The present invention generally relates to reducing vibration experienced by a mass, and more particularly relates to a damping and/or isolation system for reducing low disturbance forces.
A precision pointing system carrying a sensor, such as a telescope, may be susceptible to disturbances that produce structural vibrations and, consequently, pointing errors. Such vibrations may be attributed to mechanical components or assemblies, such as reaction wheel assemblies, that are used as actuators in the precision pointing system. For the most part, because these systems tend not to have significant, inherent damping, these structural vibrations may degrade system performance and even cause structural fatigue over time. Therefore, an efficient means of providing vibration damping and/or isolation to the system may be needed.
In some circumstances, a passive-mass damping system is used for damping the structure and isolating the payload carried by the precision pointing system. Passive-mass damping systems may have any one of numerous configurations. In one example, the system includes a container having a mass and a spring mounted therein. Fluid is also disposed within the container to provide damping by shearing the fluid. The mass includes a plurality of troughs formed around its outer periphery, and a ball is disposed within each of the troughs. The balls bear against the inner surface of the container to provide low friction oscillation of the mass in the container.
In other circumstances, a rigid volume damper, such as an isolator, is used to minimize performance degradation caused by vibrations. Isolators may include a cylindrical container having a piston slidably mounted therein which divides the container into two sections. A fixed volume of fluid is typically disposed within the container so that when the piston moved through the container, the fluid passes from one section to the other. Balls are disposed between the piston and the inner surface of the container to minimize friction produced by the movement of the piston through the container.
Although the above-described systems operate effectively in most applications, they may not be appropriate to implement in other applications. For example, in circumstances in which the system experiences a disturbance force in the range of micropounds, the systems may not provide appropriate damping. Specifically, in both of the above-mentioned systems, a friction force is generated when the balls bear against the -inner surface of the container, and if the disturbance force is less than the friction force the balls may not rotate and damping may not be provided.
Accordingly, it is desirable to have a system that is operable to damp and/or isolate disturbance forces in the range of micropounds. In addition, it is desirable for the system to be relatively light weight. Moreover, it is desirable for the system to be inexpensive to manufacture. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
A system is provided for damping and/or isolating vibration of a mass. The system comprises a housing, a shaft, a housing magnet, and a shaft magnet. The housing has an inner surface defining a passage. The shaft is disposed within said passage of said housing and configured to move axially therein. The shaft has an outer surface. The housing magnet is coupled to the housing inner surface. The shaft magnet is coupled to the shaft outer surface and is in alignment with the housing magnet and configured to repel the housing magnet.
In another embodiment, and by way of example only, an isolator is provided for damping a mass. The isolator includes a housing, a shaft, a seal bellows, a spring, a flexure, a housing magnet, and a shaft magnet. The housing has an inner surface defining a passage. The shaft is disposed within the passage and configured to move axially therein. The shaft has an end and an outer surface. The seal bellows is disposed within the passage and coupled to the shaft end. The spring is disposed within the passage and has a first end and a second end, the first end coupled to the seal bellows and a second end. The flexure is coupled to the second end of the spring and configured to couple to the mass. The housing magnet is coupled to the housing inner surface. The shaft magnet is coupled to the shaft outer surface and is in alignment with the housing magnet and configured to repel the housing magnet.
In still another embodiment, and by way of example only, a tuned mass damper is provided for damping a mass that includes a housing, a shaft, a spring, a housing magnet, and a shaft magnet. The housing has an inner surface defining a passage. The shaft is disposed within the passage and is configured to move axially therein. The shaft has an end and an outer surface. The spring is disposed within the passage and coupled to the shaft end. The housing magnet is coupled to the housing inner surface and the shaft magnet is coupled to the shaft outer surface. The shaft magnet is in alignment with the housing magnet and configured to repel the housing magnet.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
Housing 202 may be constructed from multiple pieces, such as shown in
Turning now to
To ensure that gaps 220 are maintained and to further reduce friction between shaft 208 and housing 202, repelling magnets 230a, 230b, 232a, and 232b are included in isolator 200. Magnets 230a, 230b, 232a, and 232b may comprise any conventional, lightweight device used to generate magnetic fields, such as, for example, permanent magnets and electromagnets. Magnets 230a and 230b are coupled to inner surface 204 of housing 202 and may be coupled thereto in any one of a number of manners. For example, inner surface 204 of housing 202 may include grooves 234a and 234b within which magnets 230 may be disposed. Preferably, magnets 230 are spaced substantially equally apart from one another. Magnets 232a and 232b are coupled to outer surface 222 of shaft 208, and similar to magnets 230a and 230b, are coupled in any conventional manner. As shown in
As shown in
Returning to
Flexure 218 is coupled to one end of housing 202 and to preload spring 214 via opening 219. Flexure 218 is further configured to couple to base 102 or payload 104, both shown in
To ensure that gap 612 is maintained and to further reduce friction between shaft 608 and housing 602, repelling magnets 618a, 618b, 620a, and 620b are included in tuned mass damper 506, as shown in
Each of magnets 620a and 620b is preferably aligned with a corresponding magnet of magnets 618a and 618b. Although four sets of magnets 618a, 618b, 620a, and 620b are shown, more or fewer sets may be incorporated. Moreover, although magnets 618a, 618b, 620a, and 620b as each being a separate piece, 618a, 618b, 620a, and 620b may have any other shape.
Spring 610 is coupled between shaft 608 and fill cap 626. Spring 610 has a predetermined stiffness and, in one exemplary embodiment is removable from housing 602, for example, via fill cap 626. In such an embodiment, spring 610 may be replaced with a spring having a stiffness that is different than the predetermined stiffness to thereby allow tuned mass damper 506 to be tunable. The mass of shaft 608 may be increased or decreases also allowing the tuned mass damper 506 to be tunable. In addition to being removable, fill cap 626 restrains shaft 608 from rotating about longitudinal axis 634 and, in this regard, is coupled to housing 602.
Cover 628 divides volume 636 into at least two sections 636a and 636b. Cover 628 has an aperture 638 formed in its center that is provided to allow fluid to be passed between sections 636a and 636b. Cover 628 has an outer peripheral surface that is coupled to housing 602 and is also coupled to bellows 630. Bellows 630 is also coupled to a bellows cap 632. When the temperature of the fluid inside housing 602 increases, fluid is passed through aperture 638 from section 636a into section 636b and bellows 630 is stretched. Consequently, the pressure in housing 602 remains relatively low when temperatures increase, and does not drop significantly when the temperatures decrease.
There has now been provided a system that is operable to damp and/or isolate disturbance forces in the range of micropounds. In addition, the system is relatively light weight. Moreover, the system to inexpensive to manufacture.
While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.