Claims
- 1. A conductor comprising stationary contact means including a plurality of stationary contact sections including fixed contact sections and a pivot contact section and mounted on a first conductor, a movable contact mounted on a movable conductor which is movable between open and closed contact positions, the fixed contact sections having substantially aligned contact surfaces facing the movable contact, the first conductor having a pivot edge on which the pivot section is mounted, the pivot edge being aligned with the contacting surfaces, spring means between the pivot edge and the contact surfaces for holding the pivot section against the pivot edge and for biasing the contact surface of the pivot section out of alignment with those of the stationary contact sections on the side of the movable contact, and electromagnetic means for moving the movable conductor to the closed position and operative means for moving the movable conductor to the open position when the electromagnetic means is deenergized.
- 2. The contactor of claim 1 in which the pivot section comprises groove means in which the pivot edge is seated.
- 3. The contactor of claim 2 in which the groove means is on the side of the pivot section facing the movable contact, and the spring means comprises a coil spring urging the pivot section toward the movable contact.
- 4. The contact of claim 3 in which the pivot section is located between a pair of stationary contact sections.
- 5. The contactor of claim 4 in which the stationary contact means comprises stop means for limiting the pivotal movement of the pivot section in response to the coil spring.
- 6. The contactor of claim 1 in which the movable conductor is pivotally mounted, the electromagnetic means including an armature, and means operatively connecting the armature to the moving conductor for closing the contacts when the electromagnetic means is actuated.
- 7. The contactor of claim 5 in which the connecting means comprises a movable contact spring for pressing the closed contacts together.
- 8. The contactor of claim 6 in which a kickout spring is operatively connected to the armature to facilitate opening of the contacts when the electromagnet is deenergized.
- 9. The contactor of claim 1 in which the movable conductor comprises a support lever that is pivotally mounted to permit in an out, lateral, and torsional movement of the moving contact.
- 10. The contactor of claim 1 in which the guide means for the upper end of the moving contact support is mounted by means of horizontally elongated holes to provide for lateral adjustment to effect alignment of the vertical edges of the movable contact with the outer edges of the stationary contact faces.
- 11. The contactor of claim 1 comprising a terminal, conductor means between the terminal and the first conductor, and the first conductor being detachably mounted on the conductor means.
- 12. The contactor of claim 1 in which a detachably mounted support for the stationary contacts is removable from the front of the contactor to permit removal of the stationary contacts without disturbing permanent contactor details or connections.
- 13. A contactor comprising stationary and movable contacts operable between open and closed positions, mounting means for the movable contact comprising a lever, pivot means mounting the lever to effect limited vertical and horizontal movement of the movable contacts with respect to the stationary contacts, electromagnetic means including an armature for moving the lever, link means between the lever and the armature and comprising a suspension rod and spring structure for effecting limited moving frictionless contact travel and kickout spring means connected to the assembly of the armature and lever for facilitating separation of the contacts when the electromagnetic means is deenergized.
- 14. The contactor of claim 13 in which the pivot means comprises a pivot pin loosely mounting the lever and extending on an axis substantially parallel to the direction of contact movement.
- 15. A contactor comprising stationary and movable contacts operable between open and closed positions, mounting means for the movable contact, a conductor mounting the stationary contact, an arc chute adjacent to the contacts, are blowout means for withdrawing an arc from between the contacts and comprising a first looped portion of the conductor and a ferromagnetic core in the looped portion, said blowout means also comprising a second looped conductor around the magnetic core and connected in series with the first looped portion only during arc interruption to effect an increase in the blowout magnetizing force, and said second looped conductor being effective with said first looped portion to develop additional magnetizing force in the coil when lighter overloads exist.
- 16. The contactor of claim 14 in which the arc blowout means also comprises a pair of ferromagnetic pole piece plates, and each plate secured to the end of the magnetic core and extending to opposite sides of the arc chute to generate an increased magnetic field therebetween and within the arc chute.
- 17. The contactor of claim 16 in which the arc chute comprises a line arc horn and a load arc horn extending from spaced locations near the contacts to divergent locations, the contactor comprising a load terminal, and the load arc horn being connected to the load terminal.
- 18. The contactor of claim 16 in which the load arc horn includes a lateral-extending member, an anti-close leaf spring biased by said member in a closed position when the arc chute is mounted on the contactor, and an interlock arm on the armature extending across the end of the leaf spring when the armature is open to prevent closure of the armature when the arc chute is removed.
CROSS-REFERENCE TO RELATED APPLICATIONS
This invention is related to those disclosed in the copending applications of Alfred W. Hodgson, Ser. No. 657,427, filed Feb. 12, 1976 now abandoned; and Ser. No. 657,429, filed Feb. 12, 1976 now abandoned; and is a continuation-in-part of application Ser. No. 657,428, filed Feb. 14, 1976 now abandoned.
US Referenced Citations (7)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
657428 |
Feb 1976 |
|