The application relates generally to vibration attenuation systems. The application relates more specifically to vibration attenuation systems and methods using magnetic attenuation.
Vibration is one of the most difficult characteristics to manage in an apparatus, such as an apparatus including a control system. For example, a vapor compression system used in heating, ventilation and air conditioning and refrigeration (HVAC&R) would greatly benefit from a reduction or dampening of vibrations and associated noise generated during operation of the system. Currently, vapor compression systems use expensive mufflers or material applied to component surfaces of the vapor compression system, sometimes referred to as lagging material, to achieve vibration/noise reduction. However, in addition to their purchase cost, mufflers or lagging materials can restrict heating or cooling, as well as air flow in the vapor compression systems, thereby reducing operating efficiencies.
Accordingly, an attenuation system that operates without these associated disadvantages is highly desirable.
The present invention is directed to an apparatus including a magnetic attenuator substantially surrounding a non-rotatable portion of the apparatus. The magnetic attenuator achieves a reduction of vibration associated with operation of the apparatus during operation of the magnetic attenuator.
The present invention is directed to a method of reducing noise associated with an apparatus including installing a magnetic attenuator substantially surrounding a non-rotatable portion of the apparatus.
Compressor 38 compresses a refrigerant vapor and delivers the vapor to condenser 26 through a discharge line 68. Compressor 38 may be any suitable type of compressor including screw compressor, reciprocating compressor, scroll compressor, rotary compressor or other type of compressor. System 10 may have more than one compressor 38 connected in one or more refrigerant circuits.
Refrigerant vapor delivered to condenser 26 enters into a heat exchange relationship with a fluid, for example, air or water, and undergoes a phase change to a refrigerant liquid as a result of the heat exchange relationship with the fluid. The condensed liquid refrigerant from condenser 26 flows to evaporator 42. Refrigerant vapor in condenser 26 enters into the heat exchange relationship with water, flowing through a heat exchanger coil 52 connected to a cooling tower 54. Alternatively, the refrigerant vapor is condensed in a coil with heat exchange relationship with air blowing across the coil. The refrigerant vapor in condenser 26 undergoes a phase change to a refrigerant liquid as a result of the heat exchange relationship with the water or air in heat exchanger coil 52.
Evaporator 42 may include a heat exchanger coil 62 having a supply line 56 and a return line 58 connected to a cooling load 60. Heat exchanger coil 62 can include a plurality of tube bundles within evaporator 42. A secondary liquid, for example, water, ethylene, calcium chloride brine, sodium chloride brine, or any other suitable secondary liquid travels into evaporator 42 via return line 58 and exits evaporator 42 via supply line 56. The liquid refrigerant in evaporator 42 enters into a heat exchange relationship with the secondary liquid in heat exchanger coil 62 to chill the temperature of the secondary liquid in heat exchanger coil 62. The refrigerant liquid in evaporator 42 undergoes a phase change to a refrigerant vapor as a result of the heat exchange relationship with the secondary liquid in heat exchanger coil 62. The vapor refrigerant in evaporator 42 exits evaporator 42 and returns to compressor 38 by a suction line to complete the cycle. While system 10 has been described in terms of condenser 26 and evaporator 42, any suitable configuration of condenser 26 and evaporator 42 can be used in system 10, provided that the appropriate phase change of the refrigerant in condenser 26 and evaporator 42 is obtained.
In one embodiment, chiller system capacity may be controlled by adjusting the speed of a compressor motor driving compressor 38, using a variable speed drive (VSD).
To drive compressor 38, system 10 includes a motor or drive mechanism 66 for compressor 38. While the term “motor” is used with respect to the drive mechanism for compressor 38, the term “motor” is not limited to a motor, but may encompass any component that may be used in conjunction with the driving of compressor 38, such as a variable speed drive and a motor starter. Motor or drive mechanism 66 may be an electric motor and associated components. Other drive mechanisms, such as steam or gas turbines or engines and associated components may be used to drive compressor 38.
The control panel executes a control system that uses a control algorithm or multiple control algorithms or software to control operation of system 10 and to determine and implement an operating configuration for the inverters of a VSD (not shown) to control the capacity of compressor 38 or multiple compressors in response to a particular output capacity requirement for system 10. The control algorithm or multiple control algorithms may be computer programs or software stored in non-volatile memory 76 of control panel 50 and may include a series of instructions executable by microprocessor 70. The control algorithm may be embodied in a computer program or multiple computer programs and may be executed by microprocessor 70, the control algorithm may be implemented and executed using digital and/or analog hardware (not shown). If hardware is used to execute the control algorithm, the corresponding configuration of control panel 50 may be changed to incorporate the necessary components and to remove any components that may no longer be required.
Chiller system 10, as illustrated in
To eliminate or minimize the undesirable sound, noise attenuation devices or systems can be installed/used. One example of a noise attenuation system is a dissipative or absorptive muffler system typically located at the discharge of the compressors. However, the use of muffler systems to attenuate sound can be expensive, depending upon the frequencies that must be attenuated by the muffler system. Typically, the lower the frequency of the sound to be attenuated, the greater the cost and size of the muffler system. In addition to the cost of the muffler system, the muffler system can restrict heating or cooling, as well as air flow in the vapor compression systems, thereby reducing operating efficiencies.
Alternately, an attenuator 148, such as in the form of electromagnetic bearings and utilizing active magnetic technology, as contained in U.S. application Ser. No. 12/189,471, assigned to Applicant and incorporated by reference in its entirety, may be installed/used for noise attenuation. An attenuator operating with magnetic technology, for purposes herein, may be referred to as a magnetic attenuator, an electromagnetic attenuator, an attenuator system, an attenuator, or the like. As further shown in
Attenuator 148 may operate in either an active or passive mode in order to provide noise attenuation by exerting a force on tube 144. While generally shown in
It is to be understood that the electromagnetic attenuator may be utilized in applications totally unrelated to HVAC&R, which applications may or may not involve the flow of fluids, including systems susceptible to vibration/noise resulting from resonant frequencies, such as by motor operation or other sources. For example, in addition to compressor and piping systems, the electromagnetic attenuator may be utilized for use with line shafts, blowers, fans or other system components. The attenuator would also be particularly desirable in variable speed drive applications where an infinite numbers of resonances can be encountered. In an active device, feedback from the vibrating element could adjust to attenuate any number of resonances where a fixed muffler will not be as effective.
In another embodiment, an attenuator system may include more than one electromagnetic attenuator, such as a screw compressor having an outlet tube that bifurcates into multiple tubes. In a further embodiment, the multiple attenuators may be supported from a single base. In another embodiment, more than one attenuator may be used, in which at least one attenuator operates in an active mode, or alternately, at least one attenuator operates in a passive mode, irrespective of the support arrangement of the attenuators.
In yet another embodiment, the attenuator may not be structurally supported. That is, instead of attenuator 148 being structurally secured by a base, such as base 156 in
While only certain features and embodiments of the invention have been shown and described, many modifications and changes may occur to those skilled in the art (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters (e.g., temperatures, pressures, etc.), mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention. Furthermore, in an effort to provide a concise description of the exemplary embodiments, all features of an actual implementation may not have been described (i.e., those unrelated to the presently contemplated best mode of carrying out the invention, or those unrelated to enabling the claimed invention). It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure, without undue experimentation.
This application claims priority from and the benefit of U.S. Provisional Application No. 61/443,832, entitled MAGNETIC ATTENUATOR, filed Feb. 17, 2011, which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/023269 | 1/31/2012 | WO | 00 | 8/1/2013 |
Number | Date | Country | |
---|---|---|---|
61443832 | Feb 2011 | US |