Magnetic connector for a data communications cable

Abstract
A magnetic connector has a plug core disposed around a plug contact set and a receptacle core disposed around a receptacle contact set. The plug core defines a generally elongated circular plug core edge. The receptacle core defines a generally elongated concentric-circular receptacle core edge. The receptacle core edge defines an air gap and the plug core defines an anchor configured to insert into the air gap. A coil is disposed around the receptacle core, and the coil, the plug core and the air gap define a magnetic circuit. The coil is electrically energized so as to form a magnetic field within an air gap, lock the anchor within the air gap and lock the plug contact set to the receptacle contact set accordingly.
Description
BACKGROUND OF THE INVENTION

Noninvasive physiological monitoring systems for measuring constituents of circulating blood have advanced from basic pulse oximeters to monitors capable of measuring abnormal and total hemoglobin among other parameters. A basic pulse oximeter capable of measuring blood oxygen saturation typically includes an optical sensor, a monitor for processing sensor signals and displaying results and a cable electrically interconnecting the sensor and the monitor. A pulse oximetry sensor typically has a red wavelength light emitting diode (LED), an infrared (IR) wavelength LED and a photodiode detector. The LEDs and detector are attached to a patient tissue site, such as a finger. The cable transmits drive signals from the monitor to the LEDs, and the LEDs respond to the drive signals to transmit light into the tissue site. The detector generates a signal responsive to the emitted light after attenuation by pulsatile blood flow within the tissue site. The cable transmits the detector signal to the monitor, which processes the signal to provide a numerical readout of oxygen saturation (SpO2) and pulse rate. Advanced blood parameter monitors utilizing multiple LEDs that transmit a spectrum of wavelengths incorporate pulse oximetry and the capability of additional hemoglobin, perfusion and pulse measurements such as carboxyhemoglobin (HbCO), methemoglobin (HbMet), total hemoglobin (Hbt), total hematocrit (Hct), perfusion index (PI) and pulse variability index (PVI), as a few examples.


High fidelity pulse oximeters capable of reading through motion induced noise are disclosed in U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are assigned to Masimo Corporation (“Masimo”) and are incorporated by reference herein. Advanced physiological monitors and corresponding multiple wavelength optical sensors are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, assigned to Masimo Laboratories, Inc. and incorporated by reference herein. Noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors are also available from Masimo.


SUMMARY OF THE INVENTION

Advanced physiological monitoring systems utilize a significant number of control and signal lines, creating a high pin density for sensor, cable and monitor connectors. This high pin density places a heavy demand on the connector mechanisms with respect to connect/disconnect ease, connection integrity, connector cost and life. A magnetic connector advantageously utilizes one or more of electromagnets, permanent magnets, magnetically permeable materials and air gaps to auto-align, attach, hold and release connectors for physiological monitoring applications.


One aspect of a magnetic connector is a receptacle and a plug. The receptacle has a wiring end, a receptacle contact end, a receptacle core, a coil and a receptacle contact set. The plug has a cable end, a plug contact end, a plug core and a plug contact set. An air gap is located in the receptacle core at the receptacle contact end. The coil, the core and the air gap form a magnetic circuit so that energizing the coil creates a magnetic field in the air gap. An anchor extends from plug core at the plug contact end so as to fit within the air gap. The receptacle contact set and the plug contact set electrically connect as the anchor inserts into the air gap.


In various embodiments, the receptacle core has an inner core and an outer core. The coil is wrapped around the inner core. The inner core and the outer core have concentric elongated circular receptacle edges that define the air gap. The plug core has an elongated circular plug edge that defines the anchor. The receptacle contact set has a socket block with contact apertures and contacts at least partially disposed within the contact apertures. The plug contact set has a pin block with pin apertures and pins at least partially disposed within the pin apertures. The pins insert into the contacts.


Additional embodiments include at least one permanent magnet disposed in either the anchor or the air gap or both. Power leads transmit current from a power source to the coil. A switch in series with one of the power leads is actuated either to block current in the power leads and de-energize the coil or to pass current in the power leads and energize the coil. An LED in series with one of the power leads illuminates according to the flow of current in the power leads so as to indicate if the coil is energized.


Another aspect of a magnetic connector involves interconnecting an optical sensor and a physiological monitor with a magnetic connector having a monitor receptacle and a cable plug. A receptacle core and a plug core are each constructed of magnetically permeable material. Receptacle contacts are housed within the receptacle core, and plug contacts are housed within the plug core. The receptacle core and the plug core are interconnected so as to electrically connect the receptacle contacts and the plug contacts. The receptacle core and the plug core are also magnetically coupled so as to maintain the interconnection. In an embodiment, a coil is wrapped around either the receptacle core or the plug core so as to form an electromagnet. An air gap is formed in the electromagnet core and an anchor is formed to extend from the other core. The anchor fits within the air gap. Current to the coil is switched on or off so that the electromagnet assists in locking the anchor within the air gap or releasing the anchor from the air gap.


In various embodiments, at least one permanent magnet is embedded within one of the cores. If a permanent magnet is embedded within or near the anchor or near the air gap, then the permanent magnet locks the anchor within the air gap when the coil is de-energized. When the coil is energized, it creates an opposing field to the permanent magnet within the air gap so as to release the anchor. This permanent-magnet-based magnetic coupling holds the receptacle and plug together when the coil is de-energized, but allows the receptacle and plug to be easily disconnected by briefly energizing the coil.


A further aspect of a magnetic connector is first and second magnetic elements having first and second contact sets. The first contact set is housed proximate the first magnetic element, and the second contact set is housed proximate the second magnetic element. At least one of the magnetic elements is responsive to a current input so as to alter a magnetic coupling between the magnetic elements. The magnetic coupling assists in making or breaking an electrical connection between the first and second contact sets. In an embodiment, the first magnetic element comprises a core of magnetically permeable material, a conductive coil having “N” turns disposed around at least a portion of the core, coil leads in communications with a current source and an air gap defined within the core. The current source has “I” amps energizing the coil so as to generate a electromagnetic field within the air gap proportional to N times I. In an embodiment, the second magnetic element comprises an anchor of magnetically permeable material sized to closely fit within the air gap. The contact sets make an electrical connection as the anchor is manually inserted into the air gap and break an electrical connection as the anchor is manually withdrawn from the air gap. The anchor locks within the air gap in response to a magnetic field within the air gap so as to maintain an electrical connection between the contact sets.


In various other embodiments, a switch in series with the coil controls whether the coil is energized, and an LED in series with the switch indicates whether the coil is energized. A permanent magnet is incorporated within the first magnetic element near the air gap and/or within the second magnetic element in or near the anchor. The permanent magnet has poles oriented so that its magnetic field opposes the air gap field.


In yet another embodiment, a magnetic connector has a plug means and a corresponding receptacle means for interconnecting a sensor and a corresponding monitor. The magnetic connector also has a socket means and a corresponding pin means housed within the plug means and the receptacle means for making and breaking electrical communications between sensor conductors and monitor conductors as the plug is inserted into and removed from the receptacle, respectively. Further, the magnetic connector has a pair of mating magnetic element means housed within the plug means and the receptacle means for assisting in at least one of the making and breaking of electrical communications between the socket means and the pin means. In an embodiment, the mating magnetic element means comprises an electromagnet means for generating a magnetic field within an air gap and an anchor means for locking within and releasing from the air gap according to power provided to the electromagnet means. Various other embodiments include a permanent magnet means for opposing the air gap magnetic field disposed proximate at least one of the air gap and the anchor means, a switch means for manually controlling the air gap magnetic field so as to secure or release the anchor means within the air gap and/or an indicator means for visually identifying the state of the air gap magnetic field.





DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a physiological monitoring system having a magnetic connector;



FIGS. 2A-D are illustrations of different magnetic connector configurations for connecting a sensor and a monitor;



FIG. 3 is a general block diagram of a magnetic connector;



FIGS. 4A-C are illustrations of various magnetic coupling mechanisms incorporated within a magnetic connector;



FIGS. 5A-F are front and back, perspective and exploded, connected and disconnected views of a magnetic connector receptacle and plug;



FIGS. 6A-E′ are cross sectional exploded, disconnected, connected and detailed views of receptacle and plug core assemblies;



FIGS. 7A-D are top, perspective, front and side views, respectively, of a receptacle inner core;



FIGS. 8A-D are top, perspective, front and side views, respectively, of a receptacle outer core;



FIGS. 9A-D are top, perspective, front and side views, respectively, of a receptacle contact set;



FIGS. 10A-D are top, perspective, front and side views, respectively, of a plug core; and



FIGS. 11A-D are top, perspective, front and side views, respectively, of plug contact set.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 illustrates a physiological monitoring system 100 having a sensor 110, a monitor 120, a cable 130 interconnecting the sensor 110 and the monitor 120, and a magnetic connector 140. The magnetic connector 140 has a receptacle 142 mounted in the monitor 120 and a plug 144 terminating the cable 130. Advantageously, the magnetic connector 140 utilizes magnetic fields generated by combinations of electromagnets, permanent magnets, magnetically permeable materials and air gaps to auto-align, attach, hold and release the receptacle 142 and plug 144. In this manner, a relatively small connector having the high contact density needed for advanced physiological monitoring applications can be made to have ease of use, durability and low cost characteristics. These characteristics are particularly important for handheld monitoring applications. Various combinations of sensor 110, monitor 120, cable 130 and magnetic connector 140 are described with respect to FIGS. 2A-D, below.



FIGS. 2A-D illustrate different configurations of one or more magnetic connectors 240, 250 utilized to connect a sensor 210 and a monitor 220. FIGS. 2A-B illustrate dual magnetic connector configurations and FIGS. 2C-D illustrate single magnetic connector configurations. As shown in FIG. 2A, in a first configuration, a sensor 210 is connected to a monitor 220 via a patient cable 230 and a sensor cable 212. The patient cable 230 is a standalone component and the sensor cable 212 is integral to the sensor 210. A first magnetic connector 240 is disposed proximate the monitor 220 for connecting the patient cable 230 to the monitor 220. A second magnetic connector 250 is disposed between the patient cable 230 and the sensor cable 212 for connecting the patient cable 230 to the sensor 210.


In particular, the first magnetic connector 240 has a receptacle 242 mounted to the monitor 220 and a plug 244 mounted to one end of the patient cable 230. A magnetic field provides at least some force for assisting a person to join and/or disjoin the receptacle 242 and plug 244 so as to electrically connect and/or disconnect patient cable 230 conductors and monitor 220 conductors. The monitor 220 has a button 260 that is actuated so as to energize/de-energize the magnetic field in the receptacle 242. The monitor 220 also has an indicator light 262 that signals the magnetic field status as on or off.


Similarly, the second magnetic connector 250 has a receptacle 252 mounted to one end of the patient cable 230 and a plug 254 mounted to the end of the sensor cable 212. Likewise, a magnetic field provides at least some force for assisting a person to join and/or disjoin the receptacle 252 and plug 254 so as to electrically connect and/or disconnect patient cable 230 conductors and sensor cable 212 conductors. Also, the patient cable receptacle 252 has a button 270 so as to energize/de-energize the magnetic field in the receptacle 252 and an indicator light 272 that signals the magnetic field status as on or off. A magnetic connector embodiment including a receptacle and a plug are described with respect to FIGS. 5-11, below.


As shown in FIG. 2B, in a second configuration, a sensor 210 is connected to a monitor 220 via a patient cable 230. A first magnetic connector 240 is disposed proximate the monitor 220 and a second magnetic connector 250 is disposed proximate the sensor 210 for interconnecting the sensor 210 and the monitor 220 via the sensor cable 230. The first magnetic connector 240 is as described with respect to FIG. 2A, above. The second magnetic connector 250 is as described with respect to FIG. 2A, above, except that the plug portion 254 is disposed proximate the sensor 210.


As shown in FIG. 2C, in a third configuration, a sensor 210 is connected to a monitor 220 via a sensor cable 212. A single magnetic connector 240 is disposed proximate the monitor 220 for connecting the monitor 220 to the sensor 210 via the sensor cable 212. The magnetic connector 240 has a receptacle 242 mounted to the monitor 220 and a plug 244 mounted to the end of the sensor cable 212 for interconnecting the sensor 210 and the monitor 220. Otherwise, the magnetic connector 240 is as described with respect to FIG. 2A, above.


As shown in FIG. 2D, in a fourth configuration, a sensor 210 is connected directly to a monitor 220. A single magnetic connector 240 is disposed between the monitor 220 and sensor 210. In particular, the magnetic connector 240 has a receptacle 242 disposed proximate the monitor 220 and a plug 244 disposed proximate the sensor 210. Otherwise, the magnetic connector 240 is as described with respect to FIG. 2A, above.


As described with respect to FIGS. 2A-D, a monitor 220 may be, as examples, any of a multi-parameter patient monitoring system (MPMS), a plug-in to a MPMS, a standalone monitor, a handheld monitor, a handheld monitor docked to a docking station, a personal monitoring device or any physiological parameter calculating device that processes one or more sensor signals to derive a physiological measurement. As described above, a sensor 210 may be a reusable, resposable or disposable sensor; an optical transmission or reflection sensor; a blood pressure sensor; a piezo-electric or other acoustic sensor; an assembly of EKG or EEG electrodes; or any non-invasive or invasive device for providing physiological signals to a monitoring or calculating device.



FIG. 3 generally illustrates a magnetic connector 300 having a receptacle 301 and a plug 302. The receptacle 301 has a contact set 310 and magnetic element(s) 320. The plug 302 has a contact set 360 and magnetic element(s) 370. The magnetic element pair 320, 370 provides a magnetic coupling 305 between receptacle 301 and plug 302. This magnetic coupling assists a user in making or breaking the electrical/mechanical connection between the contact sets 310, 360, making or breaking continuity between receptacle wiring 312 and plug wiring 362. In a particularly advantageous embodiment, the receptacle magnetic element(s) 320 incorporate an electromagnet. When energized by a current source 322, the electromagnet generates a magnetic field within an air gap 330 so as to attract or repel a corresponding anchor 380 that closely fits within the air gap 330. In various embodiments, the magnetic elements 320, 370 may include one or more of electromagnets, permanent magnets, materials with high magnetic permeability, air gaps and anchors. In various embodiments, the receptacle or plug may be integrated with a monitor, such as mounted to a monitor chassis, or attached to a sensor cable or patient cable, for example.



FIGS. 4A-C generally illustrate various magnetic coupling 305 (FIG. 3) embodiments between the receptacle and plug of a magnetic connector, such as generally described above with respect to FIG. 3. These embodiments include a receptacle core 410 defining an air gap 412 and a corresponding plug core 480 defining an anchor 482. An electromagnet is formed from the receptacle core 410, a coil 420, a DC current source 430, a switch 440 and an indicator 450. When the switch 440 is closed, the coil 420 is energized, the indicator 450 is on and the electromagnet generates a magnetic field within the air gap 412. When the switch 440 is opened, the coil 420 is de-energized, the indicator 450 is off and the air gap magnetic field is extinguished. The receptacle core 410 and plug core 480 are constructed of materials having a high magnetic permeability. A substantial magnetic field is created in the air gap 412 having north “N” and south “S” polarities as shown. The receptacle core 410 and plug core 480 can be any of a variety of shapes and sizes. For example, the embodiment described below with respect to FIGS. 5-11 utilizes a receptacle core that defines an elongated, circular air gap and a plug core that defines a corresponding elongated, circular anchor.


As shown in FIG. 4A, in a first embodiment, the plug core 480 or at least the anchor 482 is a soft iron material and the switch 440 is normally closed (N.C.). Accordingly, D.C. current normally flows in the coil 420 and a magnetic field is maintained in the air gap 412. As such, the anchor 482 is attracted to and held within the air gap 412, locking the corresponding plug (not shown) to the corresponding receptacle (not shown). The switch 440 is actuated to interrupt the D.C. current, which releases the anchor 482 from the air gap 412 and allows the plug to be pulled from the receptacle.


As shown in FIG. 4B, in a second embodiment, the plug core 480 is a permanent magnet or is a material with a high magnetic permeability embedded with one or more permanent magnets 490. The permanent magnet field attracts the anchor 482 to the air gap 412, so as to lock a corresponding plug to a corresponding receptacle. The switch 440 is normally open (N.O.). Accordingly, actuating the switch 440 pulses the D.C. current to the coil 420, temporarily creating an opposing field (N), (S) within the air gap 412. This releases the anchor 482 from the air gap 412 and allows the plug to be pulled from the receptacle.


As shown in FIG. 4C, in a third embodiment, the plug core 480 is a soft iron material. One or more permanent magnets 460 are embedded within the receptacle core 410. The permanent magnet field attracts the anchor 482 to the air gap 412, so as to lock a corresponding plug to a corresponding receptacle. The switch 440 is normally open (N.O.). Accordingly, actuating the switch 440 pulses the D.C. current to the coil 420, temporarily creating an opposing field (N), (S) within the air gap 412. This releases the anchor 482 from the air gap 412 and allows the plug to be pulled from the receptacle.



FIGS. 5A-F illustrate a magnetic connector embodiment 500 having a receptacle 501 and a plug 502. The receptacle 501 is mountable to a device, such as a physiological monitor. The plug 502 is attachable to a sensor cable or a patient cable. The receptacle 501 has a core 700, 800 (FIGS. 5E-F) that defines an elongated circular air gap 510. The plug 502 has a core 1000 (FIGS. 5E-F) that defines an elongated circular anchor 550, which inserts within the air gap 510. The receptacle core 700, 800 and corresponding coil 600 (FIGS. 5E-F) form an electromagnet that, when energized, generates a magnetic field within the air gap 510. Depending on the configuration, the electromagnetic field holds or releases the anchor 550 from the air gap 510 so as to lock or unlock the connection between the receptacle 501 and plug 502.


Also shown in FIGS. 5A-F, the receptacle 501 has a receptacle contact set 900 and the plug 502 has a plug contact set 1100. When the receptacle 501 and plug 502 are connected, the plug contact set 1100 inserts into the receptacle contact set 900, electrically coupling the receptacle 501 and socket 502. This electrical coupling provides an electrical path between cable conductors attached to the plug 502 at a cable end 560 (FIG. 5A) and wires attached to the receptacle 501 at a device end 530 (FIG. 58).


As shown in FIGS. 5E-F, the receptacle 501 has a coil 600, an inner core 700, an outer core 800 and a contact set 900. The receptacle core 700, 800 forms a receptacle housing. In particular, the coil 600 is wound around the inner core 700 and enclosed by the outer core 800. The contact set 900 is mounted inside the inner core 700. The plug 502 has a core 1000 and a contact set 1100. The plug core 1000 forms a plug housing, and the contact set 1100 is mounted inside the plug core 1000.



FIGS. 6A-E are cross-sections of the receptacle core 700, 800 and plug core 1000. As shown in FIGS. 6A-C, the coil 600 is wound around the receptacle inner core 700 and enclosed by the outer core 800. Thus configured, the front edges of the receptacle core 700, 800 form an air gap 510. Likewise, the front edge of the plug core 1000 forms an anchor 550 that inserts (FIG. 6C) into the air gap 510. As shown in FIG. 6D, if DC current flows in the top-half of the coil in a direction into the page and in the bottom-half of the coil in a direction out of the page, then the magnetic field 603 produced by the coil has a north pole, N, at the left and a south pole, S, at the right (right-hand rule). As shown in FIG. 6E, the magnetic flux 604 in the receptacle core resulting from the magnetic field 603 is mostly confined within the walls of the receptacle core 700, 800, and results in a magnetic field in the air gap 510 as shown. As a result, the magnetic field in the air gap 510 has a north pole at the outer core portion and a south pole at the inner core portion. Thus, a “slice” of the receptacle core 700, 800 and corresponding air gap 510 are analogous to the core and air gap described with respect to FIGS. 4A-C, above. Likewise, a “slice” of the plug core 1000 and plug anchor 550 are analogous to the plug core and anchor described with respect to FIGS. 4A-C, above.



FIGS. 7-11 illustrate further details of the receptacle inner core 700, outer core 800, receptacle contact set 900, plug core 1000 and plug contact set 1100. As shown in FIGS. 7A-D, the receptacle inner core 700 mounts the receptacle contact set 900 (FIGS. 9A-D), supports the coil 600 (FIGS. 5E-F), and defines a portion of the receptacle core air gap 510 (FIG. 5A). The inner core 700 has a planar base 710 defining a back side 702 and a tubular coil support 720 extending from the base 710 and defining a front side 701. Both the base 710 and the coil support 720 have an elongated, circular cross-section. Inside the coil support 720 is a bracket 730 and corresponding bracket holes 732 for mounting the receptacle contact set 900 (FIGS. 9A-D). A wiring aperture 740 provides wiring access to the contact set 900 from the back side 702. An elongated circular edge 722 defines a portion of the air gap 510 (FIG. 5A) at the front side 701. In an embodiment (not shown), the base 710 provides chassis mounts for attaching the receptacle 501 (FIGS. 5A-B) to a monitor.


As shown in FIGS. 8A-D, the receptacle outer core 800 houses the coil, inner core and contact set and defines a portion of the receptacle core air gap 510 (FIG. 5A). The outer core 800 has a tubular housing 810 defining a back side 802 and a tubular edge 820 extending from the housing 810 and defining a front side 801. Both the housing 810 and the edge 820 have elongated circular cross-sections, with the edge 820 cross-section having a smaller circumference than the housing 810 cross-section. The edge 820 also defines a portion of the air gap 510 (FIG. 5A).


As shown in FIGS. 9A-D, the receptacle contact set 900 has a front side 901, a back side 902, a socket block 910 and corresponding contacts (not visible). The socket block 910 has a generally rectangular cross-sectioned body 910 and generally circular mounting ears 920 extending from the block sides. The ears have ear holes 922 that accept fasteners. The socket block 910 also has several rows of apertures 912 that extend from the front side 901 to the back side 902. Conductive contacts (not visible) are disposed within the apertures 912 and are configured to mate with corresponding plug pins 1130 (FIGS. 11A-D), described below. The receptacle contact set 900 mounts within the inner core 700 (FIGS. 7A-D) so that the mounting ears 920 rest on the core bracket 730 (FIGS. 7A-D). The contact set 900 is attached to the inner core 700 (FIGS. 7A-D) with fasteners disposed through the ear holes 922 and mounting holes 732 (FIGS. 7A-D).


As shown in FIGS. 10A-D, the plug core 1000 mounts the plug contact set 1100 (FIGS. 11A-D) and defines an anchor 550 (FIG. 5B) that releasably locks within the receptacle air gap 510 (FIG. 5A). The plug core 1000 has a tubular housing 1010 defining a back side 1002 and a tubular edge 1020 extending from the housing 1010 and defining a front side 1001. The edge 1020 has an elongated, circular cross-section. The housing 1010 has an elongated, circular cross-section near the front side 1001 and a circular cross-section near the back side that accommodates a cable (not shown). Inside the housing 1010 is a bracket 1030 and corresponding bracket holes 1032 for mounting the plug contact set 1100 (FIGS. 11A-D). A cable aperture 1040 provides cable entry for wiring access to the plug contact set 1100 (FIGS. 11A-D) via the back side 1002. The elongated circular edge 1020 defines the anchor 550 (FIG. 5B) at the front side 1001.


As shown in FIGS. 11A-D, the plug contact set 1100 has a front side 1101, a back side 1102, a pin block 1110 and corresponding pins 1130. The pin block 1110 has a generally rectangular cross-sectioned body having generally circular mounting ears 1120 extending from the block sides. The ears 1120 have ear holes 1122 that accept fasteners. The pin block 1110 also has several rows of apertures 1112 that extend from the front side 1101 to the back side 1102. Conductive pins 1130 are disposed within the apertures 1112 and are configured to mate with corresponding receptacle contacts, described above. The contact set 1100 mounts within the plug core 1000 (FIGS. 10A-D) so that the mounting ears 1120 rest on the core bracket 1030 (FIGS. 10A-D). The contact set 1100 is attached to the receptacle core 1000 (FIGS. 10A-D) with fasteners disposed through the ear holes 1122 and mounting holes 1032 (FIGS. 10A-D).


A magnetic connector has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

Claims
  • 1. A magnetic connector for a low voltage data communications cable, the magnetic connector comprising: a contact set configured to couple with a corresponding contact set of a corresponding connector;an energizeable magnetic circuit configured to align and hold the contact set in place with the corresponding contact set of the corresponding connector, the energizeable magnetic circuit configured to energize and deenergize to cause the contact set to attract and release the corresponding connector.
  • 2. The magnetic connector of claim 1, wherein the magnetic connector is comprised as part of a physiological sensor.
  • 3. The magnetic connector of claim 1, wherein the magnetic connector connects to a physiological monitoring system.
  • 4. The magnetic connector of claim 1, wherein the energizeable magnetic circuit comprises one or more of electromagnets or permanent magnets.
  • 5. The magnetic connector of claim 1, further comprising a button configured to energize and deenergize the magnetic circuit.
  • 6. The magnetic connector of claim 1, further comprising an air gap.
  • 7. The magnetic connector of claim 6, wherein the energizeable magnetic circuit generates a magnetic field only within the air gap.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 15/288,987, filed Oct. 7, 2016, which is a continuation of U.S. patent application Ser. No. 13/783,424, filed Mar. 4, 2013, now issued as U.S. Pat. No. 9,466,919, which is a continuation of U.S. patent application Ser. No. 12/721,199, filed Mar. 10, 2010, now issued as U.S. Pat. No. 8,388,353, which claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 61/159,336, filed Mar. 11, 2009, titled Magnetic Connector, hereby incorporated by reference herein.

US Referenced Citations (902)
Number Name Date Kind
4317969 Riegler Mar 1982 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5342204 Och Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5568815 Raynes et al. Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5685299 Diab et al. Nov 1997 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6670583 Kara Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6897370 Kondo May 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7204695 Shiu Apr 2007 B1
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7331793 Hernandez Feb 2008 B2
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Al-Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8187195 Tulkki May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8198861 Kudou Jun 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellot et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8497753 DiFonzo et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9614337 Lisogurski et al. Apr 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al-Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali et al. Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Al-Ali et al. Jan 2019 B1
10188348 Kiani et al. Jan 2019 B2
RE47218 Ali-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
20060161054 Reuss et al. Jul 2006 A1
20070072443 Rohrbach Mar 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20090111287 Lindberg Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20110082711 Poeze et al. Apr 2011 A1
20110125060 Telfort et al. May 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150133755 Smith et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366507 Blank Dec 2015 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali et al. Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani et al. Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
Related Publications (1)
Number Date Country
20190221966 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61159336 Mar 2009 US
Continuations (3)
Number Date Country
Parent 15288987 Oct 2016 US
Child 16230063 US
Parent 13783424 Mar 2013 US
Child 15288987 US
Parent 12721199 Mar 2010 US
Child 13783424 US