This application is related to U.S patent applicant Ser. No. 13/553,267, filed Jul. 19, 2012, now U.S. Pat. No. 9,159,487, entitled “Linear Electromagnetic Device” which is assigned to the same assignee as the present application.
The present disclosure relates to electromagnetic devices, such as electrical transformers and inductors, and more particularly to a magnetic core flux sensor and method for measuring magnetic flux within a core of a transformer, inductor or similar device.
Electromagnetic devices, such as inductors, transformers and similar devices include magnetic cores in which a magnetic flux flow may be generated in response to an electrical current flowing through a conductor winding associated with the magnetic core. The magnetic flux flow in a magnetic core may be estimated using techniques such as finite element analysis or similar techniques; however such methods are not a direct method of measuring the flux in a core. Accordingly, magnetic cores may be overdesigned or may be made larger than necessary for some applications. This can result in excess weight and volume of such devices. The excess weight and volume can be an important consideration when these electromagnetic devices are used in certain applications, such as for example on vehicles such as aircraft, aerospace vehicles or other vehicles where weight and size may be important.
An understanding of the flow or pattern of saturation in a magnetic core may also be helpful information in designing such electromagnetic devices. Whether a particular core design saturates as one body or if the saturation is time-based may be useful. For example, at any one moment in time, there is a boundary in the core material where the material may be saturated on one side of the boundary and non-saturated on the other side of the boundary. Knowledge of the saturation pattern may directly affect the design and implementation of magnetic components and such understanding may best be obtained by directly measuring the magnetic flux in the core. Accordingly, there is a need for being able to directly measure the flux within the core component of an electromagnetic device, such as an inductor, transformer or similar device.
In accordance with an embodiment, a magnetic core flux sensor assembly may include a flux sensor core portion and at least one elongated opening for receiving a conductor winding through the flux sensor core portion. An electrical current flowing through the conductor winding generates a magnetic field about the conductor winding and a magnetic flux flow about the at least one elongated opening in the flux sensor core portion. A plurality of pairs of sensor holes are positioned relative to the at least one elongated opening for preventing significant disruption of the magnetic flux flow in the sensor core portion and for use in sensing the magnetic flux flow at different distances from an edge of the at least one elongated opening. The magnetic core flux sensor assembly may also include a sensor conductor winding through each pair of sensor holes. The magnetic flux flow generates an electrical signal in each sensor conductor winding and the electrical signal in a particular sensor conductor winding corresponds to the magnetic flux flow at a location of the particular sensor conductor winding.
In accordance with another embodiment, electromagnetic device may include a flux sensor core portion and at least one elongated opening for receiving a conductor winding through the flux sensor core portion. An electrical current flowing through the conductor winding generates a magnetic field about the conductor winding and a magnetic flux flow about the at least one elongated opening in the flux sensor core portion. A plurality of pairs of sensor holes are positioned relative to the at least one elongated opening for preventing significant disruption of the magnetic flux flow in the sensor core portion and for use in sensing the magnetic flux flow at different distances from an edge of the at least one elongated opening. The electromagnetic device may also include a sensor conductor winding through each pair of sensor holes. The magnetic flux flow generates an electrical signal in each sensor conductor winding and the electrical signal in a particular sensor conductor winding corresponds to the magnetic flux flow at a location of the particular sensor conductor winding. A spacer portion may be disposed on opposite sides of the flux sensor core. The spacer portion may include an opening for the conductor winding to pass through the spacer portion. The electromagnetic device may further include a magnetic core portion disposed on each spacer portion. The at least one elongated opening extends through the magnetic core portion and the conductor winding extends through each magnetic core portion. The spacer portion may also include a gap for the sensor conductor winding through each pair of sensor holes to connect to a device for detecting the magnetic flux flow at the location of each sensor conductor winding.
In accordance with another embodiment, a magnetic core flux sensor assembly may include a flux sensor core portion and at least one elongated opening for receiving a conductor winding through the flux sensor core portion. An electrical current flowing through the conductor winding generates a magnetic field about the conductor winding and a magnetic flux flow about the at least one elongated opening in the flux sensor core portion. The magnetic core flux sensor assembly may also include plurality of sensor holes. Each sensor hole may be positioned relative to the at least one elongated opening for preventing significant disruption of the magnetic flux flow in the sensor core portion and for use in sensing the magnetic flux flow at different distances from an edge of the at least one elongated opening. A sensor conductor wire extends through each sensor hole. The magnetic flux flow generates an electrical signal in each sensor conductor wire and the electrical signal in a particular sensor conductor wire corresponds to the magnetic flux flow at a location of the particular sensor conductor wire.
In accordance with further embodiment, a method for measuring a magnetic flux in an electromagnetic device may include providing a magnetic core flux sensor assembly including a flux sensor core portion and at least one elongated opening for receiving a conductor winding through the flux sensor core portion. An electrical current flowing through the conductor winding generates a magnetic field about the conductor winding and a magnetic flux flow about the at least one elongated opening in the flux sensor core portion. The method may also include providing a plurality of pairs of sensor holes positioned relative to the at least one elongated opening for preventing significant disruption of the magnetic flux flow in the sensor core portion and for use in sensing the magnetic flux flow at different distances from an edge of the at least one elongated opening. The method may further include providing a sensor conductor winding through each pair of sensor holes. The magnetic flux flow generates an electrical signal in each sensor conductor winding. The electrical signal in a particular sensor conductor winding corresponds to the magnetic flux flow at a location of the particular sensor conductor winding.
The following detailed description of embodiments refers to the accompanying drawings, which illustrate specific embodiments of the disclosure. Other embodiments having different structures and operations do not depart from the scope of the present disclosure.
The following detailed description of embodiments refers to the accompanying drawings, which illustrate specific embodiments of the disclosure. Other embodiments having different structures and operations do not depart from the scope of the present disclosure. Like reference numerals may refer to the same element or component in the different drawings.
In accordance with an embodiment of the present disclosure, a linear inductor is an electromagnetic device having only one electrical conductor wire winding or windings passing through a magnetic core. In accordance with another embodiment, a linear transformer is a magnetic device where a linear primary electrical conductor wire winding or windings and one or more linear secondary electrical conductors wire winding or windings pass through a magnetic core. The core may be one piece and no turns of the primary and secondary electrical conductors about the core are required. While the core may be one piece, the one piece core may be formed from a plurality of stacked plates or laminates. A current may be conducted through the primary. A magnetic flux from the current in the primary is absorbed by the core. When the current in the primary decreases the core transmits an electromotive force (desorbs) into the secondary wires. A feature of the linear transformer is the linear pass of the primary and secondary conductors through the core. One core may be used as a standalone device or a series of two or more cores may be used where a longer linear exposure is required. Another feature of this transformer is that the entire magnetic field or at least a substantial portion of the magnetic field generated by the current in the primary is absorbed by the core, and desorbed into the secondary. The core of the transformer may be sized or include dimensions so that substantially the entire magnetic field generated by the current is absorbed by the core and so that the magnetic flux is substantially completely contained with the core. This forms a highly efficient transformer with very low copper losses, high efficiency energy transfer, low thermal emission and very low radiated emissions. Additionally the linear transformer is a minimum of 50% lower in volume and weight then existing configurations. Linear electromagnetic devices, such as linear transformers, inductors and similar devices are described in more detail in U.S. patent application Ser. No. 13/553,267, filed Jul. 19, 2012, now U.S. Pat. No. 9,159,487, entitled “Linear Electromagnetic Device” which is assigned to the same assignee as the present application and is incorporated herein in its entirety by reference. A magnetic core flux sensor assembly, as described herein, may be incorporated in a linear electromagnetic device, such as one of those described in the U.S. patent application Ser. No. 13/553,267, for directly detecting and measuring the magnetic flux flow within a magnetic core of such devices or magnetic core flux sensor assembly component of such devices.
The magnetic core flux sensor assembly 100 may also include at least one elongated opening 106 or winding opening for receiving a conductor winding 108 or windings through the flux sensor core portion 102. The exemplary magnetic core flux sensor assembly 100 in
The core flux sensor assembly 100 may also be used in an inductor type electromagnetic device. In an inductor configuration, only one electrical conductor winding will pass through both elongated openings 106 and 110. It should be noted that all magnetic core configurations described herein may be an inductor or transformer. The number and use of the windings determines whether the device is an inductor or transformer.
A magnetic core flux sensor assembly similar to the magnetic core flux sensor assembly 100 may also be configured with a single elongated opening such as that illustrated in
An electrical current flowing through the conductor winding 108 or windings generates a magnetic field around the conductor or conductors 108 and a magnetic flux is absorbed by the core portion 102 and flows about the at least one elongated opening 106 in the core of the flux sensor core portion 102. In the transformer configuration, as illustrated in
The magnetic core flux sensor assembly 100 also includes a plurality of pairs of flux sensor holes 114-122. The pairs of flux sensor holes 114-122 are placed in the flux sensor core portion 102 to support sensor conductors 128 or loop antenna sensors as described in more detail below. The loop antenna sensors are distributed in the flux sensor core portion 102 to detect the magnetic flux density in the core and the loop antenna sensors are distributed at predefined distances from the elongated winding opening 106 and in a distribution pattern that least affects the flow of magnetic flux in the core. Hence, the pairs of flux sensor holes 114-122 are positioned relative to the at least one elongated opening 106 for preventing significant disruption of the magnetic flux flow in the sensor core portion 102. The plurality of pairs of sensor holes 114-122 are also positioned for use in sensing the magnetic flux flow at different distances from an edge 124 of the at least one elongated opening 106. In the exemplary transformer configuration illustrated in
In the exemplary flux sensor plate 104 illustrated in
Referring also to
Each of the sensor holes 114-122 may be an elongated opening similar to that illustrated in
A sensor conductor winding 128, windings or loop antenna sensors may be wound or passed through each pair of sensor holes 114-122. The magnetic flux flow generates an electrical signal in each sensor conductor 128. The electrical signal in a particular sensor conductor winding 128 corresponds to the magnetic flux flow at a location of the particular sensor conductor winding and pair of sensor holes 114-122. The sensor holes 114-122 and sensor windings 128 or loop antenna sensors are distributed in the core 104 to detect magnetic flux density at predefined distances from each elongated opening 106 and 110. The sensor holes 114-122 and sensor windings 128 are also placed in a distribution pattern that least affects the flow of magnetic flux as illustrated by arrows 127 and 129 in
In accordance with another embodiment, rather than a plurality of pairs of sensor holes 114-122, there may be a plurality of single sensor holes. Each sensor hole may be positioned relative to the at least one elongated opening 106 and 110 for preventing significant disruption of the magnetic flux flow in the sensor core portion 104 and for use in sensing the magnetic flux flow at different distances from an edge 124 of the at least one elongated opening 106 and 110. The sensor conductor winding 128 may be a single wire or antenna element in each single sensor hole. The single sensor holes may be substantially circular or round or may be shaped to accommodate a size and shape of the single wire or antenna element.
As previously discussed, the flux sensor core portion 102 may include a plurality of flux sensor core plates 104 (
The first plate portion 104a may include an extension member 130 extending from one end of the first plate portion 104a and the second plate portion 104b may include another extension member 132 extending from an end of the second plate portion 104b opposite the extension member 130 of the first plate portion 104a. A hole 134 may be formed and each of the extension members 130 and 132 for receipt of a holding device, such as a fastener, for holding the flux sensor core plates 104 together in the stack with the elongated openings 106 and 110 and the plurality of sensor holes 114-122 of each of the sensor core plates 104 in the stack in alignment with one another. Other holes 135 may also be formed in the flux sensor core plates 104 for receipt of additional holding devices or fasteners.
The magnetic core flux sensor assembly 100 may also include a spacer portion 136 and 138 disposed on each outside flux sensor core plate 104. Each spacer portion 136 and 138 may include a plurality of spacer plates 140 stacked on one another. The spacer plates may be made from a non-magnetic material or material that is an electrical insulator or dielectric. Referring also to
Each spacer plate 140 may also include a gap or gaps 314 and 316 for the sensor conductor windings 128 that pass through each pair of sensor holes 114-122 (
Similar to that previously discussed, at least the spacer portion 136 may include a gap 409 formed by gaps 314 and 316 in spacer plates 140 for the sensor conductor windings 128 to connect to a magnetic flux flow test assembly 410. The magnetic flux flow test assembly 410 may include a device for detecting and/or measuring the magnetic flux flow at the location of each sensor conductor winding 128 for sensor holes 114-122. The magnetic flux flow test assembly 410 or device may include or may be an oscilloscope for displaying the electrical signal in each particular sensor conductor winding 128 which corresponds to the magnetic flux flow at a location of the particular sensor conductor winding 128 in the sensor holes 114-122.
Each magnetic core portion 402 and 404 may include a plurality of magnetic core plates 412 or laminates stacked on one another as illustrated in the exemplary embodiment in
Each magnetic core plate 412 may also include a plurality of holes 506 which align with the openings 310 in the spacer plates 140 and openings 134 and 135 in the flux sensor core plates 104 assembling the transformer 400.
Each flux sensor plate 606 of the flux sensor core portion 602 may also include a plurality of pairs of sensor holes 618-626 positioned relative to the at least one elongated opening 608. The plurality of pairs of sensor holes 618-626 are positioned for preventing significant disruption of the magnetic flux flow in the sensor core portion 602 and for use in sensing the magnetic flux flow at different distances from an edge 628 of the at least one elongated opening 608. The plurality of pairs of sensor holes 618-626 may be positioned similar to the sensor holes 114-122 described with reference to
A sensor conductor winding 630 or loop antenna sensors may pass or extend through each pair of sensor holes 618-626. The magnetic flux flow in the flux sensor core 604 generates an electrical signal in each sensor conductor winding 630. The electrical signal in a particular sensor conductor winding 630 corresponds to the magnetic flux flow at a location of the particular sensor conductor winding 630 or associated sensor holes 618-626.
A spacer portion 632 may be disposed on opposite sides of the flux sensor core 604. Each spacer portion 632 may include a plurality of spacer plates 634 or laminates similar to the spacer plate 140 described with reference to
The electromagnetic device 600 may also include a magnetic core portion 640 disposed on each spacer portion 632. The at least one elongated opening 628 extends through the magnetic core portion 640 and the conductor winding 610 extends through each magnetic core portion 640. The magnetic core portion 640 may be made from a stack of magnetic core plates 642 similar to that previously described. Each magnetic core plate 642 or laminate may be similar to the magnetic core plate 412 in
In block 702, a magnetic flux sensor assembly including a magnetic flux sensor portion may be provided. The magnetic flux sensor portion may include at least one elongated opening for a wire conductor winding or windings and a plurality of pairs of sensor holes for sensor windings. The sensor holes may be elongated holes much smaller than the elongated opening for the conductor winding or windings. Each pair of sensor holes may be positioned at a predetermined spacing along a longitudinal extent of the elongated opening and at a selected different distance from an edge of the elongated opening to substantially minimize or prevent disruption of a flow of magnetic flux in a core of the electromagnetic device. The sensor holes of each pair may be parallel to one another and each pair of sensor holes may be parallel to the elongated opening. The flux sensor portion may include a plurality of flux sensor plates or laminates stacked on one another to form the flux sensor portion similar to that previously described.
In block 704, a single sensor conductor or winding or a plurality of sensor conductors or windings may extend or wind through each pair of sensor openings. The sensor conductors or windings are connectable to a magnetic flux detector or flux measurement device. Similar that previously described the magnetic flux detector or flux measurement device may be an oscilloscope for displaying waveforms corresponding to the magnetic flux flow at a location of each sensor conductor winding through the sensor holes.
In block 706, a spacer portion may be provided on opposite sides of the magnetic flux sensor portion. The spacer portion may be a stack of a plurality of spacer plates or laminates on opposite sides of a stack of flux sensor plates or laminates. The plates may be stacked parallel to one another similar to that previously described.
In block 708, inductor or transformer core portions may be provided on each of the spacer portions. Similar to that previously described the core portions may include at least one elongated opening for the winding or windings. The inductor configuration will include a single winding or windings and the transformer configuration or assembly will include a primary winding and at least one secondary winding. The at least one elongated opening will align with the at least one opening in the sensor plates.
In block 710, a single conductor winding or a plurality of primary conductor windings may extend or wind through the at least one elongated opening. The conductors may have a substantially square or rectangular cross-section similar to that described in U.S. patent application Ser. No. 13/553,267. The primary conductors may be disposed adjacent each other within the elongated opening or slot in a single row.
In block 712, if the electromagnetic device is a transformer, a single secondary conductor winding or a plurality of secondary conductor windings may extend or wind through the elongated opening or may extend or wind through a second elongated opening. The secondary conductor windings may also have a square or rectangular cross-section. The secondary conductors may be disposed adjacent each other within the elongated opening or slot in a single row. The secondary conductors may be disposed adjacent the primary conductors in the same elongated opening, or in another embodiment, the secondary conductor windings may be in a separate elongated opening similar to that described in U.S. patent application Ser. No. 13/553,267.
In block 714, if the electromagnetic device is a transformer, the primary conductor winding or windings may be connected to an electrical source and the secondary conductor winding or windings may be connected to a load.
In block 716, an electrical current may be conducted through the primary conductor winding or windings to generate a magnetic field around the conductor or conductors. The core of the electromagnetic device may be designed to cause substantially the entire magnetic field to be absorbed by the core. A magnetic flux is generated in the core by the magnetic field.
In block 718, the magnetic flux flow in the core may be detected and/or measured using a magnetic flux sensor assembly similar to that described herein. The magnetic flux flow generates an electrical signal in the sensor conductor winding or windings through each pair of sensor holes as described herein. The electrical signal in a particular sensor conductor winding corresponds to the magnetic flux flow at a location of the particular sensor conductor winding through the sensor holes.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art appreciate that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown and that the embodiments herein have other applications in other environments. This application is intended to cover any adaptations or variations of the present disclosure. The following claims are in no way intended to limit the scope of the disclosure to the specific embodiments described herein.
Number | Name | Date | Kind |
---|---|---|---|
352105 | Zipernowsky et al. | Nov 1886 | A |
2411374 | Horstman | Nov 1946 | A |
2569675 | Keefe | Oct 1951 | A |
2780771 | Lee | Feb 1957 | A |
3042849 | Dortort | Jul 1962 | A |
3411121 | Twomey | Nov 1968 | A |
3451130 | Ellis | Jun 1969 | A |
3464002 | Hentschel | Aug 1969 | A |
4020440 | Moerman et al. | Apr 1977 | A |
4338657 | Lisin et al. | Jul 1982 | A |
4520335 | Rauch et al. | May 1985 | A |
4520556 | Pasko et al. | Jun 1985 | A |
4565746 | Hayase | Jan 1986 | A |
4668931 | Boenitz | May 1987 | A |
4684882 | Blain | Aug 1987 | A |
4897626 | Fitter | Jan 1990 | A |
5351017 | Yano et al. | Sep 1994 | A |
5486756 | Kawakami et al. | Jan 1996 | A |
5534831 | Yabuki et al. | Jul 1996 | A |
5534837 | Brandt | Jul 1996 | A |
5668707 | Barrett | Sep 1997 | A |
5737203 | Barrett | Apr 1998 | A |
6144282 | Lee | Nov 2000 | A |
6181079 | Chang et al. | Jan 2001 | B1 |
6715198 | Kawakami | Apr 2004 | B2 |
6995646 | Fromm et al. | Feb 2006 | B1 |
7015691 | Kang et al. | Mar 2006 | B2 |
7071807 | Herbert | Jul 2006 | B1 |
7106047 | Taniguchi | Sep 2006 | B2 |
7148675 | Itoh | Dec 2006 | B2 |
7342477 | Brandt et al. | Mar 2008 | B2 |
7362206 | Herbert | Apr 2008 | B1 |
7378828 | Brandt | May 2008 | B2 |
7407596 | Choi et al. | Aug 2008 | B2 |
7639520 | Zansky et al. | Dec 2009 | B1 |
8497677 | Miyahara | Jul 2013 | B2 |
8980053 | Krahn et al. | Mar 2015 | B2 |
9106125 | Brandt et al. | Aug 2015 | B1 |
9159487 | Peck | Oct 2015 | B2 |
20020163330 | Sekiya | Nov 2002 | A1 |
20030117251 | Haugs et al. | Jun 2003 | A1 |
20040027121 | Choi | Feb 2004 | A1 |
20040051617 | Buswell | Mar 2004 | A1 |
20040124958 | Watts et al. | Jul 2004 | A1 |
20040135661 | Haugs et al. | Jul 2004 | A1 |
20050035761 | Park et al. | Feb 2005 | A1 |
20050093669 | Ahn et al. | May 2005 | A1 |
20060082430 | Sutardja | Apr 2006 | A1 |
20060089022 | Sano | Apr 2006 | A1 |
20060197480 | Mori et al. | Sep 2006 | A1 |
20080150664 | Blankenship et al. | Jun 2008 | A1 |
20080163475 | Snyder | Jul 2008 | A1 |
20090244937 | Liu | Oct 2009 | A1 |
20090289754 | Shpiro et al. | Nov 2009 | A1 |
20100134044 | Sin | Jun 2010 | A1 |
20100134058 | Nagashima et al. | Jun 2010 | A1 |
20100164673 | Shim | Jul 2010 | A1 |
20100194373 | Hamberger et al. | Aug 2010 | A1 |
20110095858 | Spurny | Apr 2011 | A1 |
20110163834 | Stahmann et al. | Jul 2011 | A1 |
20110210722 | Paci | Sep 2011 | A1 |
20110279212 | Ikriannikov et al. | Nov 2011 | A1 |
20120150679 | Lazaris | Jun 2012 | A1 |
20120226386 | Kulathu et al. | Sep 2012 | A1 |
20120315792 | Costello | Dec 2012 | A1 |
20130043725 | Birkelund | Feb 2013 | A1 |
20130049751 | Hamberger et al. | Feb 2013 | A1 |
20140022040 | Peck | Jan 2014 | A1 |
20140210585 | Peck, Jr. | Jul 2014 | A1 |
20140232384 | Peck, Jr. | Aug 2014 | A1 |
20150043119 | Peck, Jr. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
1444237 | Sep 2003 | CN |
1495435 | May 2004 | CN |
1514258 | Jul 2004 | CN |
101995507 | Mar 2011 | CN |
2926423 | Jan 1981 | DE |
4129265 | Mar 1993 | DE |
1345036 | Sep 2003 | EP |
2688076 | Jan 2014 | EP |
01242333 | Sep 1989 | JP |
02192705 | Jul 1990 | JP |
H0977452 | Mar 1997 | JP |
2001167933 | Jun 2001 | JP |
2011238653 | Nov 2011 | JP |
2007078403 | Jul 2007 | WO |
2014130122 | Aug 2014 | WO |
Entry |
---|
European Patent Office, International Application No. PCT/US2013/072789 International Search Report and Written Opinion dated May 27, 2014, pp. 1-6. |
The Boeing Company; International Preliminary Report on Patentability for International Application No. PCT/US2013/072789 dated Aug. 25, 2015, 9 Pages. |
Fedder, Gary K., et al.; “Laminated High-Aspect-Ratio Microstructures in a Conventional CMOS Process,” Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, 1996, pp. 13-18. |
Chee, Clinton Y.K., et al.; “A Review on the Modelling of Piezoelectric Sensors and Actuators Incorporated in Intelligent Structures,” Journal of Intelligent Material Systems and Structures, 1998, pp. 3-19, vol. 9. |
Wilson, Earl J.; “Strain-Gage Instrumentation,” Harris' Shock and Vibration Handbook, 2002, pp. 17.1-17.15, Chapter 17, 5th Edition. |
Simoes Moita, Jose M., et al.; “Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators,” Computers and Structures, 2004, pp. 1349-1358, vol. 82. |
European Patent Office; Extended European Search Report for European Application No. 14179801.7 dated Jul. 10, 2015, 14 pages. |
European Patent Office; European Patent Application No. 14178702.8, European Search Report dated Jan. 21, 2015, 7 pages. |
European Patent Office; Extended European Search Report for European Patent Application No. 13173067.3 dated Nov. 3, 2015, 9 Pages. |
Chinese Patent Office; Office Action for Chinese Patent Application No. 2013800736555 dated Aug. 26, 2016, 16 Pages. |
Number | Date | Country | |
---|---|---|---|
20140232383 A1 | Aug 2014 | US |