Magnetic battery cell connection mechanism

Information

  • Patent Grant
  • 11837754
  • Patent Number
    11,837,754
  • Date Filed
    Wednesday, December 30, 2020
    3 years ago
  • Date Issued
    Tuesday, December 5, 2023
    5 months ago
Abstract
A magnetic battery cell connection mechanism includes a first battery cell and a second battery cell. A first connector has a first body including a first electrical pathway. A first electrical contact is disposed on the first body and electrically connected to the first electrical pathway. A first magnet is connected to the first body, the first magnet being adapted to magnetically releasably secure the first body to a positive terminal of the first battery cell. A second connector has a second body including a second electrical pathway. A second electrical contact is disposed on the second body and electrically connected to the second electrical pathway. A second magnet is connected to the second body, the second magnet being adapted to magnetically releasably secure the second body to a negative terminal of the second battery cell. The first connector and the second connector are electrically connected to an electrical circuit.
Description
FIELD OF THE DISCLOSURE

The disclosure relates generally to battery indicators and, more specifically relates to a magnetic battery cell connection mechanism for providing power to an external load such as battery indicator.


BACKGROUND

Electrochemical cells, or batteries, are commonly used as electrical energy sources. A battery contains a negative electrode, typically called the anode, and a positive electrode, typically called the cathode. The anode contains an electrochemically active anode material that can be oxidized. The cathode contains an electrochemically active cathode material that can be reduced. The electrochemically active anode material is capable of reducing the electrochemically active cathode material. A separator is disposed between the anode and the cathode. The battery components are disposed in a can, or housing, that is typically made from metal.


When a battery is used as an electrical energy source in an electronic device, electrical contact is made to the anode and the cathode, thereby completing a circuit that allows electrons to flow through the device, and which results in respective oxidation and reduction reactions that produce electrical power to the electronic device. An electrolyte is in contact with the anode, the cathode, and the separator. The electrolyte contains ions that flow through the separator between the anode and cathode to maintain charge balance throughout the battery during discharge.


There is a growing need for portable power for electronic devices such as toys; remote controls; audio devices; flashlights; digital cameras and peripheral photography equipment; electronic games; toothbrushes; radios; clocks, and other portable electronic devices. Consumers need to have power readily available for these electronic devices. Because batteries necessarily become depleted of power over time as they are used, consumers need to have access to spare batteries (and/or access to fully recharged rechargeable batteries). It is helpful for a consumer to know the power state of a battery currently in use so that the consumer can have quick access to the needed number of replacement batteries. Batteries come in common sizes, such as the AA, AAA, AAAA, C, and D battery sizes, that have fixed external dimensions and constrained internal volumes per ANSI standard.


Currently, some batteries include on-cell battery charge indicators to help a consumer determine when a battery is nearly depleted and in need of replacement. However, these current on-cell battery charge indicators are single use (i.e., attached to a single battery cell) and cumbersome (because typically two contact buttons must be simultaneously depressed to activate the indicator). Additionally, these on-cell battery indicators require removal of the battery from an electronic device (or package) in order to use the indicator.


SUMMARY

According to a first aspect, a magnetic battery cell connection mechanism includes a first battery cell having a positive terminal and a negative terminal and a second battery cell having a positive terminal and a negative terminal. A first connector has a first body including a first electrical pathway. A first electrical contact is disposed on the first body and electrically connected to the first electrical pathway, the first electrical contact being adapted to allow electricity to pass from the positive terminal of the first battery cell to the first electrical pathway. A first magnet is connected to the first body, the first magnet being adapted to magnetically releasably secure the first body to the positive terminal of the first battery cell and to establish contact between the positive terminal of the first battery cell and the first electrical pathway. A second connector has a second body including a second electrical pathway. A second electrical contact is disposed on the second body and electrically connected to the second electrical pathway, the second electrical contact being adapted to allow electricity to pass from the negative terminal of the second battery cell to the second electrical pathway. A second magnet is connected to the second body, the second magnet being adapted to magnetically releasably secure the second body to the negative terminal of the second battery cell and to establish contact between the negative terminal of the second battery cell and the second electrical pathway. Each of the first connector and the second connector is electrically connected to an electrical circuit.


According to a second aspect, a magnetic battery cell connection mechanism includes a first battery cell having a positive terminal and a negative terminal. A first connector includes a first body including a first electrical pathway. A first electrical contact is disposed on the first body and electrically connected to the first electrical pathway, the first electrical contact being adapted to allow electricity to pass from the positive terminal of the first battery cell to the first electrical pathway. A first magnet is at least partially seated in the first electrical contact, the first magnet being adapted to magnetically releasably secure the first body to the positive terminal of the first battery cell. A second connector includes a second body including a second electrical pathway. A second electrical contact is disposed on the second body and electrically connected to the second electrical pathway, the second electrical contact being adapted to allow electricity to pass from the negative terminal of the first battery cell to the second electrical pathway. A second magnet is at least partially seated in the second electrical contact, the second magnet being adapted to magnetically releasably secure the second body to the negative terminal of the first battery cell. Each of the first connector and the second connector is electrically connected to an electrical circuit.


According to a third aspect, a magnetic battery cell connector includes a body having a first arm and a second arm that diverge away from one another, and an electrical pathway. An electrical contact is located proximate a terminal end of one of the first arm and the second arm. The electrical contact is electrically connected to the electrical pathway. The electrical contact is adapted to allow electricity to pass from a battery cell terminal to the first electrical pathway. A magnet is at least partially seated in the electrical contact. The magnet is adapted to magnetically releasably secure the first body to the battery cell.


In accordance with the teachings of the disclosure, any one or more of the foregoing aspects of a magnetic battery cell connection mechanism or a magnetic battery cell connector may further include any one or more of the following optional forms.


In some optional forms, the first magnet comprises the first electrical contact.


In other optional forms, the second magnet comprises the second electrical contact.


In yet other optional forms, one of the first body or the second body comprises a first arm and a second arm that diverge away from one another.


In yet other optional forms, the first and second arms form one of an arc-shape, a u-shape, and a v-shape.


In yet other optional forms, the first and second arms form an arc-shape and an inner radius of the arc-shape is substantially the same as a battery end cap of one of the first battery cell or the second battery cell.


In yet other optional forms, the first magnet is located on the first arm and the first electrical contact is located on the second arm.


In yet other optional forms, the first magnet and the first electrical contact are located on the same arm.


In yet other optional forms, the first electrical contact is cup-shaped and the first magnet is at least partially seated in the first electrical contact.


In yet other optional forms, a first contact plate is located proximate an end of the first arm and the first magnet is disposed on the first contact plate.


In yet other optional forms, a second contact plate is located proximate an end of the second arm.


In yet other optional forms, one of the first body or the second body comprises a printed circuit board (PCB).





BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter, which is regarded as forming the present invention, the invention will be better understood from the following description taken in conjunction with the accompanying drawings.



FIG. 1 is a perspective view of a battery cell connection mechanism installed two battery cells in an array of batteries in a battery cavity of a device and connected to a battery indicator module.



FIG. 2 is a perspective view of the battery cell connection mechanism of FIG. 1 installed on two different batteries in the array of batteries.



FIG. 3 is a perspective view of the battery cell connection mechanism of FIG. 1 installed on yet two other batteries in the array of batteries.



FIG. 4 is a perspective view of the battery cell connection mechanism of FIG. 1 installed on a single battery cell in the array of battery cells.



FIG. 5 is a close up end perspective view of the battery cell connection mechanism of FIG. 1 attached to two battery cells.



FIG. 6A is a perspective view of a non-contact side of a positive magnetic battery cell connector of the battery cell connection mechanism of FIG. 1.



FIG. 6B is a perspective view of a contact side of the positive magnetic battery cell connector of FIG. 6A.



FIG. 6C is an exploded perspective view of the non-contact side of the positive magnetic battery cell connector of FIG. 6A.



FIG. 7A is a perspective view of a non-contact side of a negative magnetic battery cell connector of the battery cell connection mechanism of FIG. 1.



FIG. 7B is a perspective view of a contact side of the negative magnetic battery cell connector of FIG. 7A.



FIG. 7C is an exploded perspective view of the non-contact side of the negative magnetic battery cell connector of FIG. 7C.



FIG. 8A is a close-up perspective view of an alternate embodiment of a positive magnetic battery cell connector.



FIG. 8B is a close-up perspective view of an alternate embodiment of a negative magnetic battery cell connector.



FIG. 9A is an exploded perspective view of a non-contact side of the positive magnetic battery cell connector of FIG. 8A.



FIG. 9B is an exploded perspective view of a contact side of the positive magnetic battery cell connector of FIG. 8A.



FIG. 10A is an exploded perspective view of a non-contact side of the negative magnetic battery cell connector of FIG. 8B.



FIG. 10B is an exploded perspective view of a contact side of the negative magnetic battery cell connector of FIG. 8B.



FIG. 11 is a plan view of the positive magnetic cell connector of FIG. 8A.



FIG. 12 is a plan view of an alternate embodiment of a positive magnetic battery cell connector.





DETAILED DESCRIPTION OF THE INVENTION

Electrochemical cells, or batteries, may be primary or secondary. Primary batteries are meant to be discharged, e.g., to exhaustion, only once and then discarded. Primary batteries (or disposable batteries) are described, for example, in David Linden, Handbook of Batteries (4th ed. 2011). Secondary batteries (or rechargeable batteries) are intended to be recharged and used over and over again. Secondary batteries may be discharged and recharged many times, e.g., more than fifty times, a hundred times, or more. Secondary batteries are described, for example, in David Linden, Handbook of Batteries (4th ed. 2011). Accordingly, batteries may include various electrochemical couples and electrolyte combinations. Although the description and examples provided herein are generally directed towards primary alkaline electrochemical cells, or batteries, it should be appreciated that the invention applies to both primary and secondary batteries of aqueous, nonaqueous, ionic liquid, and solid state systems. Primary and secondary batteries of the aforementioned systems are thus within the scope of this application and the invention is not limited to any particular embodiment.


The magnetic battery cell connectors and magnetic battery cell connection mechanisms described herein advantageously provide a user adjustable voltage supply across a single battery cell or across a multiple battery cell stack to meet power requirements of an external load, such as a battery indicator. Moreover, the disclosed magnetic battery cell connectors and magnetic battery cell connection mechanisms advantageously are capable of delivering separate cell information or total cell array information to the battery indicator. The shape of the connectors advantageously fits within a battery cavity of a device without interference with the device contact terminals or neighboring battery cells and connects to battery cells without the need to remove the battery cells from the battery cavity. Additionally, the shape of the connectors allows the connector to rotate about the battery cell terminal without becoming disconnected from the battery cell terminal.


Referring now to FIGS. 1-3, a magnetic battery cell connection mechanism 10 is illustrated connected to a plurality of battery cells 12 (which may be referred to as an array of battery cells) that are arranged in series and installed in a battery cavity 14 of an electronic device 16 (such as a portable electronic device, a child toy, a flashlight, a portable radio, etc.). The battery cells 12 may comprise a primary alkaline electrochemical cell that includes a cathode, an anode, and a housing. The battery cell 12 also includes an end cap that serves as a negative terminal of the battery cell 12. A positive pip is located at the opposite end of the battery cell 12 from the end cap. The positive pip serves as a positive terminal of the battery cell 12. An electrolytic solution is dispersed throughout the battery cell 12. The battery cell 12 can be, for example, a AA, AAA, AAAA, C, or D alkaline battery.


The housing can be made of any suitable type of housing base material, for example cold-rolled steel or nickel-plated cold-rolled steel. The housing may have a cylindrical shape. The housing may have a sidewall including an interior surface that is treated with a material that provides a low electrical-contact resistance between the interior surface of the sidewall of the housing and an electrode, such as the cathode. The interior surface of the sidewall of the housing may be plated, e.g., with nickel, cobalt, and/or painted with a carbon-loaded paint to decrease contact resistance between, for example, the internal surface of the sidewall of the housing and the cathode.


The magnetic battery cell connection mechanism 10 is illustrated connected to different battery cells 12a-d in the array in different figures in FIGS. 1-3. For example, in FIG. 1, the magnetic battery cell connection mechanism 10 is illustrated connected to a lower left battery cell 12c and to an upper left battery cell 12a in the array, thereby tapping current from four battery cells; in FIG. 2, the magnetic battery cell connection mechanism 10 is illustrated connected to the lower left battery cell 12c and to an upper right battery cell 12b, thereby tapping current from three battery cells; and in FIG. 3, the magnetic battery cell connection mechanism 10 is illustrated connected to the lower left battery cell 12c and to a lower right battery cell 12d, thereby tapping current from two battery cells. In this manner, the disclosed magnetic battery cell connection mechanism 10 is capable of generating electrical characteristic information, or of tapping electrical current, for any one or more battery cells and any combination of battery cells in a plurality of battery cells 12a-d. In any of the embodiments illustrated in FIGS. 1-3, an external load, such as an electronic module 30 that in some embodiments may comprise a battery indicator, may be located outside of the battery cavity 14, which may advantageously provide easy access to the electronic module 30.



FIG. 4 illustrates an alternate embodiment of a magnetic battery cell connection mechanism 10 that is connected to a single battery cell 12d. In the embodiment of FIG. 4, the electronic module 30 may be located within the battery cavity 14, but not interfering with the electrical connections between battery cells 12, which advantageously secures and protects the electronic module 30 within the battery cavity 14.


Each magnetic battery cell connection mechanism 10 in the embodiments of FIGS. 1-4 includes the external load or electronic module 30, a first or positive connector 32 and a second or negative connector 34. In other embodiments, the positive/negative relationship may be reversed so that the first connector is the negative connector 34 and the second connector is the positive connector 32. Regardless, the first and second connectors 32, 34 are electrically connected to the electronic module 30 with wires 36, 38. The positive connector 32 is electrically connected to a positive terminal 40 of a battery cell 12, while the negative connector is electrically connected to a negative terminal 42 of a battery cell 12, thereby allowing current to flow from the battery cells 12 to the electronic module 30.


The electronic module 30 may include an integrated circuit, which may be incorporated into a printed circuit board (PCB), which in some embodiments may comprise a multi-layered insulator/conductive structure that can be a rigid epoxy, FR4 phelonic with bonded copper traces, or a flexible polyester, polyamide with bonded copper traces. The electronic module 30 may also include an integrated circuit that comprises an embedded voltage sensor within the integrated circuit. The embedded voltage sensor senses analog characteristics of the battery cell 12, such as amperes and voltage, and converts the sensed analog characteristics to digital information. The electronic module 30 may also comprise a communication module, which may establish communications and exchange communication signals with a router, an endpoint, and/or a personal electronic device via one or more communicative connections. More particularly, the communication module includes one or more transceivers configured to transmit and/or receive signals, via the communication connections, with external devices. Communication signals to and/or from the communication module may include wireless signals (RF signals) or wired communication signals (e.g., via USB data connection). The communication module may also include one or more modems configured to convert signals that are received/transmitted, via the one or more transceivers, to signals that are interpreted by a processor and/or a PB app. The electronic module 30 and power bank may be communicatively connected via one or more communicative connections. The one or more communicative connections may include a wireless radio frequency (RF) connection (e.g., via Bluetooth Low Energy (BLE), Zigbee, Universal Plug n Play (UPnP), WiFi low Power, 6LoWPAN, and/or other suitable protocols). An antenna may be operatively coupled to the communication module. In some embodiments, the integrated circuit, may incorporate an analog to digital converter, a microcontroller, a Wi-Fi radio, a memory device, and/or a DC/DC voltage converter.


Turning now to FIG. 5, a close up perspective view of the top left battery cell 12a and the bottom left battery cell 12c is illustrated from FIG. 1. The top left battery cell 12a has the negative connector 34 electrically connected to the negative terminal 42. The bottom left battery cell 12c has the positive connector 32 electrically connected to the positive terminal 40. As illustrated in FIG. 5, the positive connector 32 is free to rotate around the positive terminal 40 without losing the electrical connection. Similarly, the negative connector 34 is free to rotate around the negative terminal 42 without losing the electrical connection. Furthermore, because the positive and negative connectors 32, 34 do not cover the top or bottom most parts of the positive and negative terminals 40, 42, the positive and negative connectors 32, 34 may be attached to the positive and negative terminals 40, 42, respectively, while the battery cells 12 are installed in an electronic device without interrupting electrical contact between the battery cell 12 and the contacts of the electronic device.


Turning now to FIGS. 6A-6C, the positive connector 32 has a first body 50 including a first electrical pathway 52. A first electrical contact 54 is disposed on the first body 50 and electrically connected to the first electrical pathway 54. The first electrical contact 54 is adapted to allow electricity to pass from the positive terminal 40 of the first battery cell 12 to the first electrical pathway.


The first body 50 may include a first arm 56 and a second arm 58 that diverge away from one another. In the embodiment illustrated in FIGS. 6A-6C, the first arm 56 and the second arm 58 form a y-shaped first body 50. In the embodiment illustrated in FIGS. 6A-6C, the y-shaped first body 50 includes an arc-shaped inner surface 57 and an arc-shaped outer surface 59 connecting the first arm 56 and the second arm 58. The arc-shaped inner surface 57 may include a radius that is substantially similar to the radius of the positive terminal 40. In other embodiments, the arc-shaped inner surface 57 may include a radius that differs from the radius of the positive terminal. In yet other embodiments, the first arm 56 and the second arm 58 may form a u-shape or a v-shape. In some embodiments, the first body 50 is provided by a printed circuit board (PCB).


A first magnet 60 is connected to the first body 50, the first magnet 60 being adapted to magnetically releasably secure the first body 50 to the positive terminal 40 of the first battery cell 12 and to establish contact between the positive terminal 40 of the first battery cell 12 and the first electrical pathway 52. In the embodiments of FIGS. 1-7, the first electrical contact 54 has a cup-shape, and the first magnet 60 is at least partially seated within a depression of the cup-shaped first electrical contact 54. The first magnet 60 may be held in place by magnetic attraction to the first electrical contact 54 or by an interference fit with the first electrical contact 54. In other embodiments, the first electrical contact 54 may include a through-hole and the first magnet 60 may be seated at least partially within the through-hole. In still other embodiments, the first magnet 60 and the first electrical contact 54 may be combined into a single unitary structure, or the first magnet 60 may also form the first electrical contact 54 by providing both magnetic attraction and electrical conductivity. In the embodiment illustrated in FIGS. 6A-6C, electrical contacts 54, 55 and magnets 60, 61 are disposed near terminal ends of first arm 56 and the second arm 58. In other embodiments, only one of the first arm 56 and the second arm 58 may include the first electrical contact 54 and the first magnet 60. In yet other embodiments, the first electrical contact 54 may be disposed on the first arm 56 and the first magnet 60 may be disposed on the second arm 58.


Turning now to FIGS. 7A-7C, the negative connector 34 has a second body 70 including a second electrical pathway 72. A second electrical 74 contact is disposed on the second body 70 and is electrically connected to the second electrical pathway 72. In the embodiment illustrated in FIGS. 7A-7C, the second electrical contact 74 takes the form of a rectangular contact plate, although the contact plate could have any shape and/or size that allows the contact plate to establish an electrical connection to a battery terminal. The second electrical contact 74 is adapted to allow electricity to pass from the negative terminal 42 of the second battery cell 12 to the second electrical pathway 72.


The second body 70 may include a first arm 76 and a second arm 78 that diverge away from one another. In the embodiment illustrated in FIGS. 7A-7C, the first arm 76 and the second arm 78 form a y-shaped second body 70. In the embodiment illustrated in FIGS. 7A-7C, the y-shaped second body 70 includes an arc-shaped inner surface 77 and an arc-shaped outer surface 79 connecting the first arm 76 and the second arm 78. The arc-shaped inner surface 77 may include a radius that is substantially similar to the radius of the negative terminal 42. In other embodiments, the arc-shaped inner surface 77 may include a radius that differs from the radius of the negative terminal. In yet other embodiments, the first arm 56 and the second arm 58 may form a u-shape or a v-shape. In some embodiments, the second body 70 is provided by a printed circuit board (PCB).


A second magnet 80 is connected to the second body 70, the second magnet 80 is adapted to magnetically releasably secure the second body 70 to the negative terminal 42 of the second battery cell 12 and to establish contact between the negative terminal 42 of the second battery cell 12 and the second electrical pathway 74. In the embodiments of FIGS. 1-7, the second electrical contact 74 includes a cup-shaped retaining element, and the second magnet 80 is at least partially seated within the cup-shaped retaining element of the second electrical contact 74. The second magnet 80 may be held in place by magnetic attraction to the second electrical contact 74 or by an interference fit with the second electrical contact 74. In other embodiments, the second electrical contact 74 may include a through-hole and the second magnet 80 may be seated at least partially within the through-hole. In still other embodiments, the second magnet 80 and the second electrical contact 74 may be combined into a single unitary structure, or the second magnet 80 may also form the second electrical contact 74 by providing both magnetic attraction and electrical conductivity. In the embodiment illustrated in FIGS. 7A-7C, electrical contacts 74, 75 and magnets 80, 81 are disposed near terminal ends of the first arm 76 and the second arm 78. In other embodiments, only one of the first arm 76 and the second arm 78 may include the second electrical contact 74 and the second magnet 80. In yet other embodiments, the second electrical contact 74 may be disposed on the first arm 76 and the second magnet 80 may be disposed on the second arm 78.


The positive connector 32 and the negative connector 34 are electrically connected to an electrical circuit, such as an electrical circuit provided by the electronic module 30, by the wires 36, 38 (FIGS. 1 and 5).


The first magnet 60 releasably secures the positive connector 32 to the positive terminal 40 of the first battery cell 12 by a magnetic attraction to the positive terminal 40. Similarly, the second magnet 81 releasably secures the negative connector 34 to the negative terminal 42 of the second battery cell 12 by a magnetic attraction to the negative terminal 42. In the illustrated embodiment, a plurality of first magnets 60, 61, and a plurality of second magnets 80, 81, provide symmetrical magnetic attraction to the positive terminal 40 and to the negative terminal 42, respectively, to enhance the electrical connections.


Turning now to FIGS. 8-10, alternate embodiments of first and second magnetic battery cell connectors 132, 134 are illustrated. In the embodiments illustrated in FIGS. 8-10, reference numbers are exactly 100 greater than the reference numbers for like elements of the embodiments illustrated in FIGS. 1-7. For example, the first or positive connector 132 in FIG. 8A is 100 greater than the first or positive connector 32 in FIG. 5. Any elements illustrated in the embodiment of FIGS. 8-10 may be combined with any element illustrated in the embodiment of FIGS. 1-7, and vice versa.


The positive connector 132 includes a first body 150 including a first electrical pathway 152. A first electrical contact 154 is electrically connected to the first electrical pathway 152. The first electrical contact 154 comprises a conductive plate. In some non-illustrated embodiments, the first electrical pathway 152 may comprise the first electrical contact 154, thereby eliminating the need for a separate conductive plate. In such embodiments, the first electrical pathway 152 faces the positive terminal 140 and directly contacts the positive terminal 140, thereby forming a direct electrical connection between the first electrical pathway 152 and the positive terminal 140. In such embodiments, the first electrical contact 154 is integrally formed with the first electrical pathway 152.


A first magnet 160 is disposed in an opening in the first body 150. When appropriately positioned, the first magnet 160 magnetically holds the first electrical contact 154 in contact with the first body 150, and thus in electrical contact with the first electrical pathway 154. The first magnet 160 also magnetically releasably secures the first body 150 to the positive terminal 140 of the first battery cell 112 by magnetizing the first electrical contact 154 and thus establishes contact between the positive terminal 140 of the first battery cell 112 and the first electrical pathway 152 through the first electrical contact 154. The first magnet 160 may be held in the opening in the first body 150 by a gasket 151 or similar element, such as an adhesive. In other embodiments, the first magnet 160 may form an interference fit in the opening in the first body 150, or an adhesive may secure the first magnet 160 in the opening.


The negative connector 134 includes a second body 170 including a second electrical pathway 172. A second electrical contact 174 is electrically connected to the second electrical pathway 172. The second electrical contact 174 comprises a conductive plate, such as a ferromagnetic plate. In some non-illustrated embodiments, the second electrical pathway 172 may comprise the second electrical contact 174, thereby eliminating the need for a separate conductive plate. In such embodiments, the second electrical pathway 172 faces the negative terminal 142 and directly contacts the negative terminal 142, thereby forming a direct electrical connection between the second electrical pathway 172 and the negative terminal 142. In such embodiments, the second electrical contact 174 is integrally formed with the second electrical pathway 172.


A second magnet 180 is disposed in an opening in the second body 170. When appropriately positioned, the second magnet 180 magnetically holds the second electrical contact 174 in contact with the second body 170, and thus in electrical contact with the second electrical pathway 172. The second magnet 180 also magnetically releasably secures the second body 170 to the negative terminal 142 of the battery cell 112 by magnetizing the second electrical contact 174 and thus establishes contact between the negative terminal 142 of the battery cell 112 and the second electrical pathway 172 through the second electrical contact 174. Optional securing magnets 161 may also be located at other positions on the second body 170 top aid in retention to the negative terminal 142. The embodiment of FIGS. 10A and 10B may provide particularly advantageous magnetic connection to the negative terminal 142 when the battery cell 112 has an insulating battery label that impedes magnetic electrical connections on the face of the negative terminal because the second magnet is magnetically attracted to the raised annular surface of the negative terminal as well as to the flat disc-shaped surface of the negative terminal. The second magnet 180, which may comprise an arc-shaped magnet, also provides an electrical connection on the raised annular edge of the negative terminal 142.



FIGS. 11 and 12 illustrate alternative shapes for the positive connector 32. The electrical pathways in FIGS. 11 and 12 are omitted for clarity. Similar alternative body shapes may be used for the negative connector 34.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”


Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A magnetic battery cell connection mechanism comprising: a first battery cell having a positive terminal and a negative terminal;a second battery cell having a positive terminal and a negative terminal;a first connector having a first body including a first electrical pathway;a first electrical contact disposed on the first body and electrically connected to the first electrical pathway, the first electrical contact being adapted to allow electricity to pass from the positive terminal of the first battery cell to the first electrical pathway; anda first magnet connected to the first body, the first magnet being adapted to magnetically releasably secure the first body to the positive terminal of the first battery cell and to establish contact between the positive terminal of the first battery cell and the first electrical pathway;a second connector having a second body including a second electrical pathway;a second electrical contact disposed on the second body and electrically connected to the second electrical pathway, the second electrical contact being adapted to allow electricity to pass from the negative terminal of the second battery cell to the second electrical pathway;a second magnet connected to the second body, the second magnet being adapted to magnetically releasably secure the second body to the negative terminal of the second battery cell and to establish contact between the negative terminal of the second battery cell and the second electrical pathway; andan electrical circuit, each of the first connector and the second connector being electrically connected to the electrical circuit.
  • 2. The magnetic battery cell connection mechanism of claim 1, wherein the first magnet comprises the first electrical contact.
  • 3. The magnetic battery cell connection mechanism of claim 1, wherein the second magnet comprises the second electrical contact.
  • 4. The magnetic battery cell connection mechanism of claim 1, wherein the first electrical pathway comprises the first electrical contact.
  • 5. The magnetic battery cell connection mechanism of claim 1, wherein the second electrical pathway comprises the second electrical contact.
  • 6. The magnetic battery cell connection mechanism of claim 1, wherein one of the first body or the second body comprises a first arm and a second arm that diverge away from one another.
  • 7. The magnetic battery cell connection mechanism of claim 6, wherein the first and second arms form one of an arc-shape, a u-shape, and a v-shape.
  • 8. The magnetic battery cell connection mechanism of claim 7, wherein the first and second arms form an arc-shape and an inner radius of the arc-shape is substantially the same as a battery end cap of one of the first battery cell or the second battery cell.
  • 9. The magnetic battery cell connection mechanism of claim 6, wherein the first magnet is located on the first arm and the first electrical contact is located on the second arm.
  • 10. The magnetic battery cell connection mechanism of claim 6, wherein the first magnet and the first electrical contact are located on the same arm.
  • 11. The magnetic battery cell connection mechanism of claim 1, wherein the first electrical contact is cup-shaped and the first magnet is at least partially seated in the first electrical contact.
  • 12. The magnetic battery cell connection mechanism of claim 6, further comprising a first contact plate at the end of the first arm and the first magnet is disposed on the first contact plate.
  • 13. The magnetic battery cell connection mechanism of claim 12, further comprising a second contact plate at the end of the second arm.
  • 14. The magnetic battery cell connection mechanism of claim 1, wherein one of the first body or the second body comprises a printed circuit board (PCB).
  • 15. A magnetic battery cell connection mechanism comprising: a first battery cell having a positive terminal and a negative terminal;a first connector having a first body including a first electrical pathway;a first electrical contact disposed on the first body and electrically connected to the first electrical pathway, the first electrical contact being adapted to allow electricity to pass from the positive terminal of the first battery cell to the first electrical pathway; anda first magnet at least partially seated in the first electrical contact, the first magnet being adapted to magnetically releasably secure the first body to the positive terminal of the first battery cell;a second connector having a second body including a second electrical pathway;a second electrical contact disposed on the second body and electrically connected to the second electrical pathway, the second electrical contact being adapted to allow electricity to pass from the negative terminal of the first battery cell to the second electrical pathway;a second magnet at least partially seated in the second electrical contact, the second magnet being adapted to magnetically releasably secure the second body to the negative terminal of the first battery cell; andan electrical circuit, each of the first connector and the second connector being electrically connected to the electrical circuit.
  • 16. The magnetic battery cell connection mechanism of claim 15, wherein one of the first body or the second body comprises a first arm and a second arm that diverge away from one another.
  • 17. The magnetic battery cell connection mechanism of claim 16, wherein the first and second arms form one of an arc-shape, a u-shape, or a v-shape.
  • 18. The magnetic battery cell connection mechanism of claim 17, wherein the first and second arms form an arc-shape and an inner radius of the arc-shape is substantially the same as a battery end cap of one of the first battery cell or the second battery cell.
  • 19. The magnetic battery cell connection mechanism of claim 1, wherein the first magnet and the first electrical contact are located on the same arm.
  • 20. The magnetic battery cell connection mechanism of claim 1, wherein the first electrical contact is cup-shaped and the first magnet is at least partially seated in the first electrical contact.
US Referenced Citations (311)
Number Name Date Kind
3354565 Emmons et al. Nov 1967 A
3992228 Depoix Nov 1976 A
3993985 Chopard et al. Nov 1976 A
4117475 Ebihara et al. Sep 1978 A
4149146 Ebihara et al. Apr 1979 A
4238554 Barrella Dec 1980 A
4302751 Nakauchi et al. Nov 1981 A
4460870 Finger Jul 1984 A
4482615 Rosansky et al. Nov 1984 A
4598243 Kawakami Jul 1986 A
4654280 Bailey Mar 1987 A
4759765 Van Kampen Jul 1988 A
4808497 Blomgren et al. Feb 1989 A
4860185 Brewer et al. Aug 1989 A
4952330 Leger et al. Aug 1990 A
5015544 Burroughs et al. May 1991 A
5032825 Kuznicki Jul 1991 A
5188231 Kivell et al. Feb 1993 A
5200686 Lee Apr 1993 A
5219683 Webber Jun 1993 A
5231356 Parker Jul 1993 A
5250905 Kuo et al. Oct 1993 A
5290414 Marple Mar 1994 A
5339024 Kuo et al. Aug 1994 A
5355089 Treger Oct 1994 A
5366832 Hayashi et al. Nov 1994 A
5389458 Weiss et al. Feb 1995 A
5389470 Parker et al. Feb 1995 A
5396177 Kuo et al. Mar 1995 A
5418086 Bailey May 1995 A
5424722 Inada et al. Jun 1995 A
5438607 Przygoda, Jr. et al. Aug 1995 A
5458992 Bailey Oct 1995 A
5458997 Crespi et al. Oct 1995 A
5491038 DePalma et al. Feb 1996 A
5494496 Huhndorff et al. Feb 1996 A
5514491 Webber May 1996 A
5525439 Huhndorff et al. Jun 1996 A
5543246 Treger Aug 1996 A
5569556 Bohmer Oct 1996 A
5587573 Owen et al. Dec 1996 A
5596278 Lin Jan 1997 A
5607790 Hughen et al. Mar 1997 A
5627472 Ofer et al. May 1997 A
5633592 Lang May 1997 A
5640150 Atwater Jun 1997 A
5654640 Bailey Aug 1997 A
5691083 Bolster Nov 1997 A
5737114 Bailey Apr 1998 A
5786106 Armani Jul 1998 A
5798933 Nicolai Aug 1998 A
5849046 Bailey Dec 1998 A
5925479 Wei et al. Jul 1999 A
5959568 Woolley Sep 1999 A
5963012 Garcia et al. Oct 1999 A
6014014 Owen et al. Jan 2000 A
6084523 Gelnovatch et al. Jul 2000 A
6127062 Sargeant et al. Oct 2000 A
6143439 Yoppolo et al. Nov 2000 A
6156450 Bailey Dec 2000 A
6169397 Steinbach et al. Jan 2001 B1
6171729 Gan et al. Jan 2001 B1
6208235 Trontelj Mar 2001 B1
6218054 Webber Apr 2001 B1
6252377 Shibutani et al. Jun 2001 B1
6275161 Wan et al. Aug 2001 B1
6300004 Tucholski Oct 2001 B1
6407534 Mukainakano Jun 2002 B1
6469471 Anbuky et al. Oct 2002 B1
6483275 Nebrigic et al. Nov 2002 B1
6587250 Armgarth et al. Jul 2003 B2
6617069 Hopper et al. Sep 2003 B1
6617072 Venkatesan et al. Sep 2003 B2
6627353 Munshi Sep 2003 B1
6670073 Tucholski et al. Dec 2003 B2
RE38518 Tucholski May 2004 E
6730136 Webber May 2004 B2
6774685 O'Toole et al. Aug 2004 B2
6775562 Owens et al. Aug 2004 B1
6849360 Marple Feb 2005 B2
6979502 Gartstein et al. Dec 2005 B1
6990171 Toth et al. Jan 2006 B2
7067882 Singh Jun 2006 B2
7079079 Jo et al. Jul 2006 B2
7157185 Marple Jan 2007 B2
7386404 Cargonja et al. Jun 2008 B2
7474230 Blom et al. Jan 2009 B2
7489431 Malmstrom et al. Feb 2009 B2
7511454 Legg Mar 2009 B1
7561050 Bhogal et al. Jul 2009 B2
7576517 Cotton et al. Aug 2009 B1
7586416 Ariyoshi et al. Sep 2009 B2
7598880 Powell et al. Oct 2009 B2
7606530 Anderson et al. Oct 2009 B1
7715884 Book et al. May 2010 B2
7741970 Cunningham et al. Jun 2010 B2
7745046 Kim et al. Jun 2010 B2
7768236 Takamura et al. Aug 2010 B2
7772850 Bertness Aug 2010 B2
7805263 Mack Sep 2010 B2
7911182 Cargonja et al. Mar 2011 B2
7944368 Carter et al. May 2011 B2
8031054 Tuttle Oct 2011 B2
8106845 Savry Jan 2012 B2
8119286 Issaev et al. Feb 2012 B2
8131486 Leonard et al. Mar 2012 B2
8344685 Bertness et al. Jan 2013 B2
8368356 Nakashima et al. Feb 2013 B2
8374507 Hudson et al. Feb 2013 B2
8424092 Ikeuchi et al. Apr 2013 B2
8427109 Melichar Apr 2013 B2
8471888 George et al. Jun 2013 B2
8652670 Uchida Feb 2014 B2
8653926 Detcheverry et al. Feb 2014 B2
8900731 Bohne Dec 2014 B2
8905317 Hsu et al. Dec 2014 B1
9037426 Schaefer May 2015 B2
9060213 Jones Jun 2015 B2
9076092 Ritamaki et al. Jul 2015 B2
9083063 Specht et al. Jul 2015 B2
9146595 Forutanpour et al. Sep 2015 B2
9167317 DeMar Oct 2015 B2
9189667 Bourilkov et al. Nov 2015 B2
9235044 Specht et al. Jan 2016 B2
9297859 Mukaitani et al. Mar 2016 B2
9312575 Stukenberg et al. Apr 2016 B2
9331378 Merlin et al. May 2016 B2
9425487 Bertness Aug 2016 B2
9453885 Mukaitani et al. Sep 2016 B2
9459323 Mukaitani et al. Oct 2016 B2
9461339 Roohparvar Oct 2016 B2
9478850 Bourilkov et al. Oct 2016 B2
9551758 Bourilkov et al. Jan 2017 B2
9568556 Bourilkov et al. Feb 2017 B2
9619612 Kallfelz et al. Apr 2017 B2
9639724 Bourilkov et al. May 2017 B2
9661576 Tomisawa May 2017 B2
9699818 Grothaus et al. Jul 2017 B2
9726763 Dempsey et al. Aug 2017 B2
9739837 Bourilkov et al. Aug 2017 B2
9746524 Petrucelli Aug 2017 B2
9774210 Wright Sep 2017 B1
9823310 Bourilkov et al. Nov 2017 B2
9841462 Kim et al. Dec 2017 B2
9843220 Herrmann et al. Dec 2017 B2
9869726 Zumstein et al. Jan 2018 B2
9882250 Chappelle et al. Jan 2018 B2
9887463 Bourilkov et al. Feb 2018 B2
9893390 Specht et al. Feb 2018 B2
9983312 Dempsey et al. May 2018 B2
10094886 Bourilkov et al. Oct 2018 B2
10151802 Riemer et al. Dec 2018 B2
10184988 Bourilkov et al. Jan 2019 B2
10297875 Riemer et al. May 2019 B2
10416309 Dempsey et al. Sep 2019 B2
10483634 Bourilkov et al. Nov 2019 B2
10859705 Dempsey et al. Dec 2020 B2
20010005123 Jones et al. Jun 2001 A1
20010026226 Andersson et al. Oct 2001 A1
20020001745 Gartstein et al. Jan 2002 A1
20020086718 Bigwood et al. Jul 2002 A1
20030070283 Webber Apr 2003 A1
20030169047 Chen Sep 2003 A1
20030170537 Randell Sep 2003 A1
20030184493 Robinet et al. Oct 2003 A1
20030228518 Marple Dec 2003 A1
20040029007 Kusumoto et al. Feb 2004 A1
20040048512 Chen Mar 2004 A1
20040183742 Goff et al. Sep 2004 A1
20050038614 Botts et al. Feb 2005 A1
20050073282 Carrier et al. Apr 2005 A1
20050095508 Yamamoto May 2005 A1
20050112462 Marple May 2005 A1
20050162129 Mutabdzija et al. Jul 2005 A1
20050233214 Marple et al. Oct 2005 A1
20050258797 Hung Nov 2005 A1
20050277023 Marple et al. Dec 2005 A1
20060017581 Schwendinger et al. Jan 2006 A1
20060028179 Yudahira et al. Feb 2006 A1
20060043933 Latinis Mar 2006 A1
20060046152 Webber Mar 2006 A1
20060046153 Webber Mar 2006 A1
20060046154 Webber et al. Mar 2006 A1
20060047576 Aaltonen et al. Mar 2006 A1
20060163692 Detecheverry et al. Jul 2006 A1
20060168802 Tuttle Aug 2006 A1
20060170397 Srinivasan et al. Aug 2006 A1
20060208898 Swanson et al. Sep 2006 A1
20060247156 Vanderby et al. Nov 2006 A1
20060261960 Haraguchi et al. Nov 2006 A1
20070080804 Hirahara et al. Apr 2007 A1
20070096697 Maireanu May 2007 A1
20070108946 Yamauchi et al. May 2007 A1
20070182576 Proska et al. Aug 2007 A1
20070210924 Arnold et al. Sep 2007 A1
20070273329 Kobuse et al. Nov 2007 A1
20080053716 Scheucher Mar 2008 A1
20080076029 Bowden et al. Mar 2008 A1
20080079391 Schroeck et al. Apr 2008 A1
20080157924 Batra Jul 2008 A1
20080160392 Toya et al. Jul 2008 A1
20080206627 Wright Aug 2008 A1
20080218351 Corrado et al. Sep 2008 A1
20080252462 Sakama Oct 2008 A1
20090008031 Gould et al. Jan 2009 A1
20090009177 Kim et al. Jan 2009 A1
20090024309 Crucs Jan 2009 A1
20090041228 Owens et al. Feb 2009 A1
20090098462 Fujiwara et al. Apr 2009 A1
20090148756 Specht et al. Jun 2009 A1
20090155673 Northcott Jun 2009 A1
20090179763 Sheng Jul 2009 A1
20090214950 Bowden et al. Aug 2009 A1
20090263727 Josephs et al. Oct 2009 A1
20090273473 Tuttle Nov 2009 A1
20090289825 Trinkle Nov 2009 A1
20090297949 Berkowitz et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20100019733 Rubio Jan 2010 A1
20100030592 Evans et al. Feb 2010 A1
20100073003 Sakurai et al. Mar 2010 A1
20100081049 Holl et al. Apr 2010 A1
20100085008 Suzuki et al. Apr 2010 A1
20100087241 Nguyen et al. Apr 2010 A1
20100143753 Kim et al. Jun 2010 A1
20100209744 Kim Aug 2010 A1
20100219252 Kikuchi et al. Sep 2010 A1
20100295943 Cha et al. Nov 2010 A1
20100308974 Rowland et al. Dec 2010 A1
20110018777 Brown Jan 2011 A1
20110023130 Gudgel et al. Jan 2011 A1
20110104520 Ahn May 2011 A1
20110123874 Issaev et al. May 2011 A1
20110163752 Janousek et al. Jul 2011 A1
20110293969 Hoofman et al. Dec 2011 A1
20120021266 Marple et al. Jan 2012 A1
20120056002 Ritamaki et al. Mar 2012 A1
20120081774 De Paiva Martins et al. Apr 2012 A1
20120086615 Norair Apr 2012 A1
20120121943 Roohparvar May 2012 A1
20120183862 Gupta et al. Jul 2012 A1
20120190305 Wuidart Jul 2012 A1
20120206102 Okamura et al. Aug 2012 A1
20120206302 Ramachandran et al. Aug 2012 A1
20120217971 Deluca Aug 2012 A1
20120235870 Forster Sep 2012 A1
20120277832 Hussain Nov 2012 A1
20120299597 Shigemizu Nov 2012 A1
20120323511 Saigo et al. Dec 2012 A1
20130069768 Madhyastha et al. Mar 2013 A1
20130117595 Murawski et al. May 2013 A1
20130127611 Bernstein et al. May 2013 A1
20130148283 Forutanpour et al. Jun 2013 A1
20130154652 Rice et al. Jun 2013 A1
20130161380 Joyce et al. Jun 2013 A1
20130162402 Amann et al. Jun 2013 A1
20130162403 Striemer et al. Jun 2013 A1
20130162404 Striemer et al. Jun 2013 A1
20130164567 Olsson et al. Jun 2013 A1
20130171479 Kim et al. Jul 2013 A1
20130183568 Babinec et al. Jul 2013 A1
20130185008 Itabashi et al. Jul 2013 A1
20130271072 Lee et al. Oct 2013 A1
20130295421 Teramoto et al. Nov 2013 A1
20130320989 Inoue et al. Dec 2013 A1
20140062663 Bourilkov et al. Mar 2014 A1
20140139380 Ouyang et al. May 2014 A1
20140188413 Bourilkov et al. Jul 2014 A1
20140197802 Yamazaki Jul 2014 A1
20140229129 Campbell et al. Aug 2014 A1
20140302348 Specht et al. Oct 2014 A1
20140302351 Specht et al. Oct 2014 A1
20140320144 Nakaya Oct 2014 A1
20140342193 Mull et al. Nov 2014 A1
20140346873 Colangelo et al. Nov 2014 A1
20140347249 Bourilkov et al. Nov 2014 A1
20140370344 Lovelace et al. Dec 2014 A1
20140379285 Dempsey et al. Dec 2014 A1
20150061603 Loftus et al. Mar 2015 A1
20150064524 Noh et al. Mar 2015 A1
20150162649 Bae et al. Jun 2015 A1
20150349391 Chappelle et al. Dec 2015 A1
20150357685 Iwasawa et al. Dec 2015 A1
20160034733 Bourilkov et al. Feb 2016 A1
20160049695 Lim et al. Feb 2016 A1
20160064781 Specht et al. Mar 2016 A1
20160092847 Buchbinder Mar 2016 A1
20160137088 Lim et al. May 2016 A1
20160154025 Song et al. Jun 2016 A1
20160277879 Daoura et al. Sep 2016 A1
20170040698 Bourilkov et al. Feb 2017 A1
20170062841 Riemer et al. Mar 2017 A1
20170062880 Riemer et al. Mar 2017 A1
20170092994 Canfield et al. Mar 2017 A1
20170125855 Gong et al. May 2017 A1
20170176539 Younger Jun 2017 A1
20170286918 Westermann et al. Oct 2017 A1
20170301961 Kim et al. Oct 2017 A1
20170315183 Chao et al. Nov 2017 A1
20170331162 Clarke et al. Nov 2017 A1
20180040929 Chappelle et al. Feb 2018 A1
20180088182 Bourilkov et al. Mar 2018 A1
20180120386 Riemer et al. May 2018 A1
20180123174 Riemer et al. May 2018 A1
20180123175 Riemer et al. May 2018 A1
20180123176 Riemer et al. May 2018 A1
20180123233 Bourilkov et al. May 2018 A1
20180159225 Bourilkov et al. Jun 2018 A1
20190113579 Riemer et al. Apr 2019 A1
20190137572 Bourilkov et al. May 2019 A1
20200011997 Dempsey et al. Jan 2020 A1
Foreign Referenced Citations (102)
Number Date Country
1084281 Mar 1994 CN
1163020 Oct 1997 CN
1228540 Sep 1999 CN
1315072 Sep 2001 CN
1529182 Sep 2004 CN
2828963 Oct 2006 CN
101126795 Feb 2008 CN
201142022 Oct 2008 CN
201233435 May 2009 CN
101702792 May 2010 CN
101785164 Jul 2010 CN
102097844 Jun 2011 CN
102142186 Aug 2011 CN
102544709 Jul 2012 CN
202308203 Jul 2012 CN
202720320 Feb 2013 CN
202856390 Apr 2013 CN
103682482 Mar 2014 CN
104635169 May 2015 CN
105337367 Feb 2016 CN
205160145 Apr 2016 CN
106405241 Feb 2017 CN
106848448 Jun 2017 CN
107284272 Oct 2017 CN
206804833 Dec 2017 CN
10118027 Nov 2002 DE
10118051 Nov 2002 DE
0523901 Jan 1993 EP
1450174 Aug 2004 EP
1693807 Aug 2006 EP
1786057 May 2007 EP
1821363 Aug 2007 EP
2065962 Jun 2009 EP
2204873 Jul 2010 EP
2324535 May 2011 EP
2328223 Jun 2011 EP
2645447 Oct 2013 EP
2680093 Jan 2014 EP
2790262 Oct 2014 EP
3128599 Feb 2017 EP
S52005581 Jan 1977 JP
61169781 Jul 1986 JP
02142324 May 1990 JP
H03131771 Jun 1991 JP
H06284170 Oct 1994 JP
H09005366 Jan 1997 JP
10014003 Jan 1998 JP
2000077928 Mar 2000 JP
2001022905 Jan 2001 JP
2004085580 Mar 2004 JP
2004-253858 Sep 2004 JP
2004534430 Nov 2004 JP
2005327099 Nov 2005 JP
2006139544 Jun 2006 JP
2006284431 Oct 2006 JP
2006324074 Nov 2006 JP
2007515848 Jun 2007 JP
2007171045 Jul 2007 JP
2008042985 Feb 2008 JP
2008-530682 Aug 2008 JP
2008181855 Aug 2008 JP
2009-37374 Feb 2009 JP
2010098361 Apr 2010 JP
2010-154012 Jul 2010 JP
2011113759 Jun 2011 JP
2011203595 Oct 2011 JP
20120056002 Mar 2012 JP
2012085491 Apr 2012 JP
2012-129183 Jul 2012 JP
2012161614 Aug 2012 JP
2012170262 Sep 2012 JP
2013-038967 Feb 2013 JP
2013038961 Feb 2013 JP
2013120640 Jun 2013 JP
2011-0018488 Feb 2011 KR
M510009 Oct 2015 TW
I580153 Apr 2017 TW
WO-9501062 Jan 1995 WO
WO-03047064 Jun 2003 WO
WO-2004047215 Jun 2004 WO
WO-2004107251 Dec 2004 WO
WO-2005078673 Aug 2005 WO
WO-2006048838 May 2006 WO
WO-2006085291 Aug 2006 WO
WO-2008151181 Dec 2008 WO
WO-2008156735 Dec 2008 WO
WO-2010127509 Nov 2010 WO
WO-2011063679 Jun 2011 WO
WO-2011096863 Aug 2011 WO
WO-2012051272 Apr 2012 WO
WO-2012061262 May 2012 WO
WO-2012070635 May 2012 WO
WO-2012083759 Jun 2012 WO
WO-2013022857 Feb 2013 WO
WO-2013024341 Feb 2013 WO
WO-2013069423 May 2013 WO
WO-2013084481 Jun 2013 WO
WO-2013101652 Jul 2013 WO
WO-2015183609 Dec 2015 WO
WO-2016146006 Sep 2016 WO
WO-2016166735 Oct 2016 WO
WO-2016172542 Oct 2016 WO
Non-Patent Literature Citations (13)
Entry
Atmel Corporation, Application Note AVR400: Low Cost A/D Converter, available at http://www.atmel.com/images/doc0942.pfd (last visited Oct. 24, 2013).
Chinese patent application No. 201480034145.1, Notification of First Office Action (with English translation), dated May 4, 2017.
Chinese Patent Application No. 201480034145.1, Notification of the Second Office Action, dated Jan. 19, 2018.
European Patent Application No. 14813210.3, Communication Pursuant to Article 94(3) EPC, dated Sep. 17, 2020.
European Patent Application No. 14813210.3, Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC, dated Feb. 11, 2020.
European patent application No. EP 14813210, Supplementary European Search Report, dated Nov. 25, 2016.
Japanese patent application No. 2016-521535, Notice of Rejection, dated Nov. 15, 2016.
Kooser, Tethercell magically turns AA batteries into Bluetooth devices, CNET.com, downloaded from the Internet at: <https://www.cnet.com/news/tethercell-magically-turns-aa-batteries-into-bluetooth-devices/> (Jan. 8, 2013).
PCT International Search report with Written Opinion in corresponding International application PCT/US2014/042898 dated Nov. 7, 2014.
Tethercell Smart Battery Adapter fundraising campaign on Indiegogo website (<https://www.indiegogo.com/projects/tethercell-smart-battery-adapter#/>) (launched Oct. 2013).
Tethercell video uploaded at <https://vimeo.com/53823785> (Oct. 2012).
Yamashiro, Voltage Detecting Circuit, Japanese Patent No. 52005581, Hitashi Ltd., (Jan. 17, 1977), Translated by the United States Patent and Trademark Office via Phoenix Translations (Elgin, TX) in Feb. 2018.
International Application No. PCT/US2021/064871, International Search Report and Written Opinion, dated Apr. 4, 2022.
Related Publications (1)
Number Date Country
20220209369 A1 Jun 2022 US