al. Apr 1996 A
5513100 Parker et al. Apr 1996 A
5587875 Sellers Dec 1996 A
5590020 Sellers Dec 1996 A
5602715 Lempicki et al. Feb 1997 A
5619005 Shibukawa et al. Apr 1997 A
5621610 Moore et al. Apr 1997 A
5625532 Sellers Apr 1997 A
5629578 Winzer et al. May 1997 A
5635928 Takagi et al. Jun 1997 A
5718418 Gugsch Feb 1998 A
5739759 Nakazawa et al. Apr 1998 A
5742242 Sellers Apr 1998 A
5783765 Muramatsu Jul 1998 A
5793605 Sellers Aug 1998 A
5812116 Malhi Sep 1998 A
5813142 Demon Sep 1998 A
5818149 Safari et al. Oct 1998 A
5896076 Van Namen Apr 1999 A
5907199 Miller May 1999 A
5951908 Cui et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5973441 Lo et al. Oct 1999 A
5982304 Selker et al. Nov 1999 A
5982612 Roylance Nov 1999 A
5995026 Sellers Nov 1999 A
5999084 Armstrong Dec 1999 A
6035257 Epperson Mar 2000 A
6069433 Lazarus et al. May 2000 A
6078308 Rosenberg et al. Jun 2000 A
6104947 Heikkila et al. Aug 2000 A
6127756 Iwaki Oct 2000 A
6135886 Armstrong Oct 2000 A
6198206 Saarmaa Mar 2001 B1
6218966 Goodwin Apr 2001 B1
6219033 Rosenberg Apr 2001 B1
6220550 McKillip, Jr. Apr 2001 B1
6222525 Armstrong Apr 2001 B1
6252336 Hall Jun 2001 B1
6342880 Rosenberg et al. Jan 2002 B2
6351205 Armstrong Feb 2002 B1
6373465 Jolly et al. Apr 2002 B2
6408187 Merriam Jun 2002 B1
6411276 Braun et al. Jun 2002 B1
6429849 An Aug 2002 B1
6437485 Johansson Aug 2002 B1
6438393 Surronen Aug 2002 B1
6444928 Okamoto et al. Sep 2002 B2
6455973 Ineson Sep 2002 B1
6465921 Horng Oct 2002 B1
6552404 Hynes Apr 2003 B1
6552471 Chandran et al. Apr 2003 B1
6557072 Osborn Apr 2003 B2
6642857 Schediwy Nov 2003 B1
6693626 Rosenberg Feb 2004 B1
6717573 Shahoian et al. Apr 2004 B1
6747400 Maichl et al. Jun 2004 B2
6809462 Pelrine et al. Oct 2004 B2
6809727 Piot et al. Oct 2004 B2
6864877 Braun et al. Mar 2005 B2
6906697 Rosenberg Jun 2005 B2
6906700 Armstrong Jun 2005 B1
6906703 Vablais et al. Jun 2005 B2
6952203 Banerjee et al. Oct 2005 B2
6954657 Bork et al. Oct 2005 B2
6963762 Kaaresoja et al. Nov 2005 B2
6965189 Menzel Nov 2005 B2
6995752 Lu Feb 2006 B2
7005811 Wakuda et al. Feb 2006 B2
7016707 Fujisawa et al. Mar 2006 B2
7022927 Hsu Apr 2006 B2
7023112 Miyamoto et al. Apr 2006 B2
7081701 Yoon et al. Jul 2006 B2
7091948 Chang et al. Aug 2006 B2
7121147 Okada Oct 2006 B2
7123948 Nielsen Oct 2006 B2
7130664 Williams Oct 2006 B1
7136045 Rosenberg et al. Nov 2006 B2
7158122 Roberts Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162928 Shank et al. Jan 2007 B2
7170498 Huang Jan 2007 B2
7176906 Williams et al. Feb 2007 B2
7180500 Marvit et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7194645 Bieswanger et al. Mar 2007 B2
7205978 Poupyrev Apr 2007 B2
7217891 Fischer et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7219561 Okada May 2007 B2
7253350 Noro et al. Aug 2007 B2
7269484 Hein Sep 2007 B2
7333604 Zernovizky et al. Feb 2008 B2
7334350 Ellis Feb 2008 B2
7348968 Dawson Mar 2008 B2
7382357 Panotopoulos et al. Jun 2008 B2
7388741 Konuma et al. Jun 2008 B2
7392066 Hapamas Jun 2008 B2
7423631 Shahoian et al. Sep 2008 B2
7446752 Goldenberg et al. Nov 2008 B2
7469155 Chu Dec 2008 B2
7469595 Kessler et al. Dec 2008 B2
7471033 Thiesen et al. Dec 2008 B2
7495358 Kobayashi et al. Feb 2009 B2
7508382 Denoue et al. Mar 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7562468 Ellis Jul 2009 B2
7569086 Chandran Aug 2009 B2
7575368 Guillaume Aug 2009 B2
7586220 Roberts Sep 2009 B2
7619498 Miura Nov 2009 B2
7639232 Grant et al. Dec 2009 B2
7641618 Noda et al. Jan 2010 B2
7647196 Kahn et al. Jan 2010 B2
7649305 Priya et al. Jan 2010 B2
7675253 Dorel Mar 2010 B2
7675414 Ray Mar 2010 B2
7679611 Schena Mar 2010 B2
7707742 Ellis May 2010 B2
7710399 Bruneau et al. May 2010 B2
7732951 Mukaide Jun 2010 B2
7737828 Yang et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7788032 Moloney Aug 2010 B2
7793429 Ellis Sep 2010 B2
7793430 Ellis Sep 2010 B2
7798982 Zets et al. Sep 2010 B2
7868489 Amemiya et al. Jan 2011 B2
7886621 Smith et al. Feb 2011 B2
7888892 McReynolds et al. Feb 2011 B2
7893922 Klinghult et al. Feb 2011 B2
7919945 Houston et al. Apr 2011 B2
7929382 Yamazaki Apr 2011 B2
7946483 Miller et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7961909 Mandella et al. Jun 2011 B2
8018105 Erixon et al. Sep 2011 B2
8031172 Kruse et al. Oct 2011 B2
8044940 Narusawa Oct 2011 B2
8069881 Cunha Dec 2011 B1
8072418 Crawford et al. Dec 2011 B2
8077145 Rosenberg et al. Dec 2011 B2
8081156 Ruettiger Dec 2011 B2
8082640 Takeda Dec 2011 B2
8084968 Murray et al. Dec 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125453 Shahoian et al. Feb 2012 B2
8141276 Ellis Mar 2012 B2
8156809 Tierling et al. Apr 2012 B2
8169401 Hardwick May 2012 B2
8174344 Yakima et al. May 2012 B2
8174372 da Costa May 2012 B2
8179027 Barta et al. May 2012 B2
8179202 Cruz-Hernandez et al. May 2012 B2
8188623 Park May 2012 B2
8205356 Ellis Jun 2012 B2
8210942 Shimabukuro et al. Jul 2012 B2
8232494 Purcocks Jul 2012 B2
8242641 Bae Aug 2012 B2
8248277 Peterson et al. Aug 2012 B2
8248278 Schlosser et al. Aug 2012 B2
8253686 Kyung et al. Aug 2012 B2
8255004 Huang et al. Aug 2012 B2
8261468 Ellis Sep 2012 B2
8264465 Grant et al. Sep 2012 B2
8270114 Argumedo et al. Sep 2012 B2
8270148 Griffith et al. Sep 2012 B2
8288899 Park et al. Oct 2012 B2
8291614 Ellis Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8315746 Cox et al. Nov 2012 B2
8339250 Je et al. Dec 2012 B2
8344834 Niiyama Jan 2013 B2
8345013 Heubel et al. Jan 2013 B2
8373549 Fadell et al. Feb 2013 B2
8378797 Pance et al. Feb 2013 B2
8378798 Bells et al. Feb 2013 B2
8378965 Gregorio et al. Feb 2013 B2
8384316 Houston et al. Feb 2013 B2
8384679 Paleczny et al. Feb 2013 B2
8388346 Rantala et al. Mar 2013 B2
8390594 Modarres et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8398570 Mortimer et al. Mar 2013 B2
8405618 Colgate et al. Mar 2013 B2
8411058 Wong et al. Apr 2013 B2
8446264 Tanase May 2013 B2
8451255 Weber et al. May 2013 B2
8452345 Lee et al. May 2013 B2
8461951 Gassmann et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8471690 Hennig et al. Jun 2013 B2
8487759 Hill Jul 2013 B2
8515398 Song et al. Aug 2013 B2
8542134 Peterson et al. Sep 2013 B2
8545322 George et al. Oct 2013 B2
8547341 Takashima et al. Oct 2013 B2
8547350 Anglin et al. Oct 2013 B2
8552859 Pakula et al. Oct 2013 B2
8570291 Motomura Oct 2013 B2
8575794 Lee et al. Nov 2013 B2
8587955 DiFonzo et al. Nov 2013 B2
8593409 Heubel Nov 2013 B1
8598893 Camus Dec 2013 B2
8599047 Schlosser et al. Dec 2013 B2
8599152 Wurtenberger et al. Dec 2013 B1
8600354 Esaki Dec 2013 B2
8614431 Huppi et al. Dec 2013 B2
8621348 Ramsay et al. Dec 2013 B2
8629843 Steeves et al. Jan 2014 B2
8633916 Bernstein et al. Jan 2014 B2
8674941 Casparian et al. Mar 2014 B2
8680723 Subramanian Mar 2014 B2
8681092 Harada et al. Mar 2014 B2
8682396 Yang et al. Mar 2014 B2
8686952 Burrough et al. Apr 2014 B2
8710966 Hill Apr 2014 B2
8717309 Almalki May 2014 B2
8723813 Park et al. May 2014 B2
8733540 Woiler et al. May 2014 B2
8735755 Peterson et al. May 2014 B2
8760273 Casparian et al. Jun 2014 B2
8760413 Peterson et al. Jun 2014 B2
8780060 Maschmeyer et al. Jul 2014 B2
8787006 Golko et al. Jul 2014 B2
8797152 Henderson et al. Aug 2014 B2
8798534 Rodriguez et al. Aug 2014 B2
8803842 Wakasugi et al. Aug 2014 B2
8816981 Kai et al. Aug 2014 B2
8836502 Culbert et al. Sep 2014 B2
8857248 Shih et al. Oct 2014 B2
8860562 Hill Oct 2014 B2
8861776 Lastrucci Oct 2014 B2
8866600 Yang et al. Oct 2014 B2
8890666 Parker et al. Nov 2014 B2
8890668 Pance et al. Nov 2014 B2
8918215 Bosscher et al. Dec 2014 B2
8928621 Ciesla et al. Jan 2015 B2
8947383 Ciesla et al. Feb 2015 B2
8948821 Newham et al. Feb 2015 B2
8952937 Shih et al. Feb 2015 B2
8970534 Adachi et al. Mar 2015 B2
8976141 Myers et al. Mar 2015 B2
9008730 Kim et al. Apr 2015 B2
9012795 Niu Apr 2015 B2
9013426 Cole et al. Apr 2015 B2
9019088 Zawacki et al. Apr 2015 B2
9024738 Van Schyndel et al. May 2015 B2
9035887 Prud'Hommeaux et al. May 2015 B1
9072576 Nishiura Jul 2015 B2
9083821 Hughes Jul 2015 B2
9092129 Abdo et al. Jul 2015 B2
9098984 Heubel et al. Aug 2015 B2
9098991 Park et al. Aug 2015 B2
9117347 Matthews Aug 2015 B2
9122325 Peshkin et al. Sep 2015 B2
9131039 Behles Sep 2015 B2
9134834 Reshef Sep 2015 B2
9141225 Cok et al. Sep 2015 B2
9158379 Cruz-Hernandez et al. Oct 2015 B2
9178509 Bernstein Nov 2015 B2
9189932 Kerdemelidis et al. Nov 2015 B2
9201458 Hunt et al. Dec 2015 B2
9202355 Hill Dec 2015 B2
9219401 Kim et al. Dec 2015 B2
9235267 Burrough et al. Jan 2016 B2
9274601 Faubert et al. Mar 2016 B2
9274602 Garg et al. Mar 2016 B2
9274603 Modarres et al. Mar 2016 B2
9275815 Hoffmann Mar 2016 B2
9285923 Liao et al. Mar 2016 B2
9293054 Bruni et al. Mar 2016 B2
9300181 Maeda et al. Mar 2016 B2
9310906 Yumiki et al. Apr 2016 B2
9310950 Takano et al. Apr 2016 B2
9317116 Ullrich et al. Apr 2016 B2
9317118 Puskarich Apr 2016 B2
9317154 Perlin et al. Apr 2016 B2
9318942 Sugita et al. Apr 2016 B2
9325230 Yamada et al. Apr 2016 B2
9330544 Levesque et al. May 2016 B2
9357052 Ullrich May 2016 B2
9360944 Pinault Jun 2016 B2
9367238 Tanada Jun 2016 B2
9380145 Tartz et al. Jun 2016 B2
9390599 Weinberg Jul 2016 B2
9396434 Rothkopf Jul 2016 B2
9405369 Modarres et al. Aug 2016 B2
9411423 Heubel Aug 2016 B2
9417695 Griffin et al. Aug 2016 B2
9430042 Levin Aug 2016 B2
9448628 Tan et al. Sep 2016 B2
9448713 Cruz-Hernandez et al. Sep 2016 B2
9449476 Lynn Sep 2016 B2
9452268 Badaye et al. Sep 2016 B2
9454239 Elias et al. Sep 2016 B2
9467033 Jun et al. Oct 2016 B2
9468846 Terrell et al. Oct 2016 B2
9471172 Sirois Oct 2016 B2
9477342 Daverman et al. Oct 2016 B2
9480947 Jiang et al. Nov 2016 B2
9501912 Hayskjold et al. Nov 2016 B1
9542028 Filiz et al. Jan 2017 B2
9544694 Abe et al. Jan 2017 B2
9564029 Morrell et al. Feb 2017 B2
9576445 Cruz-Hernandez Feb 2017 B2
9595659 Kim Mar 2017 B2
9600070 Chatterjee et al. Mar 2017 B2
9608506 Degner et al. Mar 2017 B2
9622214 Ryu Apr 2017 B2
9640048 Hill May 2017 B2
9652040 Martinez et al. May 2017 B2
9659482 Yang et al. May 2017 B2
9665198 Kies et al. May 2017 B2
9692286 Endo et al. Jun 2017 B2
9594450 Lynn et al. Jul 2017 B2
9696803 Curz-Hernandez et al. Jul 2017 B2
9727157 Ham et al. Aug 2017 B2
9733704 Cruz-Hernandez et al. Aug 2017 B2
9746945 Sheynblat et al. Aug 2017 B2
9778743 Grant et al. Oct 2017 B2
9779592 Hoen Oct 2017 B1
9785251 Martisauskas Oct 2017 B2
9823833 Grant et al. Nov 2017 B2
9830782 Morrell et al. Nov 2017 B2
9831871 Lee et al. Nov 2017 B2
9836123 Gipson et al. Dec 2017 B2
9846484 Shah Dec 2017 B2
9857872 Terlizzi et al. Jan 2018 B2
9870053 Modarres et al. Jan 2018 B2
9886093 Moussette et al. Feb 2018 B2
9891708 Cruz-Hernandez et al. Feb 2018 B2
9904393 Frey et al. Feb 2018 B2
9911553 Bernstein Mar 2018 B2
9928950 Lubinski et al. Mar 2018 B2
9934661 Hill Apr 2018 B2
9970757 Das et al. May 2018 B2
9990099 Ham et al. Jun 2018 B2
9997306 Bernstein Jun 2018 B2
10013058 Puskarich et al. Jul 2018 B2
10032550 Zhang Jul 2018 B1
10038361 Hajati et al. Jul 2018 B2
10039080 Miller et al. Jul 2018 B2
10061386 Frescas et al. Aug 2018 B2
10062832 Caraveo et al. Aug 2018 B2
10067585 Kim Sep 2018 B2
10069392 Degner et al. Sep 2018 B2
10108151 Cardinali et al. Oct 2018 B2
10120446 Pance et al. Nov 2018 B2
10126817 Morrell et al. Nov 2018 B2
10127778 Hajati et al. Nov 2018 B2
10133352 Lee et al. Nov 2018 B2
10139907 Billington Nov 2018 B2
10139959 Butler et al. Nov 2018 B2
10152116 Wang et al. Dec 2018 B2
10198097 Lynn et al. Feb 2019 B2
10204494 Do et al. Feb 2019 B2
10236760 Moussette et al. Mar 2019 B2
10338682 Heubel et al. Jul 2019 B2
10345905 McClure et al. Jul 2019 B2
10367950 Davis et al. Jul 2019 B2
10444834 Vescovi Oct 2019 B2
10444841 Nakamura Oct 2019 B2
20020194284 Haynes Dec 2002 A1
20030210259 Liu Nov 2003 A1
20040021663 Suzuki et al. Feb 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20050057528 Kleen Mar 2005 A1
20050107129 Kaewell et al. May 2005 A1
20050110778 Ben Ayed May 2005 A1
20050118922 Endo Jun 2005 A1
20050217142 Ellis Oct 2005 A1
20050237306 Klein et al. Oct 2005 A1
20050248549 Dietz et al. Nov 2005 A1
20050258715 Schlabach Nov 2005 A1
20060014569 DelGiorno Jan 2006 A1
20060154674 Landschaft et al. Jul 2006 A1
20060209037 Wang et al. Sep 2006 A1
20060239746 Grant Oct 2006 A1
20060252463 Liao Nov 2006 A1
20070032270 Orr Feb 2007 A1
20070043725 Hotelling et al. Feb 2007 A1
20070099574 Wang May 2007 A1
20070152974 Kim et al. Jul 2007 A1
20070168430 Brun et al. Jul 2007 A1
20070178942 Sadler et al. Aug 2007 A1
20070188450 Hernandez et al. Aug 2007 A1
20080084384 Gregorio et al. Apr 2008 A1
20080165148 Williamson Jul 2008 A1
20080181501 Faraboschi Jul 2008 A1
20080181706 Jackson Jul 2008 A1
20080192014 Kent et al. Aug 2008 A1
20080204428 Pierce et al. Aug 2008 A1
20080255794 Levine Oct 2008 A1
20090002328 Ullrich et al. Jan 2009 A1
20090015560 Robinson et al. Jan 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090120105 Ramsay et al. May 2009 A1
20090128503 Grant et al. May 2009 A1
20090135142 Fu et al. May 2009 A1
20090167702 Nurmi Jul 2009 A1
20090218148 Hugeback et al. Sep 2009 A1
20090225046 Kim et al. Sep 2009 A1
20090236210 Clark et al. Sep 2009 A1
20090267892 Faubert Oct 2009 A1
20090291670 Sennett et al. Nov 2009 A1
20100020036 Hui et al. Jan 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100079264 Hoellwarth Apr 2010 A1
20100089735 Takeda et al. Apr 2010 A1
20100110018 Faubert et al. May 2010 A1
20100141408 Doy et al. Jun 2010 A1
20100141606 Bae et al. Jun 2010 A1
20100148944 Kim et al. Jun 2010 A1
20100152620 Ramsay et al. Jun 2010 A1
20100164894 Kim et al. Jul 2010 A1
20100188422 Shingai et al. Jul 2010 A1
20100231508 Cruz-Hernandez et al. Sep 2010 A1
20100265197 Purdy Oct 2010 A1
20100328229 Weber et al. Dec 2010 A1
20110007023 Abrahamsson et al. Jan 2011 A1
20110053577 Lee et al. Mar 2011 A1
20110107958 Pance et al. May 2011 A1
20110121765 Anderson et al. May 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110148608 Grant et al. Jun 2011 A1
20110156539 Park et al. Jun 2011 A1
20110157052 Lee et al. Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110216013 Siotis Sep 2011 A1
20110248948 Griffin et al. Oct 2011 A1
20110260988 Colgate et al. Oct 2011 A1
20110263200 Thornton et al. Oct 2011 A1
20110291950 Tong Dec 2011 A1
20110304559 Pasquero Dec 2011 A1
20120075198 Sulem et al. Mar 2012 A1
20120092263 Peterson et al. Apr 2012 A1
20120126959 Zarrabi et al. May 2012 A1
20120133494 Cruz-Hernandez et al. May 2012 A1
20120139844 Ramstein et al. Jun 2012 A1
20120206248 Biggs Aug 2012 A1
20120256848 Madabusi Srinivasan Oct 2012 A1
20120274578 Snow et al. Nov 2012 A1
20120280927 Ludwig Nov 2012 A1
20120319987 Woo Dec 2012 A1
20120327006 Israr et al. Dec 2012 A1
20130027345 Binzel Jan 2013 A1
20130033967 Chuang et al. Feb 2013 A1
20130043987 Kasama et al. Feb 2013 A1
20130058816 Kim Mar 2013 A1
20130106699 Babatunde May 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130207793 Weaber et al. Aug 2013 A1
20130217491 Hilbert et al. Aug 2013 A1
20130228023 Drasnin et al. Sep 2013 A1
20130261811 Yagi et al. Oct 2013 A1
20130300590 Dietz et al. Nov 2013 A1
20140082490 Jung et al. Mar 2014 A1
20140085065 Biggs et al. Mar 2014 A1
20140143785 Mistry et al. May 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140197936 Biggs et al. Jul 2014 A1
20140232534 Birnbaum et al. Aug 2014 A1
20140267076 Birnbaum et al. Sep 2014 A1
20150005039 Liu et al. Jan 2015 A1
20150040005 Faaborg Feb 2015 A1
20150098309 Adams et al. Apr 2015 A1
20150169059 Behles et al. Jun 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150205355 Yairi Jul 2015 A1
20150205417 Yairi et al. Jul 2015 A1
20150296480 Kinsey et al. Oct 2015 A1
20160103544 Filiz et al. Apr 2016 A1
20160206921 Szabados et al. Jul 2016 A1
20160216766 Puskarich Jul 2016 A1
20160241119 Keeler Aug 2016 A1
20160259480 Augenbergs et al. Sep 2016 A1
20160306423 Uttermann et al. Oct 2016 A1
20160371942 Smith, IV et al. Dec 2016 A1
20170038905 Bijamov et al. Feb 2017 A1
20170070131 Degner et al. Mar 2017 A1
20170090667 Abdollahian et al. Mar 2017 A1
20170153703 Yun et al. Jun 2017 A1
20170192508 Lim et al. Jul 2017 A1
20170242541 Iuchi et al. Aug 2017 A1
20170255295 Tanemura et al. Sep 2017 A1
20170285747 Chen Oct 2017 A1
20170311282 Miller et al. Oct 2017 A1
20170315618 Ullrich et al. Nov 2017 A1
20170345992 Noguchi Nov 2017 A1
20170357325 Yang et al. Dec 2017 A1
20170364158 Wen et al. Dec 2017 A1
20180052550 Zhang et al. Feb 2018 A1
20180059793 Hajati Mar 2018 A1
20180060941 Yang et al. Mar 2018 A1
20180075715 Morrell et al. Mar 2018 A1
20180081441 Pedder et al. Mar 2018 A1
20180174409 Hill Jun 2018 A1
20180203513 Rihn Jul 2018 A1
20180302881 Miller et al. Oct 2018 A1
20190027674 Zhang et al. Jan 2019 A1
20190159170 Miller et al. May 2019 A1
20190250713 Chen Aug 2019 A1
20200026359 Uttermann et al. Jan 2020 A1
20200027320 Hill Jan 2020 A1
Foreign Referenced Citations (121)
Number Date Country
2015100710 Jul 2015 AU
2016100399 May 2016 AU
2355434 Feb 2002 CA
1324030 Nov 2001 CN
1692371 Nov 2005 CN
1817321 Aug 2006 CN
101120290 Feb 2008 CN
101409164 Apr 2009 CN
101763192 Jun 2010 CN
101903848 Dec 2010 CN
101938207 Jan 2011 CN
102025257 Apr 2011 CN
101057656 May 2011 CN
201829004 May 2011 CN
102163076 Aug 2011 CN
102246122 Nov 2011 CN
102315747 Jan 2012 CN
102591512 Jul 2012 CN
102667681 Sep 2012 CN
102713805 Oct 2012 CN
102754054 Oct 2012 CN
102768593 Nov 2012 CN
102844972 Dec 2012 CN
102915111 Feb 2013 CN
103019569 Apr 2013 CN
103154867 Jun 2013 CN
103155410 Jun 2013 CN
103181090 Jun 2013 CN
103218104 Jul 2013 CN
103278173 Sep 2013 CN
103416043 Nov 2013 CN
103440076 Dec 2013 CN
103567135 Feb 2014 CN
103970339 Aug 2014 CN
104049746 Sep 2014 CN
104220963 Dec 2014 CN
104917885 Sep 2015 CN
104956244 Sep 2015 CN
105556268 May 2016 CN
208013890 Oct 2018 CN
19517630 Nov 1996 DE
10330024 Jan 2005 DE
102009038103 Feb 2011 DE
102011115762 Apr 2013 DE
0483955 May 1992 EP
1047258 Oct 2000 EP
1686776 Aug 2006 EP
2060967 May 2009 EP
2073099 Jun 2009 EP
2194444 Jun 2010 EP
2207080 Jul 2010 EP
2264562 Dec 2010 EP
2315186 Apr 2011 EP
2374430 Oct 2011 EP
2395414 Dec 2011 EP
2461228 Jun 2012 EP
2631746 Aug 2013 EP
2434555 Oct 2013 EP
H05301342 Nov 1993 JP
2002199689 Jul 2002 JP
2002102799 Sep 2002 JP
200362525 Mar 2003 JP
2003527046 Sep 2003 JP
200494389 Mar 2004 JP
2004236202 Aug 2004 JP
2006150865 Jun 2006 JP
3831410 Oct 2006 JP
2007519099 Jul 2007 JP
200818928 Jan 2008 JP
2010536040 Nov 2010 JP
2010272903 Dec 2010 JP
2011523840 Aug 2011 JP
2012135755 Jul 2012 JP
2013149124 Aug 2013 JP
2014002729 Jan 2014 JP
2014509028 Apr 2014 JP
2014235133 Dec 2014 JP
2014239323 Dec 2014 JP
2015153406 Aug 2015 JP
2015228214 Dec 2015 JP
2016095552 May 2016 JP
20050033909 Apr 2005 KR
1020100046602 May 2010 KR
1020110101516 Sep 2011 KR
20130024420 Mar 2013 KR
200518000 Nov 2007 TW
200951944 Dec 2009 TW
201145336 Dec 2011 TW
201218039 May 2012 TW
201425180 Jul 2014 TW
WO 97016932 May 1997 WO
WO 00051190 Aug 2000 WO
WO 01059558 Aug 2001 WO
WO 01089003 Nov 2001 WO
WO 02073587 Sep 2002 WO
WO 03038800 May 2003 WO
WO 03100550 Dec 2003 WO
WO 06057770 Jun 2006 WO
WO 07114631 Oct 2007 WO
WO 08075082 Jun 2008 WO
WO 09038862 Mar 2009 WO
WO 09068986 Jun 2009 WO
WO 09097866 Aug 2009 WO
WO 09122331 Oct 2009 WO
WO 09150287 Dec 2009 WO
WO 10085575 Jul 2010 WO
WO 10087925 Aug 2010 WO
WO 11007263 Jan 2011 WO
WO 12052635 Apr 2012 WO
WO 12129247 Sep 2012 WO
WO 13069148 May 2013 WO
WO 13150667 Oct 2013 WO
WO 13169299 Nov 2013 WO
WO 13169302 Nov 2013 WO
WO 13173838 Nov 2013 WO
WO 13186846 Dec 2013 WO
WO 13186847 Dec 2013 WO
WO 14018086 Jan 2014 WO
WO 14098077 Jun 2014 WO
WO 15023670 Feb 2015 WO
WO 16141482 Sep 2016 WO
Non-Patent Literature Citations (10)
Entry
Actuator definition downloaded from http://www.thefreedictionary.com/actuator on May 3, 2018, 2 pages.
Astronomer's Toolbox, “The Electromagnetic Spectrum,” http://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html, updated Mar. 2013, 4 pages.
Hasser et al., “Preliminary Evaluation of a Shape-Memory Alloy Tactile Feedback Display,” Advances in Robotics, Mechantronics, and Haptic Interfaces, ASME, DSC—vol. 49, pp. 73-80, 1993.
Hill et al., “Real-time Estimation of Human Impedance for Haptic Interfaces,” Stanford Telerobotics Laboratory, Department of Mechanical Engineering, Stanford University, Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, Utah, Mar. 18-20, 2009, pp. 440-445.
Kim et al., “Tactile Rendering of 3D Features on Touch Surfaces,” UIST '13, Oct. 8-11, 2013, St. Andrews, United Kingdom, 8 pages.
Lee et al, “Haptic Pen: Tactile Feedback Stylus for Touch Screens,” Mitsubishi Electric Research Laboratories, http://wwwlmerl.com, 6 pages, Oct. 2004.
Nakamura, “A Torso Haptic Display Based on Shape Memory Alloy Actuators,” Massachusetts Institute of Technology, 2003, pp. 1-123.
U.S. Appl. No. 16/391,100, filed Apr. 22, 2019, Chen.
PuntoCellulare, “LG-GD910 3G Watch Phone,” YouTube (http://www.youtube.com/watch?v+HcCI87KIELM), Jan. 8, 2009, 9 pages.
Sullivan, Mark, “This Android Wear Update Turns Your Device into The Dick Tracy Watch,” Fast Company (https://www.fastcompany.com/3056319/this-android-wear-update-turns-your-device-into-the-dick-tracy-watch), Feb. 4, 2016, 9 pages.
Related Publications (1)
Number Date Country
20190214895 A1 Jul 2019 US
Continuations (1)
Number Date Country
Parent 15025425 US
Child 16352784 US