A number of medical ailments are treated or treatable and/or diagnosed through the application of a magnetic field to an afflicted portion of a patient's body. Neurons and muscle cells are a form of biological circuitry that carry electrical signals and respond to electromagnetic stimuli. When an ordinary conductive wire loop is passed through a magnetic field or is in the presence of a changing magnetic field, an electric current is induced in the wire.
The same principle holds true for conductive biological tissue. When a changing magnetic field is applied to a portion of the body, neurons may be depolarized and stimulated. Muscles associated with the stimulated neurons can contract as though the neurons were firing by normal causes.
A nerve cell or neuron can be stimulated in a number of ways, including transcutaneously via transcranial magnetic stimulation (TMS), for example. TMS uses a rapidly changing magnetic field to induce a current on a nerve cell, without having to cut or penetrate the skin. The nerve is said to “fire” when a membrane potential within the nerve rises with respect to its normal negative ambient level of approximately −90 millivolts, depending on the type of nerve and local pH of the surrounding tissue.
The use of magnetic stimulation is very effective in rehabilitating injured or paralyzed muscle groups. Apart from stimulation of large muscle groups such as the thigh or the abdomen, experimentation has been performed in cardiac stimulation as well. In this context, magnetic stimulation of the heart may prove to be superior to CPR or electrical stimulation, because both of those methods undesirably apply gross stimulation to the entire heart all at once.
Another area in which magnetic stimulation is proving effective is treatment of the spine. The spinal cord is difficult to access directly because vertebrae surround it. Magnetic stimulation may be used to block the transmission of pain via nerves in the back, e.g., those responsible for lower back pain.
Magnetic stimulation also has proven effective in stimulating regions of the brain, which is composed predominantly of neurological tissue. One area of particular interest is the treatment of depression. It is believed that more than 28 million people in the United States alone suffer from some type of neuropsychiatric disorder. These include conditions such as depression, schizophrenia, mania, obsessive-compulsive disorder, panic disorders, and others. Depression is the “common cold” of psychiatric disorders, believed to affect 19 million people in the United States and possibly 340 million people worldwide.
Modern medicine offers depression patients a number of treatment options, including several classes of anti-depressant medications (e.g., SSRI's, MAOI's and tricyclics), lithium, and electroconvulsive therapy (ECT). Yet many patients remain without satisfactory relief from the symptoms of depression. To date, ECT remains an effective therapy for resistant depression; however, many patients will not undergo the procedure because of its severe side effects.
Recently, repetitive transcranial magnetic stimulation (rTMS) has been shown to have significant anti-depressant effects for patients that do not respond to the traditional methods. The principle behind rTMS is to apply a subconvulsive stimulation to the prefrontal cortex in a repetitive manner, causing a depolarization of cortical neuron membranes. The membranes are depolarized by the induction of small electric fields in excess of 1 V/cm that are the result of a rapidly changing magnetic field applied non-invasively.
Creation of the magnetic field has been varied. Certain techniques describe the use of a coil to create the necessary magnetic field. Other techniques contemplate the use of a high saturation level magnetic core material, like vanadium permendur. Use of the magnetic core material, as compared to the coil or so-called “air” core solution, has been shown to increase the efficiency of the TMS process. For example, as discussed with reference to U.S. Pat. No. 5,725,471, using a magnetic core instead of just a coil increases the efficiency of the TMS process by creating a larger, more focused magnetic field with the same or lesser input power requirements.
This advance has allowed a more cost effective solution that uses existing 120 volt power without complicated and a costly power supplies. Also, because of the need for the same or lesser power inputs, the magnetic core significantly reduces the undesirable heating that was associated with the coil solution and created a safety risk for patients. For example, magnetic core devices in comparison to coil-only devices reduce the magnetic reluctance path by a factor of two. This reluctance reduction translates into a reduction of required current to generate the same magnetic field by the same factor, and thus provides a fourfold reduction in required power.
The ferromagnetic core alternatives typically are fabricated by laminating layers of silicon steel or similar ferromagnetic metal together to form the core structure. The layers may be constructed by stacking cut-out shapes or by winding a ribbon of material onto a mandrel followed by further machining and processing to attain the desired core geometry.
While solutions fabricated using these ferromagnetic cores offered a marked improvement over their coil-only counterparts, the ferromagnetic cores also suffer from certain complexities in their construction and limitations in their geometry. Specifically, the stacked layer construction method does not provide optimal alignment of the metal crystal structure with the magnetic flux lines and also requires a controlled lamination process to guarantee minimal eddy current losses. The wound ribbon construction method typically results in a core with arc-shaped or C-shaped structure having a certain radius and span. The dimensions and geometry of these ferromagnetic cores are selected to ensure desired depth of penetration, magnetic field shape and appropriate magnetic field magnitude at certain locations within the patient's anatomy.
The ferromagnetic core's construction method involves a complex and meticulous construction process that increased both the complexity and cost of the core. For example, because ferromagnetic material is electrically conductive, eddy currents are established in the material when it is exposed to a rapidly varying magnetic field. These eddy currents not only heat the core material through resistive heating, but they also produce an opposing magnetic field that diminishes the primary magnetic field. To prevent these losses the eddy current pathways are broken by fabricating the core from very thin layers or sheets of ferromagnetic material that are electrically isolated from each other.
The sheets typically are individually varnished or otherwise coated to provide insulation between the sheets, thus preventing current from circulating between sheets and resulting in reduced eddy current losses. Also, the sheets are oriented parallel to the magnetic field to assure low reluctance.
The wound core fabrication process begins by winding a long thin ribbon of saturable ferromagnetic material, such as vanadium permendur or silicon steel, on a mandrel to create the desired radius, thickness and depth of the core. Each side of the ribbon typically is coated with a thin insulative coating to electrically isolate it. Once the ribbon has been wound on the mandrel to the desired dimensions, it is removed from the mandrel and dipped in epoxy to fix its position. Once the epoxy has cured, a sector of the toroidal core is cut with a band saw and removed, thus forming the desired arc-shape. Because the cutting process may reduce the electrical isolation of adjacent laminations, each cut is finely ground so that it is smooth, and then a deep acid etch is performed. The deep etch is performed by dipping each of the cut ends in an acid bath. This removes any ferromagnetic material that may be shorting the laminations. Following the deep etch, the faces are coated to prevent oxidation and to maintain the shape and structural integrity of the core. The manufacturing process of cutting, coating, aligning, attaching and laminating the layers makes for a complex and costly manufacturing process. Also, these considerations make it difficult to change or customize the shape of the core structure.
Winding a coil of insulated wire around the ferromagnetic core to deliver the current needed to create the magnetic field also is a complex and detailed process. A typical inductance for a core of this type is about 15-20 microHenries. Each pass of the winding around the core must be made at precise intervals on the core structure. In the simplest configuration, each core has only one winding, although typically the core may be wound multiple times.
While the present ferromagnetic core shape and composition work well, and certainly better than the coil-only approach, it should be appreciated that other core compositions and core shapes may work equally well under other circumstances.
The inventive technique include a system, method and device for treating a patient. The inventive system includes a magnetic field generating device created using a powdered ferromagnetic. The system further includes a circuit in electrical communication with the magnetic core, and a power source in electrical communication with the circuit. The ferromagnetic powder core may be manufactured by at least one of the following: machining, pressing, molding, gluing, and extruding. Also, the ferromagnetic powder core may have a distributed gap structure, where the gap structure operates to focus the magnetic field between pole faces of the magnetic device. The ferromagnetic powder core may have a shaded pole face, where the pole face comprises a channel cut into the face of the pole with a shorted turn inserted into the channel. The ferromagnetic powder core may comprise a ferromagnetic electrically conductive material such as iron or a non-ferromagnetic material such as copper, brass and/or aluminum, for example. Also, the system may include a wire or conductor that is wound around a bobbin structure that acts to insulate the wire from the core structure.
The inventive method of treating a patient includes creating a magnetic field using a magnetic device having a non-linear ferromagnetic powder core and applying the magnetic field to the patient to treat the patient as a function of the magnetic field. The inventive method further may use a ferromagnetic powder core that has a distributed gap structure that focuses the magnetic field between pole faces of the magnetic device via the distributed gap core structure. The ferromagnetic powder core may include a ferromagnetic electrically conductive material such as iron and/or a non-ferromagnetic material such as copper, brass and aluminum.
In one embodiment of the invention, a distributed gap core structure is contemplated, for example an air gap core structure. It should be appreciated that the air gap core refers to the internal structure of a magnetic core, while the “air core” discussed in the Background of the Invention section refers to a winding without any magnetic core. One type of distributed air gap core structure is created by dispersing powdered ferromagnetic particles in a matrix of insulating material. It should be appreciated that the invention is not limited to an ferromagnetic powder core, but various embodiments may include any gap core structure. The gap core structure may be any structure where one or more conductive particles are insulated (or nearly so) from each other.
The use of distributed gap core structures, like powdered ferromagnetic core materials reduces the complex manufacturing and corresponding cost burden inherent in the laminated structures. In addition, because of the insulating material that separates the ferromagnetic particles in the core material, the core is less conductive, and as a result eddy current losses are minimal. More specifically, the non-conductive gaps may prohibit the flow of current from one ferromagnetic particle to the next, and thus reduce overall current flow in the core. Because eddy currents result from the conductive flow of current in magnetic materials like the core, reducing the conductive flow serves to reduce the eddy currents. As a result of the reduced eddy currents, the distributed gap core structure produces even less heat than its counterpart ferromagnetic core structures.
Therefore, higher power and current levels may be used to drive coils fabricated with a distributed gap core without concern for heating that may be excessive for a patient undergoing treatment. Moreover, these higher power levels may be achieved without the need for sophisticated cooling systems, typical of the “air” core solutions. In addition, these higher current drive levels may drive the distributed gap cores closer to their saturation level to obtain greater magnetic field strength, without concern for consequent undesirable heating. In fact, in some embodiments, heating due to resistive losses in the windings may be greater than heat generated within the distributed gap core material. In other words, the heating characteristics of the windings may provide the only real heating concerns for patient use.
Reducing eddy current losses and the concomitant reduction in heat generation permits operation of the magnetic core at proportionally higher duty cycles. From a medical application perspective, relatively greater and more intense therapy may be achieved, which may be beneficial for certain applications. In addition to its inherent reduced temperature, the core may additionally be enclosed in a structure that further enhances its thermal performance. For example, by potting the core into a shell heat may be directed to a desirable surface for radiation to the surrounding air. Such a surface may, for example, be located away from surfaces that touch a patient or the operator.
Air spaces and thermal insulation also may be added between the windings or other heat generating materials to insulate them from surfaces that may come in contact with a patient, for example. Typically these surfaces must be kept at or below 41.5 degrees Celsius in order to comply with medical device standards, well known to those skilled in the art.
It also should be appreciated that the reduced current flow and eddy current loss gained with the distributed gap core structure is not found in the cores created by a sintering process. This is due, in part, because the sintering process operates to place the insulated iron powder particles back into electrical conductivity with one another, and thus promote current flow and increased eddy current losses.
The insulative material may be any material that offers a different level of permeability and inductance as compared to the ferromagnetic particles. By introducing an insulative gap, the magnetic flux path is increased, thus reducing the permeability and the inductance of the core material. It may be desirable to have a core with a permeability of greater than 1. Moreover, because the distributed gap reduces eddy currents, there are fewer flux distortions. This relatively greater isotropic structure provides for a more uniformly distributed flux and facilitates more complex and sophisticated core structures.
The ferromagnetic powder used to make the core may be made of particles that are less than 0.05 inch in diameter. Although it should be appreciated that the particles may be of any size in the contemplated embodiments, it should be appreciated that the specific particle dimension is related to the frequency at which the core is to operate. For example, if the core is to be pulsed at a higher frequency, it may be desirable to use particles with a smaller dimension. The ferromagnetic particles may vary in size and may not be spherical but rather irregular in shape. In any event, it should be appreciated that specific particle size may be selected to reduce losses resulting from eddy currents and hysteresis losses within individual particles.
Also, although the invention is not limited to any particular formation, it should be appreciated that individual ferromagnetic particles may be formulated from iron, iron alloys and amalgams of other conductive or partially conductive materials. Also, the material composition of the particles may include non-ferrous metals such as copper, brass, aluminum and alloying elements such as carbon, silicon, nickel and chromium formulated to create the desired crystal structure and desired magnetic characteristics. Saturation, permeability and B-H curve characteristics vary depend on this selected formulation. In addition, the ferromagnetic particles may be coated with a non-conductive resin to, among other things, prevent oxidation while being stored before the coated particles are formed into the desired structure in the core manufacturing process.
The contemplated embodiments include a method for manufacturing a magnetic core device, for example a powdered ferromagnetic core device. The method includes selecting certain powdered ferromagnetic materials. The materials are then mixed and compressed to form the core. The powder may be pressed into a mold having the final form of the core. Alternatively, blocks of compressed material can be manufactured and subsequently machined to the desired geometry. Also, separate molded or machined component pieces may be mechanically assembled into the final core geometry using cement, heating or bonding by other mechanical means. The ferromagnetic powder core may be produced by any of several processes. For example, stream of molten iron may be atomized by a high pressure water jet.
The ferromagnetic particles may be coated with any appropriate substance. For example, the ferromagnetic particles may be coated with an insulative substance, like alkali metal silicate, for example. The insulative substance provides insulation between each of the particles in the core, and thus creates the distributed gap core. In one embodiment, an aqueous alkali metal silicate solution is used containing up to 39% by weight solids of K2O and SiO2, and up to 54% by weight solids of Na2O and SiO2. A wetting agent or surfactant, like alkyl phenoxyl polyethoxy ethanol for example, may be added to facilitate uniform coating of the particles.
The appropriate substances are mixed and may be surface-dried at the same time. A thin coating of an adherent resin may be applied to the ferromagnetic particles. Such resins may include polyimides, fluorocarbons and acrylics. The resin permits the particles to remain flexible and thus capable of withstanding high temperatures without decomposing into conducting residues.
To form the core, the powder is compressed. The compression may be approximately in the range of 25 to 100 tons per square inch. A form may be used to create the desired shape. The pressed components may be annealed, for example, at 500 to 600 degrees Celsius to relieve the stresses and reduce the hysteresis losses.
If ferromagnetic powder is to be used for the magnetic core in such an application, the particles may be insulated from one another, for example, with between 1% to 3% spacing between particles. Although this is just one example. When raw ferromagnetic powder is compressed up to 100 tons per square inch and not sintered, the density remains 1% or 2% below the true density of solid iron, because of residual crevices or interstices which remain empty or are filled with lower density resin. As a result, the ferromagnetic powder may be compressed to about 90% of theoretical density or better in order to have a distributed insulation-containing air gap less than 3% in each of the three orthogonal directions, one of which is that of the flux path. In any of the embodiments, the magnetic core may be a composition that allows the core to saturate at 0.5 Tesla or greater, for example.
During the manufacturing process, the individual ferromagnetic particles in the powder may be mixed with a binding material, for example phenolic or epoxy. The ferromagnetic powder may then be pressed into its final shape. Next, a baking or heating process may be implemented to cure the core material. After the core has been cured, the ferromagnetic particles may be separated by air or insulative binding material which effectively results in a distributed gap. As a result, the gap is distributed throughout the core.
The novel device and techniques may be used for many purposes including the treatment of patients with medical conditions. This applicability will be discussed in the context of TMS in order to provide greater understanding. However, it should be appreciated that techniques have applicability beyond TMS also are contemplated by the invention.
In just one embodiment, a method of treating a patient by creating a magnetic field using a magnetic device having a non-linear core is contemplated. As will be discussed with reference to
Also, the core used to treat the patient may be a gap distributed core and more specifically an ferromagnetic powder core. As discussed, the embodiments are not limited to any compositions, but contemplate any material composition that effectively creates a distributed gap core structure. Also, the embodiments contemplate any type of core structures, including ferromagnetic, where the shape of the core structure has a non-arc shaped structure. For example, the embodiments contemplate the use of a non-sintered core material. Also, other embodiments contemplate a non-linear shaped ferromagnetic powder core.
The magnetic field passing through the core may be applied to the patient for the purpose of treating or diagnosing the patient. The embodiments are not limited to a specific level or intensity of the magnetic field, but instead contemplate any field strength, focus and duration necessary to treat or diagnose the desired patient.
A novel system may include a magnetic field generating device created using a powdered ferromagnetic core, a circuit in electrical communication with the magnetic core, and being drive by a power source in electrical communication with the circuit.
A power source may be provided in order for the core to generate the requisite magnetic field. The power source may be in electrical communication with the windings wrapped around a portion of the core. The power source may be created to provide a substantially constant power or substantially constant current source. For example, the power source may provide a substantially constant power or substantially constant current source to a capacitor, which then discharges to the core to create the magnetic field.
The power source may operate on an alternating current input voltage in the range of 85 volts to 264 volts. In this way, the inventive device may operate using power typically available in residential and commercial settings.
Finally, the embodiments contemplate a method for treating depression. As part of the method a patient is selected who suffering from a depressive disorder. The patient's brain is then magnetically stimulated using a transcranial magnetic stimulator with a magnetic core. The core may be a ferromagnetic core having a U-shaped structure and/or a distributed gap core structure having any core shape and structure.
It should be appreciated that the use of ferromagnetic powder core makes more feasible many possible core geometries. In fact, the distributed gap core (e.g., ferromagnetic powder core) manufacturing process, allows the core's geometry to have an array of possibilities. The precise shape and size of the core's geometry may be made to vary depending upon various factors. For example, although not an exclusive list of considerations, the following may be considered in deciding upon the size and geometry of the core: the use of the core, the available mounting area and volume, the allowable radiation, the limitations on windings, the operating temperature, and how the core will be mounted. Consequently, a core's geometrical shape can take any form, including a cylinder, bobbin, toroid, a non-toroid or several other possible shapes.
In addition, it also should be appreciated that the ferromagnetic powder manufacturing process facilitates construction of the core as multiple components or pieces. Multi-piece ferromagnetic powder cores, each piece made of similar or different magnetic material, may be used for extremely complex shapes or larger core constructions. These individual pieces, of different or similar permeabilities, may be brought together by gluing and/or any other attachment techniques well known to those skilled in the art. This is facilitated, in part, due to the ease of manufacturing and core shaping provided by the powder core process.
In addition, the powder core manufacturing process also facilitates the use of other materials to shape the magnetic field provided by the core structure. For example, it may be desirable to deflect or redirect a certain portion of the created magnetic field away from certain parts of the anatomy. For example, for brain stimulation, it may be desirable to protect the trigeminal nerve from being stimulated and causing discomfort to the patient. This may be accomplished using any number of techniques.
One example technique locates a conductor on a treatment area relative to the protected area. The conductor may act to reduce stimulation of a cutaneous-proximate area on the patient. This may be accomplished by modifying an electric or magnetic field created by the transcutaneous stimulation. Also, it may be accomplished via modification of the electric field through modification of the magnetic flux created by the transcutaneous stimulation.
Generally, it may be noted that the magnetic cores shown in
As shown in
The angles may be made to both the cornered ends of the core as shown in
As shown in
It should be appreciated that the construction, size and shape of the core may be made to be dependent upon how the windings will be installed on the core component. For example, certain embodiments contemplate windings that are wound directly around and/or on the core. Also, other embodiments may include windings that are wound on a sleeve or bobbin that is slipped over a portion of the core, or are wound on a mandrel, potted and removed for subsequent assembly onto the core. It should be appreciated that certain embodiments may include a combination of the these approaches. A channel may be cut into the face of the pole in order to allow windings or wire to be installed. For example, a shorted turn may be inserted into the channel and connected together outside of the channel.
The wire used for the windings may be insulated to prevent closely wound, adjacent turns from shorting out. In the context of directly wound windings, the wire may be of such a gauge as to prevent the core from cutting through the insulation, for example with sharp surfaces or edges. Therefore, to accommodate such directly wound cores, the core may have a smooth winding surface, or in some cases may provide a corner radius to accommodate the turns.
The bobbin may be a structure that includes a single bobbin or multiple bobbins. The bobbin may provide insulation properties with respect to the rest of the core, as well as providing operation and safety capabilities. The wire may be wound around the pole faces of the core. Where wire is wound around two or more poles, the number of turns of the winding may be equal between both poles. Also, the wire may be wound around a central point of the core, instead of or in addition to being wound around the pole faces of the core. Where wound around both, the number of turns of the winding around the pole faces may be a fraction of the number of turns around the central point of the core.
Again, it should be appreciated that fabrication of a core by pressing ferromagnetic powder into a mold allows a diverse range of core shapes and therefore more varied winding solutions. For example, in one embodiment of a distributed gap core a bobbin may be more readily used to accurately prefabricate and position the winding on the core.
It also should be appreciated that the described techniques further may be used to directly diagnose a patient's condition. Also, the techniques may be used to diagnose a response to drugs or other therapy and/or to quantify effectiveness of such therapies. In just one of many possible examples, pharmaceuticals may have effects (i.e., direct or secondary) on the performance of the central nervous system. These effects may be observed by providing stimulation (e.g., TMS) and observing evoked potentials, motor response, conduction velocities or other responses, just to name a few of the many contemplated observed effects. Changes in response may be used to quantify performance or to determine optimal dosing, for example.
In addition, many pathologies may be diagnosed using the described techniques an investigative tool to observe neurological response. Such pathologies include, but are not limited to, degenerative diseases, extent of traumatic injury, progression of diseases, systemic deficiencies, and congenital anomalies (e.g., tinnitus). A partial list of such conditions is provided here for the purposes of further understanding. However, the scope of the described embodiments are not limited to this list. These include assessment or measuring effect of pharmaceuticals, including anti-convulsives, Alzheimer's medications, anti-psychotics, pain medications, anti-anxiety, hypnotics (sedatives), analgesics (central), ADHD medications and, anesthetics. Just a few of the contemplated diagnostic applications include compromised motor function, degenerative diseases (e.g., Alzheimer's, Parkinson's, Amyotrophic Lateral Sclerosis), multiple sclerosis, diabetic neuropathy, chronic demyelinating neuropathy, acute demyelinating neuropathy, epilepsy, vitamin B12 deficiency (e.g., pernicious anemia), vitamin E deficiency, neurosarcoidosis, tinnitus, and stroke rehabilitation.
Other disorders may also be treated with the described techniques including treating a patient such as a human suffering from major depressive disorder, epilepsy, schizophrenia, Parkinson's disease, Tourette's syndrome, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer's disease, attention deficit/hyperactivity disorder, obesity, bipolar disorder/mania, anxiety disorders (panic disorder with and without agoraphobia, social phobia also known as social anxiety disorder, acute stress disorder, generalized anxiety disorder), post-traumatic stress disorder (one of the anxiety disorders in DSM), obsessive compulsive disorder (one of the anxiety disorders in DSM), pain (migraine, trigeminal neuralgia) (also: chronic pain disorders, including neuropathic pain, e.g., pain due to diabetic neuropathy, post-herpetic neuralgia, and idiopathic pain disorders, e.g., fibromyalgia, regional myofascial pain syndromes), rehabilitation following stroke (neuro plasticity induction), tinnitus, stimulation of implanted neurons to facilitate integration, substance-related disorders (dependence and abuse and withdrawal diagnoses for alcohol, cocaine, amphetamine, caffeine, nicotine, cannabis), spinal cord injury & regeneration/rehabilitation, head injury, sleep deprivation reversal, primary sleep disorders (primary insomnia, primary hypersomnia, circadian rhythm sleep disorder), cognitive enhancements, dementias, premenstrual dysphoric disorder (PMS), drug delivery systems (changing the cell membrane permeability to a drug), induction of protein synthesis (induction of transcription and translation), stuttering, aphasia, dysphagia, essential tremor, or eating disorders (bulimia, anorexia, binge eating).
The method further may include determining so-called “motor threshold” of the patient. More specifically, the magnetic device may be moved over a particular area until some indication of positioning is provided. For example, in the context of magnetic stimulation of the brain, the magnetic device may be moved over the patient's head until the patient's thumb moves or twitches indicating a motor threshold point. This motor threshold determination may be at a similar or different frequency, for example, using a stimulation frequency rate of 1 Hz.
From this point, the magnetic device may be moved to a desired treatment location. For example, for TMS treatment of the brain, the magnetic device may located approximately 5 centimeters anteriorly from motor threshold point. During TMS treatment, in some embodiments, the stimulator output may be set to approximately 110% of relaxed motor threshold with perhaps a repetition rate of approximately 10 Hz.
The circuit may be act as a switch to pulse the magnetic field generating device in such a way to treat the desired condition. In this way, the magnetic field may be applied to the patient in cycles intermittently. The exact stimulation frequency or frequency in which the magnet is pulsed may be varied depending upon the particular application (e.g., size of magnet and area of stimulation). For example, in just some embodiments, it may be desirable to stimulate for a five second period, followed by rest for a five second period and then repeat stimulation continuously for another five seconds. While they are being stimulated, it is desirable to have the muscle groups continuously excited. This requirement dictates the necessity of continuing to pulse the cores at a repetition rate of 15 Hz. Because of the large currents involved during any given firing of the core, it is necessary to make the cores as efficient as possible. It is desirable to focus the magnetic field into the region targeted for stimulus to the exclusion of surrounding regions. The specially designed cores offered by this invention realize that focusability.
In addition, a power source 1503 may be in electrical communication with the circuit. The power source may provide direct current (dc) or alternating current (ac) power. Also, the power levels may be consistent with those available in residential and commercial settings.
Although not shown for the purposes of brevity, it should be appreciated that similar winding configurations may be applied to any of the possible core shapes, illustrated in the figures or otherwise. The description herein with regard to the shapes and winding configurations of the core have been provided to facilitate the discussion and understanding of the many possible shapes and configuration that are within the scope of the contemplated embodiments. Similarly, it should be appreciated that these shapes and configurations are equally applicable to any type of magnetic core used for treating and/or diagnosing a patient, including but not limited to pressed powder, sintered, tape wound, and coil only or “air” core structures.
It is to be understood that the foregoing illustrative embodiments have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the invention. Words used herein are words of description and illustration, rather than words of limitation. In addition, the advantages and objectives described herein may not be realized by each and every embodiment practicing the present invention. Further, although the invention has been described herein with reference to particular structure, materials and/or embodiments, the invention is not intended to be limited to the particulars disclosed herein. Rather, the invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
For example, although a great deal of the discussion was based on the use of a pressed powder distributed gap core structure, it should be appreciated that the contemplated embodiments include the use of any core structure, including “air core,” non-sintered, and other ferromagnetic core structures for example. Moreover, although certain core shapes and configurations have been described herein, it should be appreciated that the shapes are provided merely to provide an understanding of the many core shapes contemplated by the embodiments.
In addition, although the disclosure addresses the treatment of patients, it should be appreciated that techniques described herein also contemplate patient diagnosis. In fact, where the disclosure refers to the treatment of patients for certain conditions, the techniques equally apply to the monitoring and diagnosis of patients for the same or similar conditions.
Those skilled in the art, having the benefit of the teachings of this specification, may affect numerous modifications thereto and changes may be made without departing from the scope and spirit of the invention.
This application is a division of application Ser. No. 11/191,106, filed Jul. 27,2005 now U.S. Pat. No. 7,824,324, entitled “MAGNETIC CORE FOR MEDICAL PROCEDURES,” the contents of which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3197678 | Primas | Jul 1965 | A |
3658051 | MacLean | Apr 1972 | A |
3683923 | Anderson | Aug 1972 | A |
4022701 | Sawa et al. | May 1977 | A |
4156882 | Delagi et al. | May 1979 | A |
4473074 | Vassiliadis | Sep 1984 | A |
4601753 | Soileau et al. | Jul 1986 | A |
4638798 | Shelden et al. | Jan 1987 | A |
4712558 | Kidd et al. | Dec 1987 | A |
4994015 | Cadwell | Feb 1991 | A |
4995395 | Ilmoniemi et al. | Feb 1991 | A |
5063011 | Rutz et al. | Nov 1991 | A |
5078674 | Cadwell | Jan 1992 | A |
5097833 | Campos | Mar 1992 | A |
5116304 | Cadwell | May 1992 | A |
5154723 | Kubota et al. | Oct 1992 | A |
5160447 | Ishikawa et al. | Nov 1992 | A |
5178757 | Corney | Jan 1993 | A |
5211896 | Ward et al. | May 1993 | A |
5254123 | Bushey | Oct 1993 | A |
5268140 | Rutz et al. | Dec 1993 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5370117 | McLaurin, Jr. | Dec 1994 | A |
5543174 | Rutz | Aug 1996 | A |
5566681 | Manwaring et al. | Oct 1996 | A |
5591373 | Ward et al. | Jan 1997 | A |
5655534 | Ilmoniemi | Aug 1997 | A |
5707334 | Young | Jan 1998 | A |
5725471 | Davey et al. | Mar 1998 | A |
5769778 | Abrams et al. | Jun 1998 | A |
5812301 | Nakamura et al. | Sep 1998 | A |
5813970 | Abrams et al. | Sep 1998 | A |
5820623 | Ng | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5855582 | Gildenberg | Jan 1999 | A |
5898253 | El-Antably et al. | Apr 1999 | A |
5923417 | Leis | Jul 1999 | A |
6002251 | Sun | Dec 1999 | A |
6057373 | Fogel | May 2000 | A |
6061644 | Leis | May 2000 | A |
6066084 | Edrich et al. | May 2000 | A |
6074385 | Klopotek | Jun 2000 | A |
6086525 | Davey et al. | Jul 2000 | A |
6117066 | Abrams et al. | Sep 2000 | A |
6132361 | Epstein et al. | Oct 2000 | A |
6155966 | Parker | Dec 2000 | A |
6169963 | Markov | Jan 2001 | B1 |
6179769 | Ishikawa et al. | Jan 2001 | B1 |
6179771 | Mueller | Jan 2001 | B1 |
6198958 | Ives et al. | Mar 2001 | B1 |
6205356 | Holcomb | Mar 2001 | B1 |
6210317 | Bonlie et al. | Apr 2001 | B1 |
6253109 | Gielen | Jun 2001 | B1 |
6256531 | Ilmoniemi et al. | Jul 2001 | B1 |
6266556 | Ives et al. | Jul 2001 | B1 |
6279579 | Riaziat et al. | Aug 2001 | B1 |
6288785 | Frantz et al. | Sep 2001 | B1 |
6355049 | Gill | Mar 2002 | B1 |
6366814 | Boveja et al. | Apr 2002 | B1 |
6389318 | Zarinetchi et al. | May 2002 | B1 |
6402678 | Fischell et al. | Jun 2002 | B1 |
6413263 | Lobdill et al. | Jul 2002 | B1 |
6418345 | Tepper et al. | Jul 2002 | B1 |
6425852 | Epstein et al. | Jul 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6477410 | Henley et al. | Nov 2002 | B1 |
6480743 | Kirkpatrick et al. | Nov 2002 | B1 |
6484059 | Gielen | Nov 2002 | B2 |
6488617 | Katz | Dec 2002 | B1 |
6497648 | Rey | Dec 2002 | B1 |
6500110 | Davey et al. | Dec 2002 | B1 |
6503187 | Illmoniemi et al. | Jan 2003 | B1 |
6516213 | Nevo | Feb 2003 | B1 |
6516288 | Bagne | Feb 2003 | B2 |
6537197 | Ruohonen et al. | Mar 2003 | B1 |
6551233 | Perreault et al. | Apr 2003 | B2 |
6553326 | Kirsch et al. | Apr 2003 | B1 |
6560490 | Grill et al. | May 2003 | B2 |
6567702 | Nekhendzy et al. | May 2003 | B1 |
6571123 | Ives et al. | May 2003 | B2 |
6572528 | Rohan et al. | Jun 2003 | B2 |
6618614 | Chance | Sep 2003 | B1 |
6625563 | Kirsch et al. | Sep 2003 | B2 |
6629935 | Miller et al. | Oct 2003 | B1 |
6641520 | Bailey et al. | Nov 2003 | B2 |
6663556 | Barker | Dec 2003 | B2 |
6827681 | Tanner et al. | Dec 2004 | B2 |
6849040 | Ruohonen et al. | Feb 2005 | B2 |
6954060 | Edel | Oct 2005 | B1 |
6978179 | Flagg et al. | Dec 2005 | B1 |
7367935 | Mechlenburg et al. | May 2008 | B2 |
7367936 | Myers et al. | May 2008 | B2 |
7407478 | Zangen et al. | Aug 2008 | B2 |
7560058 | Riehl et al. | Jul 2009 | B2 |
20010002441 | Boueja | May 2001 | A1 |
20010012912 | Feucht | Aug 2001 | A1 |
20010016977 | Moro et al. | Aug 2001 | A1 |
20010018547 | Mechlenburg et al. | Aug 2001 | A1 |
20010031906 | Ishikawa et al. | Oct 2001 | A1 |
20020013612 | Whitehurst | Jan 2002 | A1 |
20020087201 | Firlik et al. | Jul 2002 | A1 |
20020091419 | Firlik et al. | Jul 2002 | A1 |
20020103515 | Davey et al. | Aug 2002 | A1 |
20020123780 | Grill et al. | Sep 2002 | A1 |
20020160436 | Markov et al. | Oct 2002 | A1 |
20020169355 | Rohan et al. | Nov 2002 | A1 |
20030004392 | Tanner et al. | Jan 2003 | A1 |
20030023159 | Tanner | Jan 2003 | A1 |
20030028072 | Fischell et al. | Feb 2003 | A1 |
20030050527 | Fox et al. | Mar 2003 | A1 |
20030065243 | Tanner | Apr 2003 | A1 |
20030073899 | Ruohonen et al. | Apr 2003 | A1 |
20030074032 | Gliner et al. | Apr 2003 | A1 |
20030082507 | Stypulkowski | May 2003 | A1 |
20030087264 | Kaplitt et al. | May 2003 | A1 |
20030088274 | Gliner et al. | May 2003 | A1 |
20030097161 | Firlik et al. | May 2003 | A1 |
20030125786 | Gliner et al. | Jul 2003 | A1 |
20030130706 | Sheffield et al. | Jul 2003 | A1 |
20030195588 | Fischell et al. | Oct 2003 | A1 |
20030204135 | Bystritsky | Oct 2003 | A1 |
20040010177 | Rohan et al. | Jan 2004 | A1 |
20040019370 | Gliner et al. | Jan 2004 | A1 |
20040051279 | Grant et al. | Mar 2004 | A1 |
20040077921 | Becker et al. | Apr 2004 | A1 |
20040077923 | Frimerman et al. | Apr 2004 | A1 |
20040122281 | Fischell et al. | Jun 2004 | A1 |
20040127942 | Yomtov et al. | Jul 2004 | A1 |
20040138524 | Ueda et al. | Jul 2004 | A1 |
20040138550 | Hartlep et al. | Jul 2004 | A1 |
20040143300 | Rogers | Jul 2004 | A1 |
20040153129 | Pless et al. | Aug 2004 | A1 |
20040167592 | Grove | Aug 2004 | A1 |
20040172012 | Otsuka et al. | Sep 2004 | A1 |
20040193001 | Miller | Sep 2004 | A1 |
20040193002 | Tanner | Sep 2004 | A1 |
20040204625 | Riehl et al. | Oct 2004 | A1 |
20050021104 | DiLorenzo | Jan 2005 | A1 |
20050124848 | Holzner | Jun 2005 | A1 |
20050212162 | Aisenbrey | Sep 2005 | A1 |
20050216071 | Devlin et al. | Sep 2005 | A1 |
20050228209 | Schneider et al. | Oct 2005 | A1 |
20050234286 | Riehl et al. | Oct 2005 | A1 |
20050256539 | George et al. | Nov 2005 | A1 |
20060052687 | Ruohonen | Mar 2006 | A1 |
20060113696 | Aisenbrey | Jun 2006 | A1 |
20060199992 | Eisenberg et al. | Sep 2006 | A1 |
20090240096 | Riehl et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
0 998 958 | May 2000 | EP |
1145738 | Oct 2001 | EP |
1 273 320 | Jan 2003 | EP |
2000-504966 | Apr 2000 | JP |
2001-526947 | Dec 2001 | JP |
2003-180649 | Jul 2003 | JP |
WO 9806342 | Feb 1998 | WO |
WO 9933516 | Jul 1999 | WO |
WO 9964884 | Dec 1999 | WO |
WO 0074777 | Dec 2000 | WO |
WO 0112236 | Feb 2001 | WO |
WO 0128622 | Apr 2001 | WO |
WO 0197906 | Dec 2001 | WO |
WO 0209811 | Feb 2002 | WO |
WO 0231604 | Apr 2002 | WO |
WO 0232504 | Apr 2002 | WO |
WO 02072194 | Sep 2002 | WO |
WO 02085449 | Oct 2002 | WO |
WO 02085454 | Oct 2002 | WO |
WO 02089902 | Nov 2002 | WO |
WO 02094997 | Nov 2002 | WO |
WO 03035163 | May 2003 | WO |
WO 03039468 | May 2003 | WO |
WO 03082405 | Oct 2003 | WO |
WO 03084605 | Oct 2003 | WO |
WO 03085546 | Oct 2003 | WO |
WO 03090604 | Nov 2003 | WO |
WO 03098268 | Nov 2003 | WO |
WO 2004006750 | Jan 2004 | WO |
WO 2004082759 | Sep 2004 | WO |
WO 2004100765 | Nov 2004 | WO |
WO 2005000401 | Jan 2005 | WO |
WO 2005065768 | Jul 2005 | WO |
WO 2005067610 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20110015464 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11191106 | Jul 2005 | US |
Child | 12892980 | US |