This invention relates generally to the field of downhole pumping systems, and more particularly to an apparatus for filtering particulate solids.
Submersible pumping systems are often deployed into wells to recover petroleum fluids from subterranean reservoirs. Typically, a submersible pumping system includes a number of components, including an electric motor coupled to one or more pump assemblies. Production tubing is connected to the pump assemblies to deliver the petroleum fluids from the subterranean reservoir to a storage facility on the surface. Each of the components in a submersible pumping system must be engineered to withstand the inhospitable downhole environment.
The efficient recovery of oil and gas from wells depends on maintaining clean formations, casing perforations, lines and pumping equipment. Despite these efforts, many oil wells produce fluids that contain large amounts of particulate solids that can damage downhole components. Various forms of iron sulfide are frequently present in produced fluids and are very hard (6–6.5 Mohs Scale). These hard particles exacerbate wear on downhole components as they are carried through the downhole pumping system with the produced fluid.
It would therefore be desirable to prevent iron sulfide particles from contacting expensive downhole components. Despite the recognition of these problems, prior art attempts to protect downhole components from iron sulfide have been unsuccessful. It is to these and other deficiencies in the prior art that the present invention is directed.
In a preferred embodiment, the present invention provides a bailer configured to remove particulate solids from fluid passing through the bailer. The bailer preferably includes a housing that includes an intake and an outlet to permit the flow if well fluids through the housing. The bailer also includes a magnetic plate that includes at least one aperture that provides a path for the fluid flow. The bailer optionally includes one or more elongate magnetic bars that extend along the longitudinal axis of the bailer housing.
The bailer can be used in conjunction with other components in a downhole pumping system. In a first preferred application, the bailer is installed in an offset intake pipe that extends through a packer. In a second preferred embodiment, the bailer is installed at the open end of a shroud that encapsulates the motor and pump assembly. In a third preferred embodiment, the bailer is positioned in the production tubing downstream from the pump assembly. In addition to downhole applications, the bailer of the present invention can be used with surface pumping operations and in fluid transport systems. These and various other features and advantages that characterize the present invention will be apparent from a reading and review of the following detailed description, appended claims and associated drawings.
In accordance with a preferred embodiment of the present invention,
The pumping system 100 preferably includes some combination of a pump assembly 108, a motor assembly 110 and a seal section 112. The seal section 112 prevents the entry of well bore fluids into the motor 110 and shields the motor assembly 110 from mechanical thrust produced by the pump assembly 108. The motor assembly 110 is provided with power from the surface by a power cable 114. Although only one pump assembly 108 and one motor assembly 110 are shown, it will be understood that additional pumps and motors can be connected within the pumping system 100 to meet the requirements of particular applications.
Turning to
The housing 118 is preferably cylindrical and constructed from a rigid, corrosion-resistant material, such as steel or other suitable metal alloy. In a preferred embodiment, the portion of the housing proximate the outlet 126 tapers to a frustroconical end and includes vents 130 that permit increased flow through the bailer 116. Although the housing 118 is preferably sized and configured to be placed inside a larger fluid conduit, the housing 118 can also be configured for end-to-end attachment to equipment or fluid conduits of varying size.
In the presently preferred embodiment, the bailer 116 includes a plurality of plates 120. As shown in
The bailer 116 also preferably includes one or more elongate bars 122 that extend substantially along the direction of fluid flow through the bailer 116. In a particularly preferred embodiment, the bars 122 extend through one or more plates 120. It will be understood that different numbers, sizes, shapes and configurations of bars 122 are encompassed within the scope of the present invention. As an example, the bailer 116 shown in
In presently preferred embodiments, one or more of the plates 120 and bars 122 is constructed from a material that exhibits a magnetic field. Suitable materials include rare-earth metals, including but not limited to neodymium iron boron and samarium cobalt alloys. In a particularly preferred embodiment, the plates 120 and bars 122 are nickel-plated to prevent corrosion. The collective and separate magnetic fields provided by the plates 120 and bars 122 attract magnetically permeable solids entrained in the stream of fluid passing through the bailer 116. In this way, iron sulfide particles are strained from the stream of well fluid and captured by the plates 120 and bars 122.
If magnetic, the plates 120 are preferably removably connected to the inside of the housing 118 through magnetic attraction. In the preferred embodiment, the bars 122 are held in position relative to the plates 120 through magnetic attraction. In this way, the plates 120 and bars 122 can be easily removed from the bailer 116 for cleaning, separation, modification or replacement.
Turning to
It will be understood that the bailer 116 is generally configured to remove particulate solids from fluids passing through the bailer 116. For the purposes of disclosing the preferred embodiment, the bailer 116 is described in conjunction with downhole equipment used to recover petroleum products from a subterranean formation. The bailer 116 is equally suited, however, for use in alternative applications or systems. For example, it may be desirable to use the bailer 116 in surface pumping systems, fluid transport systems and fluid storage systems.
In a first preferred application shown
In a second preferred application shown in
In a third preferred embodiment, the bailer 116 is installed in a discharge conduit 152 above the pump assembly 108. The discharge conduit 152 is preferably connected between the pump assembly 108 and the production tubing 102 (not shown). Alternatively, the bailer 116 can be installed directly within the production tubing 102, thereby obviating the need for the separate discharge conduit 152. In this configuration, the bailer 116 removes solids, such as iron sulfide particles, before the well fluid reaches downstream components.
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2522294 | Noble | Sep 1950 | A |
2556849 | Nolley et al. | Jun 1951 | A |
2700567 | Fortenberry | Jan 1955 | A |
2789790 | Kirby, II | Apr 1957 | A |
2834630 | Greer | May 1958 | A |
3067821 | Crooks | Dec 1962 | A |
3089724 | Crooks | May 1963 | A |
3441307 | Farmer | Apr 1969 | A |
3520359 | Ehrlich | Jul 1970 | A |
3756949 | Schreurs | Sep 1973 | A |
4059155 | Greer | Nov 1977 | A |
4251372 | Dolle | Feb 1981 | A |
5217610 | McClain et al. | Jun 1993 | A |
5224548 | Dankovich, II | Jul 1993 | A |
5323855 | Evans | Jun 1994 | A |
5682950 | Bjornstad | Nov 1997 | A |
5944100 | Hipp | Aug 1999 | A |
6143709 | Carey | Nov 2000 | A |
6176311 | Ryan | Jan 2001 | B1 |
6216787 | Ruttley | Apr 2001 | B1 |
6234183 | Chan et al. | May 2001 | B1 |
6269877 | Zeer et al. | Aug 2001 | B1 |
6308781 | Ruttley | Oct 2001 | B2 |