The present application claims priority of European patent application EP21154878 of Feb. 2, 2021, the contents whereof are entirely incorporated.
The present invention concerns a magnetic component and a manufacturing method thereof. Embodiments of the invention include, among others, inductors, polyphase inductors, coupled inductors, chokes for electromagnetic compatibility filters, common mode chokes, reactors, and power transformers. The invention is not limited to these examples, however.
Magnetic components are key elements of electric engineering and power electronics. They are found in a wide range of applications in all industrial sectors. Inductors, for example are used, in filter, voltage converters, in power factor compensation, or as current-limiting reactors. Advanced noise filters often include common mode chokes (also known as current-compensated chokes), with two windings configured in a way that the flux of differential-mode currents cancel each other. Transformers are another important example of magnetic component with coupled inductances.
Besides their electrical characteristics, magnetic components must also fulfil specifications for dimensions, voltage, current, and power rating, losses, heat resistance, immunity to vibrations, and many other parameters. In automotive applications, where electrical components are more and more common, these specifications are especially stringent. As a result, despite the apparent simplicity of the underlying electric circuit, inductors are complex products that are difficult to design and customize to all the possible applications.
A state-of the art magnetic component is the result of a trade-off between the desired nominal inductance value, the size, weight, and footprint dictated by the desired application, the choice of material, layout, and cooling.
It is known to house magnetic components into metallic envelopes to improve the heat exchange. It is also known to encapsulate magnetic component in potting compounds to further improve the heat exchange and provide resistance against vibrations.
The housing is the mechanical and thermal interface between the magnetic component and the system in which it is embedded. Clearances between the component and housing should be kept to a minimum for a lower thermal resistance, and the dimensional tolerances of the housing must be strictly controlled. On the other hand, eddy currents may induce additional losses if the conductive housing is very close to the magnetic component. Potting requires a cavity in the housing with a fluid-tight bottom, conventionally obtained by complex metalworking processes such as stamping, deep-drawing, die-casting, welding and/or machining. Such housings are expensive, bulky, and contribute significantly to the cost.
An aim of the present invention is the provision of a magnetic component overcoming the shortcomings and limitations of the state of the art and a corresponding fabrication process.
According to the invention, these aims are attained by the object of the attached claims, and especially by a magnetic component comprising one or more magnetic circuits concatenated with electric windings contained in a housing and held stationary in the housing by a solid potting mass, characterized in that the housing has one open top face and at least one open side, the potting mass having a top boundary parallel to the open top face and at least one side boundary adjacent to or coincident with the at least one open side.
The inventive object is attainable as well by a method of fabricating a magnetic component comprising: providing a housing configured as an open trough with an open top and at one open side or a plurality of open sides; closing the open side or the plurality of open sides with a removable barrier or barriers to create a temporary cavity with an open top and fluid-tight bottom and sides, positioning one or more magnetic circuits with concatenated electric windings in the temporary cavity, pouring a curable potting compound in the temporary cavity and submerging at least partially the magnetic circuits and/or the electric winding in the curable potting compound, causing the curable potting compound to cure and solidify, removing the removable barrier or barriers.
Dependent claims deal with important and useful, but not essential, features. These include the fact that the housing may be configured as an open trough with two mutually opposed open sides, each adjacent to or coincident with a side boundary of the potting mass, the potting mass englobing partially the magnetic circuits and/or the electric windings concatenated thereto, such at least part of the magnetic circuits and/or part of the electric windings is in air, the use of section of a metallic extrusion, for example an aluminium extrusion as housing, the nature of the magnetic cores that may comprise one or more of: ferrite, powdered magnetic alloy, iron powder, amorphous or nanocrystalline ferromagnetic material, laminated magnetic steel, and of the windings' conductor, which may be Litz or stranded conductors, solid conductors, aluminium wire, copper wire, silver wire, wherein the section of the conductor may be round, flat, rectangular, or keystone. The potting mass may be of epoxy, polyurethane or silicone composition, or indeed any suitable material capable of being solidified.
The magnetic device of the invention has at least one core with at least one winding concatenated thereto. Changing the number of cores and winding one can obtain the whole gamut of magnetic devices: monophase and multiphase inductors, coupled inductors, common-mode chokes, transformers, and so on.
With respect to what is known in the art, the invention provides a lower manufacturing cost, because a housing with open ends is simpler to manufacture: plain “U” shapes can be realized very economically by bending metal sheets, and more complex forms can still be achieved by extrusion. Both these processes are cheaper than stamping, drawing, casting or machining metal parts, yield excellent dimensional tolerances and thin walls, thus a lower weight of the final component. The weight is even further reduced since at least two walls are omitted.
The invention may yield a superior heat dissipation, since the extruded housing can be manufactured in a shape following that of the magnetic cores and windings, at minimal distance. The eddy losses are also essentially cancelled, because the housing of the device is open on the same sides on which the winding come out of the core. The absence of a conductive wall on the open sides of the housing also simplifies the electrical insulation, especially for what creeping discharges are concerned.
Exemplar embodiments of the invention are disclosed in the description and illustrated by the drawings in which:
With reference to
Since the housing has the shape of a channel 42 (visible in
In
In a possible variant, the barriers 60 are not removable but designed to bond permanently to the potting mass 50. The barriers in this case may be light plastic elements that do not add appreciably to the final weight and cost. Such sacrificial barriers may also have additional useful features such as: spacing means keeping the coils separated from the walls of the channel 42, support means for the terminals 32, holes or other forms of mechanical interface for affixing the magnetic device 100 at a desired location, electric connectors for inserting the magnetic device in a circuit, and so on.
The fluid-tight connection between the removable barriers 60 and the housing 40 can be obtained by interposing a rubber sheet or gaskets, or in any other suitable way. Preferably, the removable barriers are made of a low-adhesion material like PTFE or has a surface layer of such a low-adhesion material on surface to ease the separation between the barrier and the housing. To the same purpose, the removable barriers may also be coated with a release fluid containing for example fluorinated oil, silicone oil, or mineral oil.
Advantageously, the terminals of the primary winding 35 and the terminal of the secondary winding 36 are routed towards the opposite open ends of the housing, where there are no metallic walls, thereby simplifying the insulation problems.
This variant of realization lends itself also to the realization of inductors, current-compensated chokes, Power-factor correction reactors, or any other magnetic, filtering, or electronic components.
Since the EE cores 22 and 23 yield a prismatic shape when assembled, the housing 40 is preferably configured as an open rectangular channel in which the wound core elements 22, 23 are tightly contained. In this construction the electric windings 33, 34 are held spaced from the metallic walls by the structure of the core itself. The insulation distance between windings and housing is automatically guaranteed. Core elements 22, 23, if nonconducting, can be placed in direct contact with the housing 40.
In addition to the two form of magnetic cores demonstrated above, the invention could be realized with cores of any other shape.
Number | Date | Country | Kind |
---|---|---|---|
21154878.9 | Feb 2021 | EP | regional |