The present invention generally relates to the art of electromagnetic transducers and, more particularly, to a magnet assembly of a speaker.
Speakers are widely applied in mobile devices, such as mobile phones, for converting electrical signals to audible sounds. Generally, a speaker includes a magnet assembly and a coil. The magnet assembly includes a yoke, a magnet fixed on the yoke, a pole plate mounted on an upper surface of the magnet, and a magnetic gap is formed between an inner surface of the yoke and an outer surface of the magnet for partially receiving the coil. The yoke defines a bottom portion for fixing the magnet and a plurality of sidewalls extending from the bottom portion. The magnet defines its own N-pole and S-pole. In the following descriptions, N-pole is called as a first pole and S-pole is called as a second pole. A line connecting the first pole and the second pole is perpendicular to the bottom portion of the yoke. The yoke and the pole plate are made of magnetic conductive materials, so that closed magnetic fluxes are generated from the first pole and conducted by the yoke and the pole plate to enter the second pole.
The pole plate increases the height of the magnetic circuit.
The present invention is provided to solve the problem mentioned above.
Reference will now be made to describe the exemplary embodiment of the present invention in detail.
Referring to
The yoke 14, substantially rectangular parallelepiped shaped, is made of magnetic conductive material. The yoke 14 defines a pair of first sidewalls 142, a pair of second sidewalls 141 for abutting against an outer peripheral surface of the outer magnet 12 and connecting with the pair of first sidewalls 142, a fixing portion 143 perpendicularly extending from one end of the sidewalls toward a center of the yoke 14 for abutting against a part of an upper surface of the outer magnet 12, a pair of projecting portions 144 extending from a center of the pair of first sidewalls 142 towards the center of the yoke 14, and a pair of receiving portions 145 extending from a lower surface of the pair of first sidewalls 142. The pair of second sidewalls 141 is opposite to each other and the pair of first sidewalls 142 is also opposite to each other. Each part of each first sidewall 142 abuts against an outer surface of the outer magnet 12. The pair of projecting portions 144 is opposite to the magnetic conductive portion 4, thereby defining a second magnetic gap 16 for receiving the coil 3. The receiving portions 145 are arranged on the center of the pair of first sidewalls 142 for engaging with the plate 5.
The first magnet 121 defines a first pole 1211 and a second pole 1212. A polarity of the second pole 1212 is opposite to that of the first pole 1211. The second magnet 122 defines a third pole 1221 and a fourth pole 1222. A polarity of the third pole 1221 is similar to that of the first pole 1211. A polarity of the third pole 1221 is opposite to that of the fourth pole 1222.
The third magnet 131 defines a fifth pole 1311 and a sixth pole 1312. A polarity of the sixth pole 1312 is opposite to that of the fifth pole 1311. A polarity of the fifth pole 1311 is opposite to the second pole 1212. The fourth magnet 132 defines a seventh pole 1321 and an eighth pole 1322. A polarity of the seventh pole 1321 is similar to that of the fifth pole 1311. A polarity of the eighth pole 1322 is opposite to the seventh pole 1321.
Each of the magnets 121, 122, 131, 132 has its own N-pole and S-pole. In the following descriptions, the first pole 1211 is magnetized as S-pole while the second pole 1212 is magnetized as N-pole. In the same token, the third pole 1221 is magnetized as S-pole while the fourth pole 1222 is magnetized as N-pole. The fifth pole 1311 is magnetized as S-pole while the sixth pole 1312 is magnetized as N-pole. The seventh pole 1321 is magnetized as S-pole while the eighth pole 1322 is magnetized as N-pole. The polarity setting for these magnets 121, 122, 131, 132 is not limited to the above-described arrangements, but the N- and S-arrangements may be reversed with respect to the whole magnets.
Referring to
Referring to
Referring to
The magnetic conductive portion 4 has a platy shape. A length of the magnetic conductive portion B is not less than that of the inner magnet A for conducting the magnetic fluxes 11 effectively. A length of the outer magnet A′ is not smaller than that of the inner magnet A. A width of the magnetic conductive portion W is unequal to the length of the inner and outer magnets A and A′. In the following descriptions, the width of the magnetic conductive portion W is smaller than the length of the inner magnet A.
The magnetic fluxes 11 generates from the second pole 1212, enters into the fifth pole 1311, comes out from the sixth pole 1312, flows along the magnetic conductive portion 4, flows through the pair of projecting portions 144, the pair of first sidewalls 142 and the pair of second sidewalls 141 of the yoke 14, and then enters into the first pole 1211. In another hands, the magnetic fluxes 11 generates from the fourth pole 1222, enters into the seventh pole 1321, comes out from the eighth pole 1322, flows along the magnetic conductive portion 4, flows through the pair of projecting portion 144, the pair of first sidewalls 142 and the pair of second sidewalls 141 of the yoke 14, and then enters into the third pole 1221. Thus, the magnetic fluxes 11 flow substantially perpendicularly to the coil 3.
The coil 3 receives current from external circuit. At one moment, direction of the current passing through the left first magnetic gap 151 is downward (shown as a dashed line with arrow). According to Left-hand rule, direction of the electromagnetic force F1 applied on a left half coil 31 is outward from the paper (labeled as ⊙), and direction of the electromagnetic force F2 applied on a right half coil 32 is also outward from the paper. However, direction of the electromagnetic force F3 applied on an upper half coil 34 is inward into the paper (labeled as {circle around (x)}), and direction of the electromagnetic force F4 applied on a lower half coil 33 is also inward into the paper. Because of the width of the magnetic conductive portion W is unequal to the length of the inner and outer magnets A and A′, the total electromagnetic force effected on the coil 3 drives the coil 3 to move. In this description, because the width of the magnetic conductive portion W is smaller than the length of the inner magnet A, the total electromagnetic force drives the coil 3 to move outward from the paper. As direction and intensity of the current passing through the coil 3 is varied, the movement of the coil 3 is outward or inward, alternatively, which is called vibration.
Although the thickness of the inner and outer magnets 12 and 13 are equal to each other provided in this embodiment, the thickness of the inner and outer magnets is not limited that.
It is understood that in an alternative exemplary embodiment, the width of the magnetic conductive portion is larger than the length of the inner and outer magnets A and A′.
The opposite poles of each magnet are arranged in a lateral direction, thereby reducing the total height of the magnet assembly and the speaker.
While the present invention has been described with reference to the specific embodiment, the description of the invention is illustrative and is not to be construed as limiting the invention. Various of modifications to the present invention can be made to the exemplary embodiment by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010 2 0512995 U | Sep 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6934402 | Croft, III et al. | Aug 2005 | B2 |
7062061 | Suzuki | Jun 2006 | B2 |
20090034751 | Takewa | Feb 2009 | A1 |
20110150264 | Konuma | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120051580 A1 | Mar 2012 | US |