The present invention relates to a magnetic baffle insert for a basket strainer, and more particularly to a baffled structure that contains a magnet for removing metal particles within a fluid passing through the basket strainer.
Basket strainers are used for protecting pumps, compressors, turbines, meters, automatic valves, sprinkler heads, nozzles, steam traps, heat exchangers, meters, and other pipeline equipment. The strainer mechanically removes solids from a flowing fluid with a perforated, mesh, or wedge wire straining element. The solids are retained in the straining element, allowing the fluids to flow therethrough and be passed to downstream equipment. After a certain period of time, the basket strainer, which may be one of a plurality of basket strainers arranged in parallel, is taken offline to remove the retained debris in order to avoid excess pressure drop associated with the collection of solids in the straining element.
Pumps with motors that utilize magnets are very efficient and thus desirable in many applications. However, while the pumps may be efficient, the magnets in the pump attract fine metal particles, such as iron oxides, that are in the fluid. The fine metal particles stick to the pump elements, such as the impellers, negatively impacting the pump's performance. These fine particles have always been present in the fluid but have not impacted the performance of non-magnetic pumps.
The pores of conventionally used straining elements are typically too large to efficiently remove these fine metal particles from the fluid. Accordingly, some basket strainers utilize magnets to attract the metal particles. While presumably effective for their intended purposes, when utilized in traditional basket strainers, the magnets are not easily removed without modifying the existing basket strainer equipment. Additionally, some configurations do not allow for the magnets to be removed and magnetic debris to be removed from the magnetic surfaces in a quick and efficient manner. Furthermore, the fluid is often flowing too quickly for the magnet to attract and retain the metal particles.
Therefore, it would be desirable to provide a basket strainer that allows for magnetic particles to be more effectively and efficiently collected and removed. It would also be desirable if such a basket strainer provided such a feature without requiring the strainer to be taken offline for an extended period of time.
A basket strainer insert has been invented which includes one or more magnets that are configured to be housed in a body without contacting the process fluid. A drywell is used to house the magnets. A baffle extends outwardly from the body and is secured in place by a collar. The baffle is selectively removable from the body, which allows magnetic material to be wiped away before the basket strainer insert is put back into the straining element and the basket strainer is returned to service. Thus, the present basket strainer provides for magnetic particles in the fluid to be collected and removed in an effective and effective manner. Baffles having lobes are used to reduce the flow rate of the fluid so that small mass iron containing particles in the fluid may be attracted and captured by the magnetic field.
Accordingly, in an aspect of the present invention, the present invention may be generally characterized as providing a basket strainer insert having: a body with a first end, a second end, and an intermediate portion; at least one magnet disposed in the body and configured to remove particles from a fluid, the first end of the body configured to selectively open to allow for removal of the at least one magnet from the body; and a baffle slidably disposed on the intermediate portion of the body, the baffle comprising a collar disposed around the body and at least one lobe attached to the collar. The body may have a length that is greater than a length of the baffle. The baffle may have a width that is between one and four times greater than a width of the body. Each of the at least one lobe may include an upper portion and a lower portion. The collar of the baffle may be mounted to the intermediate portion of the body. The upper portion of the lower portion of each lobe may be symmetrical along a longitudinal plane of the baffle. A width of the baffle may be greater than a width of the body. Each of the at least one lobe may have an elongate edge that is separated from a further elongate edge by a gap of between about 2° and about 10° in relation to a longitudinal axis of the body. The at least one lobe may include two lobes, and each lobe may have a circumference extending between about 160° and about 178° in relation to the longitudinal axis of the body.
In another aspect, the present invention may be characterized, broadly, as providing a basket strainer insert which has: a body having a first end, a second end, and an elongate intermediate portion, the body having a cavity configured to house a plurality of magnets; and a baffle removably attached to the elongate intermediate portion. A width of the baffle is greater than a width of the body. The baffle may include a collar having a substantially cylindrical shape. The baffle may include two lobes attached to the collar, with each lobe having an upper portion and a lower portion. The two lobes may be symmetrical along a longitudinal axis. The two lobes may be symmetrical along a transverse axis. The collar and the two lobes may be joined by curved portions integrally formed with the collar. The upper and lower portions may be joined by an elongate flat portion.
In a further another aspect, the present invention may be characterized, generally, as providing a basket strainer which has: a housing; an inlet for a fluid disposed on a first side of the housing; an outlet for a cleaned fluid disposed on a second side of the housing; a removable cover disposed a top of the housing; a straining element disposed inside the housing; a drain disposed on a bottom of the housing; and a basket strainer insert configured to fit between the straining element and the removable cover of a basket strainer. The basket strainer insert includes a baffle and one or more magnets. A width of the baffle may be greater than a width of the body. The baffle may be removably connected to a body containing the one or more magnets. The baffle may be a hollow body with a plurality of apertures. The one or more magnets may be disposed within the hollow body.
These and other aspects and embodiments of the present invention will be appreciated by those of ordinary skill in the art based upon the following description of the drawings and detailed description of the preferred embodiments.
The attached drawings will make it possible to understand how the invention can be produced and practiced, in which:
As mentioned above, a new basket strainer insert has been invented which includes a magnet and a baffle which may be removably mounted to a body containing the magnet.
Accordingly, with reference the attached drawings, one or more embodiments of the present invention will now be described with the understanding that the described embodiments are merely preferred and are not intended to be limiting.
With reference to
The basket strainer 10 also includes a straining element 14. Inside of the housing 12 is a cavity 16 which houses the straining element 14. The housing 12 includes an inlet 18 to the cavity 16, configured to receive a fluid, disposed at a first end 20 of the housing 12. An outlet 22 from the cavity 16, configured to provide a cleaned fluid, is disposed at a second end 24 of the housing 12. The inlet 18 and outlet 22 of the housing 12 are both generally circular and have an axis A1 extending through the centers of the inlet 18 and the outlet 22.
The housing 12 also includes a drain 26 that is disposed in a portion of the cavity 16 that houses the straining element 14. The drain 26 is positioned at a lower end of the cavity 16 so that retained liquid will collect at the drain 26 under the influence of gravity. A ball valve (not shown) may be disposed in the drain 26. The ball valve allows for liquid and any debris to drain from the housing 12 when the strainer is taken offline.
The basket strainer 10 has a lid 30 that is affixed to the housing 12 using a plurality of bolts 31. However, other hardware could be used to secure the lid 30 to the housing 12 including eye bolt clamps, sanitary clamps, or assorted types of flanges known in the art. An optional vent 28 may be provided in the lid 30, having a further ball valve (not shown).
A longitudinal axis A2 of the housing 12 is coincident with the longitudinal axis A3 of the straining element 14 and extends from a center of the lid 30 to a center of the bottom portion of the housing 12. A lifting eye 32 may be disposed in the center of the lid 30.
In the depicted embodiment, the removable cover plate or lid 30 has the lifting eye 32, but a handle or a davit for lifting and moving the lid out of the way to access the straining element 14, which is a strainer basket, may be utilized.
Various materials can be used for the straining element 14 including carbon steel, stainless steel, monel, HASTELLOY® B, HASTELLOY® C, Alloy 20, nickel, brass, copper, galvanized steel, INCOLOY®, INCONEL®, titanium, aluminum, and plastic, to name a few. The straining element 14 can also be lined with various coatings to minimize corrosion, such as epoxy, asphalt, polytetrafluoroethylene, vinyl, polychlorotrifluoroethene, rubber, neoprene, baked phenolic, and plating with zinc, cadmium, nickel, galvanizing, etc.
One consideration in the selection of a straining element 14 material is the size of the perforations, mesh or wedge wire opening used in the making of the straining element 14 based upon the size and quantity of particles which can pass through downstream equipment without causing damage to the equipment. The use of smaller holes than those actually required, can lead to too-frequent cleaning, excessive pressure drops, and screens constructed of thinner metal which will withstand less pressure differential. Generally, stainless steel perforated metal may be typically obtained in a thickness which is one gage thickness less than the diameter of the punched holes. Carbon steel and brass can be obtained in approximately the same thickness as the hole diameter. A common way to accomplish fine straining in large straining elements 14 is by mesh lining a larger hole, heavier gage perforated plate.
As fluids with debris are passed through the straining element 14, the debris is collected and accumulated in the straining element 14. The cleaned fluid, having a lower amount of debris, will pass out of the straining element 14. After passing out of the straining element 14, cleaned fluid exits the body 12 via the outlet 22.
However, as indicated above, due to the use of pumps that include magnetic motors, it is desirable to remove metal particles that are too fine to be efficiently retained by the pores in the straining element 14 from the fluid passing through and out of the basket strainer 10.
There is a cavity 34 within the housing between the interior of the straining element 14 and the lid 30 that accommodates the basket strainer insert 40.
Turning to
In an exemplary embodiment shown in
In order to remove the collected metal particles from the outer surface of the body 42, the body 42 may be removed from the basket strainer 10. Once removed from the basket strainer 10, the cap 48 may be removed from the body 42. With the cap 48 removed, the magnets 80 may be removed from the body 42. Since the magnets 80 are no longer in the body 42, the metal particles that have collected on the outer surface of the body 42 may fall off or be wiped off.
To increase the ability to attract metal particles, the insert 40 may include a baffle 50 disposed about an intermediate portion 45 of the body 42.
The baffle 50 may be mounted to the body 42 via a collar 52. In the depicted embodiment, four curved portions 54a-54d extend from the collar 52 and connect to substantially straight portions 56a, 56b from which lobes 60a, 60b extend (see
As stated above, the baffle 50 may be removably mounted to the body 42 using the collar 52. The baffle 50 may be secured removably or permanently to the body 42 by any number of conventional fasteners or securing methods, including, for example gluing, clamping, welding, brazing, or weld clip, to name a few.
The material of construction of the baffle 50 could be metal. In a preferred embodiment a corrosion-resistant material such as stainless steel is used. Other corrosion-resistant materials may be used depending on the application. Further, corrosion-resistant metals (such as aluminum or galvanized steel) may be used, or a corrosion-resistant polymer-based materials (such as polyolefins or fluoropolymers such as polytetrafluoroethylene) may be used.
The baffle 50 may have a generally tubular shape (see
The baffle 50 may be mounted to an intermediate (middle) portion of the body 42. The collar 52 is visible in
The overall width W and length L of the basket strainer insert 40 allows it to fit within the basket strainer 10. The basket strainer insert 40 may not be physically secured to either the interior of the housing 12 or the straining element 14. This allows for easy insertion and removal. As such, during the operation of the basket strainer 10, the basket strainer insert 40 may tilt toward the inlet or the outlet 22 such that the longitudinal axis A4 of the body 42 is not coincident with the longitudinal axis A3 of the straining element.
The upper portion 44 of the body 42 may be thicker than the elongate intermediate portion 45 and the lower portion 46 to provide strength to withstand opening and closing of the cap 48 to a hexagonal boss 49 with wrenches.
The baffle 50, as shown best in
In a further embodiment, the curved portions 54a-54d that support the baffle 50 in the illustrated embodiment could also be straight. In the illustrated embodiment, such support pieces are located in the intermediate portion of the body, but in further contemplated embodiments, the supports could be mounted at various locations in a number of rows having straight or staggered arrangements with respect to the longitudinal axis of the body or a clustered gang-pattern.
In addition, the baffle in the illustrated embodiment has a substantially round cross section. In further contemplated embodiments, the baffle need not be round, and could be square, triangular, hexagonal, or any other geometric shape.
The substantially straight portions 56a, 56b define a diameter WS. The edges 62a-61d of the lobes 60a, 60b define a diameter WL that is equal to the diameter WS defined by the substantially straight portions 56a, 56b. The curved portions define a width WC. The diameter W of the baffle 50 is between about 2 and about 4 times larger than the diameter WB of the body 42.
The lobes 60a, 60b have a curvature that follows a radius, which is larger than the radius that defines the curved portions 54a-54d. The edges of the two lobes are oriented close to each other such that a small gap 70 is formed between adjacent lobes. This creates regions of high and low flow inside the baffle allowing for ferrous particles to slow down and accumulate on the magnetic region of the body.
In the illustrated embodiment, two lobes are depicted, however it is contemplated that as few as one lobe could be used, or more than two lobes could be used to provide a baffle around a magnetic central cylinder.
The cap 48 is joined to the hexagonal boss 49 of the upper portion 44 of the body 42 using threaded surface 82 that engages a threaded bore 84 of the body 42. Six magnets 80 are shown in the illustrated embodiment and are cylindrical to conform to the drywell 51 and have varying lengths. Alternatively, the magnets could be of uniform size, or a single magnet could be utilized. In the illustrated embodiment, the drywell 51, and the magnets 80 contained therein, could be withdrawn from the body to allow the body 42 to be wiped clean of magnetic debris. In a further embodiment, a single magnet 80′ is disposed in the drywell.
The baffle 50 depicted in
As is apparent from the foregoing specification, the invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. It should be understood that we wish to embody within the scope of the patent warranted hereon all such modifications as reasonably and properly come within the scope of my contribution to the art.
Number | Name | Date | Kind |
---|---|---|---|
2459534 | Kennedy | Jan 1949 | A |
2800230 | Thoma | Jul 1957 | A |
3817380 | Brown | Jun 1974 | A |
3887469 | Hayashi | Jun 1975 | A |
4495068 | Rosaen | Jan 1985 | A |
4783266 | Titch et al. | Nov 1988 | A |
5851386 | Paul | Dec 1998 | A |
6902066 | Yang | Jun 2005 | B2 |
8636907 | Lin et al. | Jan 2014 | B1 |
10029264 | Adey et al. | Jul 2018 | B2 |
10058875 | Van Schie et al. | Aug 2018 | B2 |
20030116494 | Elsegood | Jun 2003 | A1 |
20060102534 | Faria | May 2006 | A1 |
20070256672 | Wang | Nov 2007 | A1 |
20100155336 | Simonson | Jun 2010 | A1 |
20100294706 | Simonson | Nov 2010 | A1 |
20170074524 | Adey et al. | Mar 2017 | A1 |
20170312757 | Fleenor et al. | Nov 2017 | A1 |
20190314744 | Richter et al. | Oct 2019 | A1 |
20200222832 | Holbach et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
105080733 | Nov 2015 | CN |
3608007 | Feb 2020 | EP |
Entry |
---|
Du, Xianghui, “Centrifugal Magnetic Iron Powder Screening Device” (English Translation), Nov. 25, 2015, worldwide.espacenet.com (Year: 2015). |
Notification of Transmittal of International Search Report and Written Opinion from corresponding PCT application No. PCT/US21/46816 dated Dec. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20220016639 A1 | Jan 2022 | US |