The present disclosure generally relates to a magnetic core component, and more particularly, to control of the gap thereof.
For a magnetic core component, the gap among its magnetic cores or between its magnetic cores and coils may directly affect its inductance value, winding loss and the like. However, the gap among magnetic cores need be precisely controlled so that the gap among magnetic cores and between magnetic cores and coils keep consistent, making the inductance value not deviate from an optimal design point of a circuit, reducing efficiency loss of the circuit and guaranteeing the dynamic adjustment range of the circuit being the original one. Meanwhile, the gap may also affect winding loss of a magnetic core component, so an accurate gap design may facilitate a loss control of the magnetic core component. Therefore an accurate gap control is of vital importance.
According to one aspect of the present disclosure, there is provided a magnetic core component, which includes a first magnetic component, a second magnetic component and a first gap control structure disposed between the first magnetic component and the second magnetic component, wherein the first gap control structure includes thixotropic material, is applied on the first magnetic component, the second magnetic component is disposed on the first gap control structure cured, and the gap between the first magnetic component and the second magnetic component is controlled by the effective height of the first gap control structure.
According to another aspect of the present disclosure, there is provided a method for controlling a gap of the magnetic core component, which includes a first magnetic component and a second magnetic component arranged oppositely, a gap is provided between the first magnetic component and the second magnetic component, and the gap control method includes following steps: applying a first gap control structure on the first magnetic component, wherein the first gap control structure including thixotropic material; curing the first gap control structure; detecting the effective height of the first gap control structure and adjusting adhesive dispensing and applying parameters so that the effective height of the first gap control structure is equal to an expected value of the gap; and assembling the second magnetic component and the first magnetic component to form the magnetic core component.
According to another aspect of the present disclosure, there is provided a magnetic core component, which include: a first magnetic component including two projections and a holding space disposed between both the projections: a second magnetic component arranged oppositely to the first magnetic component; a first gap control structure disposed between the projections of the first magnetic component and the second magnetic component; a coil disposed in the holding space of the first magnetic component; and a second gap control structure disposed between the first magnetic component and the coil. Wherein, both the first gap control structure and the second gap control structure include thixotropic material, a first gap is provided between the first magnetic component and the second magnetic component, a second gap is provided between a lower surface of the coil and the first magnetic component, a third gap is provided between an upper surface of the coil and the second magnetic component, and the first gap, the second gap and the third gap are controlled by effective heights of the first gap control structure and the second gap control structure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the disclosure and, together with the description, serve to explain the principles of the disclosure.
In one conventional magnetic core structure as shown in
In one conventional magnetic core structure as shown in
These is provided a magnetic core component and a gap control method for the magnetic core component so as to meet a precise control of a magnetic core gap of any height within 50˜2000 um and to reduce error in size of the gap substantially.
Now, exemplary embodiments will be described more comprehensively with reference to the drawings. However, the exemplary embodiments may be earned out in various manners, and shall not be interpreted as being limited to the embodiments set forth herein; instead, providing these embodiments will make the present disclosure more comprehensive and complete, and will fully convey the conception of the exemplary embodiments to those skilled in the art. In drawings, thickness of areas and layers is exaggerated for distinctness. The same numbers in drawings represent the same or similar structures, and thus detailed description thereof is omitted.
Characteristics, structures or features as described may be incorporated into one or more embodiments in any right way. In the following description, many specific details are provided to facilitate sufficient understanding of the embodiments of the present disclosure. However, those skilled in the art will appreciate that the technical solutions in the present disclosure may be practiced without one or more of the specific details, or other methods, elements, materials and so on may be employed. In other circumstances, well-known structures, materials or operations are not shown or described in detail to avoid confusion of aspects of the present disclosure.
Referring to
The present embodiment also provides a gap control method for the magnetic core component, which includes a first magnetic component 10 and a second magnetic component 20 arranged oppositely and a gap H is provided between the first magnetic component 10 and the second magnetic component 20. The gap control method includes following steps, applying a first gap control structure 40 on the first magnetic component 10 including thixotropic material; curing the first gap control structure 40; detecting the effective height of the first gap control structure 40 and adjusting adhesive dispensing process parameters and applying parameters so that the effective height of the first gap control structure 40 is equal to an expected value of the gap H; and assembling the second magnetic component 20 and the first magnetic component 10 to form the magnetic core component. In order to make the gap control mechanism capable of performing the above function in the components, the thixotropic material may meet the following requirements: an insulating strength greater than 10 kV/mm, a magnetic permeability of 1, a thixotropic index greater than 3, a Shore hardness more than A10 after it is cured, and a bonding strength more than 100 Pa between the thixotropic material and the magnetic core component.
In a manufacturing process, the first gap control structure 40 having a certain height is applied on a position of the first magnetic component 10 where a gap needs a control by using an adhesive dispensing process by means of equipment, and then is cured in an oven. Afterwards, the first magnetic component 10 and the second magnetic component 20 may be assembled by bonding material (not shown in
The dispensing process is simple in operation, low in cost and the gap control structure has a high stability A colloid, obtained by the gap control structure under the same dispensing parameter has a consistent height. By adjusting dispensing process parameters the gap control structure may have any height within a certain range. The dispensing process parameters include, for example, an inside diameter of a plastic pin, a dispensing pressure and a dispensing speed or the like, thereby meeting design requirements of any gap within a certain range. Thus an error in height of the gap control structure may be controlled to be within ±5% after the dispensing process is completed, i.e., the error in magnetic core gap after assembly is controlled to be within ±5%. For example, the height of a gap controlled by means of the dispensing process is 50˜2000 um.
Material used in the gap control structure of the present disclosure has low viscosity in the applying process, but the viscosity increases when the applying is stopped. Therefore, the gap control structure has a minimum variability after it is cured, and its effective height can always keep at a required gap height. So the gap precision may be improved, the gap control tolerance can be smaller than ±5%, and the height of the gap control structure can be controlled accurately so as to meet requirements for a magnetic core gap of any size.
The material of the first gap control structure 40 is thixotropic material, into which some filler may be mixed so as to reach adjusting requirements for hardness and insulativity or the like of the first gap control structure 40. In the present embodiment, the first gap control structure 40 may also include a filler 41 which is doped into the thixotropic material. The filler 41 may be in any form, for example, as shown in
In the present embodiment, both the first magnetic component 10 and the second magnetic component 20 are magnetic cores, for example, a U-shaped magnetic core, an I-shaped magnetic core and an E-shaped magnetic core as shown in
The gap control structure may be of any form, layout and quantity, as long as it is guaranteed there is no slant between the two upper and lower magnetic components when they are assembled.
In the present embodiment, the gap control structure generally is disposed at a position between the first magnetic component and the second magnetic component and is closest to both of them. Therefore, in addition to the U-shaped magnetic core, the I-shaped magnetic core and the E-shaped magnetic core, other magnetic cores may also be applicable.
For example, the first gap control structure 40 as shown in
The shape of the gap control structure may be property selected according to an actual size of a gap control surface P on the magnetic component 10. If the gap control surface P is in a regular structure (for example, a rectangle), the gap control structure may be shaped like a straight line, a circular arc or a curved line and the like, as shown in
The gap control structure may have any layout as long as the two magnetic components are aligned without a slant when they are assembled, such as arranged symmetrically on both sides as shown in
Difficulty in control of heights at a starting position and an ending position by using the adhesive dispensing process may give rise to a problem that a front end part and a rear end part of the gap control structure are unstable in height. However it is easy to control the intermediate part. Thus at least a portion of the intermediate part of the gap control structure may serve as a benchmark for height control, i.e., an effective height of the gap control structure. As shown in
If the intermediate part 42 is long enough, a height of a portion of the intermediate part 42 may be made equal to the gap H between the first magnetic component 10 and the second magnetic component 20, and a height of another portion may be made smaller than the gap H between the first magnetic component 10 and the second magnetic component 20, so as to achieve an aim of saving materials. For example, as shown in
Referring to
Taking the third magnetic component 30 being a coil as an example, the gap control method is specifically as below: firstly as shown in
Referring to
Both the first gap control structure 40 and the second gap control structure 40′ include the thixotropic material, any two of the second gap G2 between the first magnetic component 10 and the coil 30, the first gap G1 between the first magnetic component 10 and the second magnetic component 20, and the third gap G3 between the second magnetic component 20 and the coil 30 are controlled by the effective height of the first gap control structure 40 and by the effective height of the second gap control structure 40′. Therefore, any gap in the magnetic core component related to the magnetic core may be subject, to a precise control, thereby achieving the minimum winding loss.
Those skilled in the art shall understand that in other embodiments, the first gap control structure 40 may also be disposed between the upper surface of the coil 30 and the second magnetic component 20, and the second gap control structure 40′ may be disposed between the second magnetic component 20 and the first magnetic component 10. Material such as thermally conductive silicone is disposed between the lower surface of the coil 30 and the first magnetic component 10. Similarly, any two of the second gap between the first magnetic component 10 and the coil 30, the third gap between the second magnetic component 20 and the coil 30 and the first gap between the first magnetic component 10 and the second magnetic component 20 are controlled by the first gap control structure and second gap control structure mentioned above so as to achieve control of the remaining one gap among the three gaps.
In other words, the three gaps mentioned above may be controlled simultaneously by disposing a gap control structure between any two of the second magnetic component 20 and the first magnetic component 10, the upper surface of the coil 30 and the second magnetic component 20, and the lower surface of the coil 30 and the first magnetic component 10.
In addition, the second gap control structure is the same as the first gap control structure in material and property, and may be applied to the same applying process, arrangement and distribution manners as the first gap control structure.
Referring to
In conclusion, the gap control structure of the present disclosure has a low viscosity in the adhesive dispensing and applying process, but the viscosity is increased when the applying ends. Therefore, the gap control structure has minimum variability after it is cured, and its effective height can be always kept at a required gap height. Gap precision may be improved, and gap control tolerance is smaller than ±5%. The height of the gap control structure can be accurately controlled by the present disclosure so as to meet requirements for a magnetic core gap of any size. Therefore, the gap control structure has effects of high stability, high precision, high flexibility as well as low cost, etc.
The exemplary embodiments of the present disclosure are shown and described above in detail. It shall be understood that the present disclosure is not limited to the disclosed embodiments, and instead, the present disclosure intends to encompass various modifications and equivalent arrangements within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201410545191.X | Oct 2014 | CN | national |
This application is a divisional application of U.S. application Ser. No. 14/879,263, entitled “Magnetic Core Component and Gap Control Method Thereof” filed on Oct. 9, 2015, which claims priority to China Application Serial Number 201410545191.X, filed Oct. 15, 2014. The contents of these applications are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1748993 | Purdy | Mar 1930 | A |
4095206 | Hishiki | Jun 1978 | A |
5204653 | Saitoh | Apr 1993 | A |
20140085030 | Lin | Mar 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20180358157 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14879263 | Oct 2015 | US |
Child | 16104961 | US |